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A FURTHER RESULT ON THE COMPLEX OSCILLATION
THEORY OF PERIODIC SECOND ORDER LINEAR
DIFFERENTIAL EQUATIONS*

by SHIAN GAO
(Received 8th August 1988)

We prove the following: Assume that B({)=g({¥ ")+ f-, b, {*', where p is an odd positive integer, g({) is a
transcendental entire function with order of growth less than 1, and set A(z)= B(e**). Then for every solution
S#0 of f"+ A(z)f =0, the exponent of convergence of the zero-sequence is infinite, and, in fact, the stronger
conclusion log* N(r, 1/f)#0(r) holds. We also give an example to show that if the order of growth of g({)
equals 1 (or, in fact, equals an arbitrary positive integer), this conclusion doesn’t hold.

1980 Mathematics subject classification (1985 Revision): 30D35
1. Introduction

S. Bank. and 1. Laine proved in [1]: Let A(z)=B(¢**) be a periodic entire function
with period w=2ni/a and rational in e**. If B({) has poles of odd order at both {=00
and { =0, then for every solution f #0 of equation (1)

J"+A@2) f=0, (D

the exponent of convergence of the zero-sequence is infinite.

In [2], S. Bank generalized this result: The above conclusion still holds if we just
suppose that both (=00 and {=0 are poles of B({), and at least one is of odd order.
Gao Shian also obtained the same generalization in [4] ([4] was written before seeing
the paper of S. Bank), but S. Bank replaced the above conclusion with the stronger
conclusion

log* N(r,1/f)#0(r) asr— +oo. (2

In the case where B({) has a pole at one of (=00 and {=0, and at the other point
B({) is analytic, Gao Shian also proved in [4]:
Let A(z)=B(e**) be a polynomial of odd degree in ¢** (including those which can be
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changed into this case by varying the period of A(z)), ie. B({)=) ¥_ob:{', where k is an
odd positive integer, b, #0. If

2.2

e TS
where s=k is an odd positive integer, then for every solution f#0 of equation (1), the
exponent of convergence of the zero-sequence is infinite. Conversely, if s is an odd
positive integer of the form k(2n+1),n=0, then equation (1) may possibly have two
linearly independent solutions f,#0, f,#0 whose zero-sequences have exponents not
bigger than 1.

It is easy to prove that we can also replace this conclusion about the infinite exponent
of convergence of the zero-sequence with the stronger conclusion (2) of S. Bank.

The above conclusions can be summarized as follows:

Assume

B({)=b,{?+b,_ {7 4+ 4bo+b ({7 b7

where b; are constants, p and g are nonnegative integers, b,#0 if p21,b_,#0 if g2 1.
Then,

(i) If min(p,q)=1, and at least one of p and ¢ is an odd positive integer, then for
every solution f#0 of equation (1), the exponent of convergence of the zero-sequence is
infinite, and, in fact, the stronger conclusion (2) holds, where A(z) = B(¢**).

(ii) If min(p, ¢) =0, and max(p, g) =k is an odd positive integer, and

2.2

b — T ¢

°* " T
where s=k is an odd positive integer, then for every solution f %0 of equation (1), the
exponent of convergence of the zero-sequence is infinite, and, in fact, the stronger
conclusion (2) holds, where A(z) = B(e*?). Conversely, if
a’s?
bo=—-—

¢ 16
with s as above, then this conclusion may not hold.

These results are only in the case where B({) is rational and analytic on 0<|{|< + co.
If B({) is transcendental and analytic on 0<|C |< + o0, what can we say? We will try to
answer this question in part. In this paper, we first generalize Theorem 4 in [1], and
add a new property to it; second, using this generalization and our new property we get
a relation between the solutions f(z) and f(z+w) of equation (1); finally, by proving
another contrary relation between f(z) and f(z+w) we obtain our. main result: Let g({)
be a transcendental entire function with order of growth less than 1, and
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p .
BQ)=g(/)+ ¥, bl
i=1
or
P :
B()=g(\)+ Y b_.{™,
i=1

where p is an odd positive integer, then for every solution f#0 of equation (1), the
exponent of convergence of the zero-sequence is infinite, and, in fact, the stronger
conclusion (2) holds, where A(z)= B(e**) in (1). We also give an example to show that if
the order of growth of g({) equals 1 (or, in fact, equals an arbitrary positive integer), this
conclusion doesn’t hold.

