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Three-dimensional Stokes flow

J.J. Mahony

A method is present for simplifying the calculation of steady

Stokes flows. It is applicable for domains which are

essentially half spaces and utilizes a special vector stream

potential to decouple the boundary conditions. The results are

applied to estimate the effect of no-shear zones on a shear

flow.

1. Introduction

Despite the linear nature of the equations and apparently simple

boundary conditions, the determination of the steady flow of a viscous

fluid, when the Reynolds number is small, can be surprisingly difficult.

Although the velocity components satisfy the biharmonic equation there are

usually insufficient boundary conditions available to determine the

velocity field from that equation directly. Instead there are subsidiary

conditions, arising from the equation of continuity and the need for

compatibility between the velocity components and the harmonic pressure

field, which serve to compensate for the shortage of boundary conditions

for the biharmonic equations. For flow fields which are either

two-dimensional or possess axi-symmetry, the difficulties can be overcome

by working in terms of suitable stream functions which satisfy fourth order

partial differential equations and normal boundary conditions. For

three-dimensional flow fields, for which this simplification is not

available, there are very few solutions available. In Lamb [3] there are

some solutions described which are obtained by semi-inverse methods, and

they appear to offer little guidance as to how to solve other specific
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problems. There is a possible alternative approach based on the use of a

fundamental solution which also guarantees the satisfaction of the

associated compatibility conditions. This can be used to generate three

singular integral equations which are normally coupled, from which in

principle the solution may be computed. This integral equation formulation

has been used by Wi I Iiams [6] as a basis for deriving asymptotic results

but it does not appeal as a practical basis for solving problems.

Some problems involving three-dimensional Stokes flows have arisen

recently in connection with the effect of fluid-fluid interfaces on the

resistance to flow in a porous medium. The interaction of such interfaces

depends on the cleanliness of the surface which could thus affect the

hydraulic conductivity of the medium. Recently Phi lip [5] has contended

that lack of ability to support shear stress on such interfaces would have

only very localized'effects. To support this contention he calculated the

effects on certain basic shear flows of arrangements of one or more strips

on the boundary where no shear stress could be supported. Such geometry is

not a realistic model for the interfacial problem of the flow in a porous

medium, and so some assessment of the relative magnitude of two- and three-

dimensional geometries was sought.

The problem which was considered initially was the effect of a

circular no-shear zone in a rigid plane bounding a parallel shear flow.

However the technique which led to the solution appears to have wider

applications. Thus in Section 2 of this paper there is a general

discussion of a method for reducing a range of Stokes flows to standard

boundary value problems. This is achieved by the use of a specially chosen

vector stream function which, while not as powerful as the scalar stream

function in two-dimensional flows, does reduce the magnitude of the

problem. Normally the reduced problem involves the determination of two

biharmonic functions and one harmonic function subject to standard boundary

conditions. There are cases where the problems can be reduced still

further and a no-shear zone happens to be one of these. In Section 3 this

method is applied to the problem described at the beginning of this

paragraph. From this solution estimates are obtained which enable

comparisons to be made between two- and three-dimensional no-shear zones

which occupy the same fraction of the area of the rigid surface. It is

shown that there is a much smaller effect on the basic shear flow when the
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no-shear zone is localized. It seems indicated that the estimates used by-

Phi lip [5] are high and that the interfacial actions have even smaller

effects than he has suggested.

2. Reduction to standard boundary value problems

The equations governing the Stokes flow of a viscous flow are the

momentum equation

(1) uV2u = Vp

and the equation of continuity

(2) V*U = 0 .

Here u is the viscosity of the fluid, U = (u, », w) its velocity and p

is the presure at the point with coordinates (x, y, z) relative to some

rectangular cartesian axes. These equations provide an adequate

description of the flow field for a Newtonian fluid only when the relevant

Reynolds number is small. In an unbounded domain the equation (l) is not

generally adequate for the far flow field but for three-dimensional flows

due to bounded disturbing influences this does not have serious

implications for the determination of the near flow field using the above

equations. It will be assumed subsequently that the solution will be used

only at distances from the disturbance such that the Reynolds number, based

on any such distance, is small. In this paper interest is centred on

domains of flow which approximately comprise the half space z > 0 or

whose discussion can be reduced to that of such a domain by symmetry

considerations. The approximate half space is defined by z > Z(x, y)

where Z is a prescribed function which vanishes outside some finite

domain in the (x, !/)-space. The methods can be extended to deal with

domains approximating, in the above sense, the strip 0 < z < d where d

is some fixed constant; but the details are not presented here. Further it

will be assumed that the velocity field vanishes at infinity. This is not

a serious restriction because the linear nature of the problem enables one

to add an appropriate velocity field which satisfies all the conditions

save those which contribute to the disturbance which are merely altered in

a calculable fashion.

It may be shown that equations (l) and (2) imply
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V2p = 0 ,

V*u = 0 ,

but the boundary conditions are rarely of a form which permit the pressure

of any of the velocity components to be deduced from these equations.