We will use the standard notations of Nevanlinna theory, see [5]. In addition, we will
denote the exponent of convergence of the zero-sequence of f(z) by A(f), and the order
of growth of f(z) by a(f). The other notations will be shown when we need to use
them.

2. Main theorem and corollary

Theorem. Let A(z)=B(e**) be a periodic entire function with period w=2rifo and
transcendental in e**, i.e. B({) is transcendental and analytic on 0<|C |<+oo. If there
exists a constant 6 with 0<d <1 such that

log T(r, A)<dla|r for r near + oo, (3)
and if B({) has a pole of odd order at {=o0 or {=0 (including those which can be

changed into this case by varying the period of A(z)), then for every solution f#0 of
equation (1), A(f)= + o0, and, in fact, the stronger conclusion (2) holds.

Corollary. Let g({) be a transcendental entire function with a(g) <1, and
14
BO)=g(1/0)+ ¥ bl
or
p .
B()=g()+ Y b-L75,
i=1

where b ; are constants, p is an odd positive integer, b, ,#0, then for every solution f#0
of equation (1), 2(f)= + o0, and, in fact, the stronger conclusion (2) holds.

G
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In Section 5, we give an example to show that the corollary doesn’t hold if p is even.
We also give another example to show that the corollary doesn’t hold if o(g) is an
arbitrary positive integer and p is odd. If p is odd and o(g) isn’t a positive integer but is
bigger than 1, could the corollary be true or not? This is still an open problem.

Remark. The condition (3) is equivalent to the following condition: There exists a
constant d, with 0<d, <1 such that

loglog M(r, A) <é,|alr for r near + o, 4)
where M(r,A)=rnax|z,§,|A(z)|. From [5, Theorem 1.6], we have

T, 4)Slog* MG, ) ZEE T(1 +2)r, 4),

where ¢ is an arbitrary positive constant. It is easy to check that this is true by choosing
¢ such that 0<d(1 +¢) < 1. Hence, we will regard the conditions (4) and (3) as the same
from now on.

3. Proof of theorem

The proof of the theorem will be completed by a series of lemmas.

Lemma 1. Let V({) be analytic on O<|(|<+oc0, and set w(z)=V(e™). If
log* N(r, 1/w) =0(r) as r— + 00, then 1,(V)=0, A,(V)=0, where we denote the exponent
“of convergence of the zero-sequence of V({) on 15|(|<+00 by Ay(V), and Ay(V)=
Ao(V*), V) =V(1/) (see [1]).

Proof. Denote the counting function of the zeros of w(z) with |e**|>1 by N, (r, 1/w).
It is clear that

log* N,(r,1/w)=0(r) asr— + 0. 5

If we denote the counting function of the zeros of ¥({) on 1=<|{|< + o0 by N,(p,1/V),
then

Ao(V)=lim sup log No(p, 1/V)
p—+tw lng

Assuming that A (V)>0, then there must exist a constant §>0 and a sequence
{p;}— + o such that

log N ,(pj,1/V)>8logp;.

Denote the zeros of V({) on 1§|C|<pj by {1,82,..-,(,, Let e*={,,k=1,2,...,p;, then
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2y,2,,...,2, are zeros of w(z) satisfying |e**|21. The set {ze”*|=p;} is clearly

unbounded, so there is a point z¥e{z;|e**| =p;} such that |z,|<|z¥|.k=1,2,...,p; Let
ei=p;e', |0,|<n. From az*=logp;+i6; it follows that |az¥|<2 logp; if j is large
enough, and z¥—co as p;— + 0. Hence,

log N (p;, 1/V)>51%I|z}‘|.

But it is clear (because if {, is a zero of V({) and e**°={,, then

2km .
Zo+ i
o

are zeros of w(z)) that
Ny(z2], 1) Z N o (pjs 1/V).

Thus
log N1(|zf|’ I/W) >5]§ |Z;"|’

and this contradicts (5). Hence, 1.,(V)=0. We can prove Ai,(V)=0 by the same
reasoning.
The following Lemma 2 is Lemma C in [2].

Lemma 2. Let A(z) be a nonconstant periodic entire function with period o, and f#0
be a solution of equation (1) such that

log* N(r,1/f)=0(r) asr—+oo, (6)
then f(z) and f(z+2w) are linearly dependent solutions of equation (1).

Lemma 3. Let A(z) be a nonconstant periodic entire function with period w, ie.
A(z) = B(e**), where B({) is analytic on 0<|C | < + 00,

and let A(z) satisfy the condition (3). Assume f#0 is a solution of equation (1) which
satisfies condition (6), and f(z) and f(z+w) are linearly independent. Set
E(2)= f(2) f(z+ w). Then:

(a) there exists a constant 6, with 0< 8, <1 such that
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log T(r, E)<&,|e|r  for r near + oo;

(b) E(z)? is a periodic function with period w, so we can write E(z)? = ®(e**), where ®(({)
is analytic on 0<|{| < + co.

(¢) if B({) has an essential singularity at {=o0 (resp. {=0), then ®() has also an
essential singularity at { = oo (resp. {=0).

Proof. (a) Since f(z) satisfies (6), it is easy to check that f(z+w) satisfies (6) also,
and so does E(z). From [1, Section 5(b) and Section 4(a)] and (3), we obtain

log T(r, E) <d|a|fr for r near + oo,

where § is an arbitrary constant with f>1. We can choose f>1 such that 0<éf <1,
and then set 5, =6f. So part (a) is true.

(b) By Lemma 2, we have E(z+ w)=cE(z), where ¢ is a nonzero constant. Thus, E'/E
and E"/E have period w, and so does E(z)? from [1, Section 5(a)].

(c) ®(¢) satisfies (see [1, p. 8])

a3 ({2PD" — 3 (D) + {DD) +4B(L)D* + cD =0, N

or

A AEYTY A AN AV
oz2<C b w((p) +c®)+¢_ 4B(Q).

From this, it is easy to see that part (c) is true.
The following Lemma 4 generalizes Theorem 4 in [1], and includes a new property
(vii).

Lemma 4. Let A(z)= B(¢**) be a periodic entire function with period w=2ni/a, and be
transcendental in e**, i.e. B({) is transcendental and analytic on 0<|C|< + 0. Also let
f#0 be a solution of equation (1) which satisfies condition (6). Then, the following are
true:

(A) if f(2) and f(z+ w) are linearly dependent, then f(z) can be represented in the form

f(2)=e* H(e™) exp(g(e*)), ®)

where
(1) d is a constant,
(i1) H({) and g(¢) are analytic on 0<|C|< + o0,
(iii) 6o(H)=0,(H)=0,

(iv) g(¢) has at most a pole at { =0 (resp. {=0) if and only if B({) has at most a pole
at {=oo(resp.{=0),
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(V) 65(8)=04(B),
(vi) ao(g)=0(B),
(vii) if B({) has at most a pole at {=co (resp. {=0), then H({) has at most a pole at
{ =00 (resp. {=0).

(For the notations ao(H),0,(H),..., the reader is referred to [1,p. 4-5].)

(B) If f(2) and f(z+w) are linearly independent, then f(z) can be represented in the
form

f(@)=e"H(e“*) exp(g(e™/??)), 9)

where d, H and g satisfy the conditions (1}{vii) listed in part (A).

Proof. Part (A). Assume f(z) and f(z+ w) are linearly dependent. By [1, p. 14], we
have f(z)=e??U(z), where B is a constant and U(z) is a periodic entire function with
period @w. Thus we can write U(z) = G(e**), where G({) is analytic on 0<|C| < 4 0. Since
N(r,1/U)=N(r,1/f), from (6) we have

log* N(r,1/U)=0(r) asr— +co.

Then, from Lemma 1 we have A4(G)=41,(G)=0. Let H,({) (resp. H,(t)) be the canonical
product formed with the zeros of G({) in [({|21 (resp. G*(1)=G(1/t) in |f|>1), and
denote H({)=H({)H,({™"). Since o(H )=1,(G)=0, a(H;)=4s(G)=0, |H()|=0(H ,({))
as {— oo and H({)=0(H,({ ') as {—0, we get o ,(H)=0 and o,(H)=0. It is clear that
G,({)=G({)/H({) is analytic and has no zeros on 0<|{|< +c0. Thus G,(e*) is entire
and has no zeros. Hence G,(e®®)=e""®, where v(z) is entire. Since v'(z)=aG,e*/G, is
periodic with period w, we have v(z+w)—uv(z)=K, where K is a constant. Choose
d,=—K/w, we see that v(z)+d,z is periodic with period w. Hence v(z) +d,z=g(e**),
where g({) is analytic on 0<|{|< +oc0. Setting d=f—d,, we finally get the represen-
tation (8) and (i), (ii), (iii) have been verified also.

The proofs of (iv), (v) and (vi) are the same as [1, p. 15].

To prove (vii) in the case {= o0, we first show that {=oc0 is not a cluster point of
zeros of G({). If we assume the contrary, then G({) has an essential singularity at { = co.
It is easy to see that G({) satisfies the linear equation

*2G" +{(2aB+a*)G +(B() + )G =0 (10)

whose coefficients each have at most a pole at {=00. From the Wiman-Valiron theory
summarized in [1, p. 4-6], we can write G({)={"W({)u({), where m is an integer, ¥({) is
analytic and nonvanishing at { =00, and u({) is a transcendental entire function of finite
order of growth. Clearly, { =0 is also the cluster point of zeros of u(({), hence u({) has
infinitely many zeros. We have the representation u({) = Hy({)exp(Q({)), where Hy({) is
the canonical product formed with the zeros of u({), and @({) is a polynomial. From
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(10), G, =Ge < satisfies also a linear equation whose coefficients each have at most a
pole at {=o0. But since G,({)={"W({)Hy({), again using the Wiman—Valiron theory
summarized in [1, p. 4-6], we have 6(H,)=0>0. Hence A(u)=A(Hy)=0(H,)=6>0. It
is easy to see that 1,(G)=A(u)=56>0. So by Lemma 1, log* N(r, 1/U) #o0(r) as r— + co.
But log* N(r,1/f)=log™ N(r,1/U), therefore log* N(r,1/f)#o(r) and this contradicts
assumption (6). Thus {=o00 is not a cluster point of zeros of G({), and G({) has only
finitely many zeros in |{|21. Then, the canonical product H,({) can be replaced with a
polynomial with these zeros. Since H,({~!) is analytic at { =00, H{{)=H,({)H,((™")
has at most a pole at {=o0. Setting G*(t)=G(t"'), we can prove (vii) in the case {=0
by the same reasoning,

Part (B). In this case, f(z) and f(z+4+w) are linearly independent, but f(z) and
f(z+2w) are still linearly dependent by Lemma 2. Considering that A(z) has period 2w
and using Part (A), we obtain the representation (9) with the asserted properties.

Before proving the following Lemma 5, we define an R-set to be a countable union of
discs in the plane the sum of whose radii is finite, and remark that the set of 8 for which
the ray re”® meets infinitely many discs of a given R-set has measure zero (see [3, p.
11-123).

Lemma 5. Let A(z)= B(e**) be a periodic entire function with period w="2ni/o, and be
transcendental in e**, i.e. B({) is transcendental and analytic on 0<|(|< + 0. Assume also
that A(z) satisfies condition (3). If f#£0 is a solution of equation (1) and satisfies condition
(6), then f(z) and f(z+ w) are linearly dependent.

Proof. Suppose that f(z) and f(z+ w) are linearly independent, and set

E(z)= f(2)f(z+ ).

We first assume that B({) has an essential singularity at {=oc0. From Lemma 3,
F(z2)=E(z2)’=®(e*®) is a periodic entire function with period w, and ®(() has an
essential singularity at {=o0, and log T(r, F)=log T(r, E)+log2<6,|a|r for r near + oo,
where §, is a constant with 0<§, <1.

From (7), ®(¢) and B({) satisfy

” "\ 2 ! 2

Since ®({) has an essential singularity at { =00, we can write ®({)={"¥({)u,({), where
m is an integer, ¥({) is analytic and nonvanishing at {= o0, and u,({) is a transcenden-
tal entire function. We assert that o(u,) <1. If we assume the contrary, i.e.

log log M(p, ul) >1

lim sup
p—to lOg p

then for then for an arbitrary ¢, >0, there exists a sequence {p;}—+co such that
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loglog M(p;,u;)>(1—¢,)logp;. Let {,, be the points with |C,,1|=pj at which Iu,(CN)|=
M(pj,u,), then loglog |u,(§,,j)f>(1—el)logpj. From this, it is easy to see that loglog
|0(C,,)|>(1—¢,)logp;—log2 for sufficiently large j. Let z; be points with e**/=(, .
Setting {,,=p;e", |6j(§n, since az;=logp;+i6; we have |a||z;|<(1+¢,)logp; for suffi-
ciently large j, and z;— 0 as p;— + co0. Therefore,

1—
1+

loglog|F(z;)| =loglog |®((, )| > 81 “lo |z} —1og 2.
1

Since we can choose ¢, >0 such that

this contradicts the condition above which is satisfied by F(z). Hence we must have
a(u;) <1. In addition, it is easy to see that

PO .
W—O(l) as C Q.

Thus, if [{|=1 and { ¢V, where V is an R-set, standard estimates (see [7, p.74]) yield an
M >0 such that

<M.

LYY £ AN 4
4 ey al ((I)) +C(D
So by (11),if |¢|=1,{ ¢ V and |u,({)|> 1, we have

|BQ)| ¢l (12)

for some positive integer N.
On the other hand, B({) has the expansion

Bl)= Y bl 0<[l|<+co.

k=-—w

Denote h({)=Y ;% b, l*. Clearly, h({) is a transcendetal entire function. We assert that
a(h) < 1. If we assume the contrary, i.e.

lim sup loglog M(p, h)

21,
p—+ o logp

then for an arbitrary e,>0, there exists a sequence {p;}—+c0 such that
loglog M(p;, h)>(1—¢,)logp;. Let {,, be the points with |{,|=p; at which |h((,,)|=
M(p;,h), then loglog |h(C,,,)| >(1—¢,)log p;. From this, it is easy to see that
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-1
loglog |B((,,)| =loglog ) Y bk, +h(L,,)|>loglogd|h(,)|

>loglog|h({,,)] —log2>(1—¢,)log p;—log 2

for sufficiently large j. Let z; be points with e**/=(,. Setting ij=pje"‘”, |0j|§n, since
az;=logp;+i0; we have |a||z;|S(1+¢,)logp; for sufficiently large j, and z;—c0 as
p;— + 0. Therefore,

1—¢g, _
Tre, |oz| |zj| log 2.

loglog|A(z;| =loglog|B((,,)| >

Since we can choose ¢, >0 such that

1—e¢g,
14¢

>0,

this contradicts the condition (3) which is satisfied by A(z). So we must have o(h)<1.
We can also write

B({)=h(5)+ha(0),

where

h()= Y bl h()= Y bl*

kSN k<N

Clearly, |h,(0)|=0(|¢|"). Since (12) holds if {¢ V and |u,({)|> 1, we have |h,({)|=0(|¢|") if
{¢V and |u1(C )|> 1. Thus. we can choose a constant K >0 such that

{Vhy(©) <1

K
if (¢ V and |u1(C)|> 1. Set

-N
=220,

It is easy to see that u,({) is a transcendental entire function with o(u,;) <1. Moreover,
lu(Q)|S1if (¢ V and |u,({)|>1, as has been shown above.

Clearly, D ={(; |u~(()1> 1} are open sets, j=1,2. Denote the boundary of D¥ by I'}.
It is clear that |u (¢ )r=1 for {eT'¥. Since u;({) are transcendental entire functions, there
must exist unbounded connected components D; of D}. Denote the boundary of D; by
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T';. Then set Ej(p)={0; pe® e D;}, E(p)={0;pe® e V}. It is easy to check that E, n E,<E.
Also set

0p)= | d6,j=1,2, 6(p)= [ db.

Ej(p) E(p)

Clearly, for an arbitrarly ¢ >0, there exists a p, >0 such that 8(p) <e for p=p,, We also
can choose p,>0 such that the circle |{|=p intersects D; for p = p,.

Since o(u;) <1, from [6, Theorem IIL.68., p. 117] there exists a constant >0 and a
P12 po such that (see the following remark)

o2 o dp
L<«1-plo
pjo 04p) p &p

for pzp, and j=1,2. So

pl2

Thus, since

\/abg";”’(a,bgox
p/2 4z

. LI W)
pjo 0,(p)+6,(p) p <(2-2f)logp.

But 8,(p)+0,(p)<2n+¢ for p=p,. This gives

4n p
log—<(2-28)1 .
Tmte ogzpo (2—2B)logp

Since >0 is a constant and ¢>0 is arbitrary, this is impossible.
In the case where B({) has an essential singularity at {=0, we make the change of
variable { =1/t and reason as above at {=c0.

Remark. The estimate in [6, Theorem 1I1.68., p. 117] is that

pl2 d
| 6,’;‘)) —5<loglogM(p, u) +0(1),
po Vj

where
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v f0Ap) i Ef(p)#£[0,20]
0"(”)‘{+oo if E(p) = [0, 27].

But if E,(p)=[0,2n], then 0,(p) <¢, and so

pl2

] E’—f?p<loglogM(p,u2)+0(l).
Ei(p) 2?0.21:]

Thus
pi2
7 dp
—<—K,lo
J 8.(0) p 2 K,logp
E1(p)=10,2n]

if K, >a(u,) and p is large enough. So we get

pli2 o dp

po gl(p) P

<10glogM(p,u1)+ K log p +0(1).

By the same reasoning, we also get

pi2 d
| 5.0 2 <loglogMip,uz) +5Klogp-+0(1)
po 2

for K, >a(u,).

Lemma 6. Let A(z)=B(e**) be a periodic entire function with period w=2ri/o and be
transcendental in **, i.e. B({) is transcendental and analytic on 0<|C | < 4 00. If B() has a
pole of odd order at {= oo or at {=0 (including those which can be changed into this case
by varying the period of A(z)), and equation (1) has a solution f#0 which satisfies
condition (6), then f(z) and f(z+ w) are linearly independent.

Proof. If we set o' = —a, the pole {=0 of B({) can be changed into the pole t=00 of
B(t™1). Thus, noting that f(z)=k f(z—w) is equivalent to f(z+w)=k f(z2), it is enough
to only consider the case that {= o0 is the pole of B({).

Assume equation (1) has a solution f#0 which satisfies condition (6), and
f(2), f(z+w) are linearly dependent. From Part (A) of Lemma 4, we can write
f(2)=e*G(e**), where

G(C)=( 3 chj)exp( 5 d,0",0<|¢| < + oo, (13)
k=-wo

j=-o
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q and v are integers, c,d, #0. Substituting ¢**G(e**) for f(z) in (1), we obtain
@*{2G"(() +(2ad +a?){G'(0) + [B(L) +d*1G(() =0. (14)

Since B({) has a pole of odd order at { =00, B({) can be written as

B()= i bl 0<|¢|< + 0,

i=—wo

where p is an odd positive integer, b,#0. From (13), it is easy to check that we have for

{ near o
GQ)_falt+0(L|7?  ifv<d, s)
G(O) WO +0(LP~ ifvzl,
G"(Q) _ fala—1)2+0(¢[ %) ifv<], 16)
G(L) B 240(c)»7%) vz,

where a=gq,b=vd,,b#0. Substituting the right-hand sides of (15) and (16) for G’/G and
G"/G in (14), and noting that 2v#p, it is easy to see that (14) can not hold identically
for { near oo, and a contradiction is obtained.

Under the assumptions of the theorem, if equation (1) has a solution f#0 which
satisfies condition (6), then from Lemma 5 and Lemma 6, f(z) and f(z+ w) are linearly
dependent and also linearly independent. This is impossible and the proof of the
theorem is completed.

Proof of the corollary

The following Lemma 7 not only shows that the corollary is true but also shows that
the corollary is equivalent to the theorem.

Lemma 7. Let A(z)=B({) be a periodic entire function with period w=2ni/a, and be

transcendental in e**, i.e. B({) is transcendental and analytic on 0<|C|< +o0. If A(2)
satisfies condition (3), then we have the representation

B(c)=g(§)+h(o, 17
where g({) and h({) are entire functions with 6(g) <1 and a(h)< 1, and at least one of g({)
and h({) is transcendental. Furthermore if B({) has a pole at {= o0 (resp. {=0), then h({)

(resp. g({)) is a nonconstant polynomial. The converse is also true.

Proof. First, from the assumption, we have the expansion
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B()= f b l%,0<|¢|< + 0.

k=—o0

If we set

g(1)= Y bt Q)= bl
C k=0

k=-wo

then g({) and h({) are entire functions, and at least one is transcendental. And also if
B({) has a pole at {= o0 (resp. { =0), then h({) (resp. g({)) is a nonconstant polynomial.
In Lemma 5, o(h) <1 has been shown. Setting {=1/t, B¥*(t)=B(1/t) and A(z)=B*(e™*),
we can prove o(g) <1 by the same reasoning as the proof of a(h) < 1.

Conversely, assume B({) has the representation (17), where g({) and h({) are entire
functions with a(g) <1 and o(h) <1, we show that A(z) satisfies the condition (3) (the
other properties are clear). Denote

M (r,A)= max |A(z), M,(r,A)= max |4(z)|
Retan 20 Ren 50

For an arbitrary r>0, let z, be a point with |z|=r and Re(xz,)20 at which
|A(z,)|=M,(r, ), and let e*=(,=pe"%, |0,|<n. From az,=logp+if,, |0,|<n and
Re(az,) 20, it follows that |«||z,|2logp and p—+ o0 as r— +co. Thus for a given >0,
we have if r is sufficiently large (and p is also sufficiently large)

loglog M, (r, A) =loglog |4(z,)|

s

<loglog M(p, h) +0(1)

+|h(c,,>|)

<(a(h)+¢)logp
Z(o(h)+ e)|a|r.

On the other hand, if z, be a point with |z,|=r and Re(az,)<0 at which |4(z,)|=
M, (r, A), setting A(z) =g(e™**)+ h(1/e**)=g(t) + h(1/t), we have as above

log log M, (r, A) <(a(g) +&)|o|r

for sufficiently large r (and, for the corresponding ¢t of z,, |t| is also sufficiently large since
Re(—az,)20). From 0=o(g)<1 and 0=Zo(h)<l, we can choose ¢>0 such that
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0<o(g)+e<1 and O0<o(h) +e<1. Setting 6,=max{o(g)+¢,a(h)+¢}, we have for r near
+ o0

loglog M(r, A)=max {loglog M, (r, A),loglog M,(r, A)}
<8olr.
The condition (4) with 0<d, <1 has been verified, and so has the condition (3).
In addition, it is easy to prove that log T(r, A) =o(r) is equivalent to max{a(g),o(h)} =
0. Thus, if 6(g)>0 or o(h)>0, we must have ¢(4)= + c0. From this and Lemma 7, we

know that the family of entire functions with infinite order of growth is quite large
under the condition (3).

5. Examples

The following Example 1 shows that if (=00 (or {=0) is a pole of B({) with even
order, the conclusion of the theorem or corollary may be false.

Example 1. Let ¢({) be a transcendental entire function with o(¢)<1. It is easy to

check that
s@=exp(9( ) +e)

solves equation (1) in which

’ l ’ ” 1 ’ 1 az az
A(z)=az2<—(b2e2u+2¢ —d) ;3;—¢ F—e —ez )

Clearly, 4(f)=0. Setting g({)=a2(—¢"2({){*+2¢' ()~ ¢"({) 3 — @' (£)0), it is clear that
o(g)<1 and B({)=g(1/{)—a*{—a2{? has a pole of even order at { = 0.

The following Example 2 shows that if 6(g) is an arbitrary positive integer and {= o0
(or {=0) is a pole of B({) with odd order, the conclusion of the theorem or corollary
may also be false.

Example 2. Set E(z) =e*? ¢!"/?*™, where m is an arbitrary positive integer, and set

f;=EY? exp(jz'(;El—)fdt>
0

for j=1,2. Then f, and f, are non-vanishing entire functions, and f,f,=E. Also it is

https://doi.org/10.1017/50013091500028959 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500028959

158 S. GAO

easy to check that that Wronskian W(f,, f,)=2 and f,, f, solve equation (1) in which
(from [1, Section 5(a)])

22 Et 2 Ell
—d4=" (= 2=
A=p (E) T

4 E'Y E'\?
‘F“(E)*(E)

4 ' , . m m?
=_m+__+ m?+— emz+_62mz
‘et 4 ( ) 4

=7+8(0)=~4B0).

B({) has a pole of odd order at {=0, and it is easy to see that o(g)=m.
A problem naturally arises: If o(g) is greater than 1 but is not a positive integer, could
the theorem or corollary still hold?
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