However the equation of continuity implies that the velocity field is

derivable as the curl of a vector stream potential, which however is unique

only up to an arbitrary gradient function. For two-dimensional flows the

introduction of the stream function reduces the number of functions needed

to describe the velocity field. In three-dimensional flows an arbitrary

choice of a vector stream potential does not yield such a simplification,

but recently Benjamin and Mahony [/] have utilized a particular vector

potential A = (A, B, o) which does have this result. In the present

context the components A and B may be defined by

, y, z) = - I "(*> y,
' z

(3a) A(x, y, z) = - v(x, y, z' )dz'

and

(3b) B(

which obviously imply

x, y, z) = j u{x, y, z' )dz' ,

u = ~Bz ' v =Az •

The equation of continuity, when expressed in terms of these functions,

becomes

^-[h>-B +A } = 0 ,
3z x y

and since the velocity is assumed to vanish at infinity,

w = Bx " Ay •

It is thus trivial to verify that A is indeed a vector stream potential

for which

(U) U = V x A .

Thus only two scalar functions are needed to specify the velocity field and

the equation of continuity will automatically be satisfied by any velocity

https://doi.org/10.1017/S000497270004483X Published online by Cambridge University Press

https://doi.org/10.1017/S000497270004483X


Three-dimensional Stokes flow „ 81

field calculated from them.

The fact that the velocity components u and v are biharmonic

functions implies that

f V̂B - 0 - f T V
3s 3s

and incidentally justifies all the changes of orders of differentiations

which are used. But the definitions of A and B imply that they both

vanish at infinity, so that

(5) ^A = 0 = V*B .

Thus the determination of three biharmonic functions connected together by

the continuity equation has been reduced to the determination of two

functions unrestricted by the continuity equation. However a coupling

restriction between the functions A and B still exists in order to make

the corresponding velocity field compatible with an appropriate pressure

field. Given an arbitrary velocity field u , equation (l) can be

integrated to determine a single valued pressure field which vanishes at

infinity, if and only if

0 = V x {V2U} = v x {V
2(Vx/l)}

= V2{Vx(Vx/l)}

where the fact that each component of A is biharmonic has been used.

Since A and its derivatives vanish at infinity it follows that

(6) 0 = V^v-A) = V 2 ^ +B ) .

The mathematical problem has thus been reduced to the determination of

two biharmonic functions which must in addition satisfy the coupling

condition (6). For certain classes of boundary conditions of practical

interest it is possible to arrange the calculations so as to avoid the

problems implicit in the calculation. Let the boundary conditions be an

appropriate selection from among the following cases.

(l) Rigid surface on which the velocities are given on

z = Z{x, y) , u = U{x, y) , v = V(x, y) , w = W(x, y) .

On such surfaces
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A = V , B = -U , B -A = W .
z 3 x y

(2) No-shear surface on a surface z constant. In th i s case the

normal velocity component i s given, as are the two tangential components of

the disturbance shear s t ress vector MV X U or yV x (V*A) . Thus the

boundary conditions are of the form

B -A = W ,
x y

B -A -A = \i~XCz , A - B - B = V^xz ,
xy yy zz " xy xx zz '

where the symbol ~ is used to denote a stress.

(3) Plane of symmetry on z = 0 . Here the boundary conditions

derive from the fact that the velocity components u and v are even

functions of z while w is odd, results which imply

A = 0 , B = 0 , B - A = 0 .
33 ZZ ' X y

It is convenient as a first step towards the solution to ignore the

compatibility equation (6) and seek a partial solution which removes the

forcing terms from the boundary conditions. Now it is a feature of the

introduction of the functions A and B that the above boundary

conditions have become much closer to the forms appropriate to the

biharmonic equation. Also it is easy to arrange an addition to the

boundary conditions so that the problems of determining a pair of

biharmonic functions which satisfy all the necessary boundary conditions

are not coupled together through these boundary conditions. Thus consider

the pair of biharmonic functions A\ and Bj , both vanishing at infinity

and which in addition satisfy an appropriate selection from among the

following boundary conditions:-

(1)

(2)

Rigid surface

A, = 0 , -4, = I
ly Is

No-shear surface

= 0 , A = W - p " 1 ^
133 y

' • S13 - "

i Blxmf/ ' 133

:=W;

= -W + V~Xxz
X

(3) Plane of symmetry
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Al = ° ' Alzz = ° ' Sl " ° ' \Zz - ° •

Such a function pair is uniquely determined from standard boundary value

problems for the biharmonic equation.

If this pair satisfied the compatibility condition (6) the problem

would be solved; but normally this will not happen. Thus the difference

functions, A2 and B2 , defined by

A2 = A - Ai , Bz = B - Bi ,

both satisfy the biharmonic equation, the relevant homogeneous boundary

conditions and the compatibility condition

(7) 2a:V W
where i? may be considered as a known function. Thus one is still faced

with a pair of coupled biharmonic problems to solve and there might seem

little point to the transformation to homogeneous boundary conditions. But

for all the boundary conditions under consideration on each portion of the

boundary one condition is

S2x " A2y - °

and the other two involve the vanishing of the same 2-derivatives of A2

and B2 respectively. The compatibility condition (7) is only on a

combination of A2 and B2 . Thus it follows that it is possible to

satisfy all the conditions with a solution pair for which

Thus one does not need to consider a function pair but instead one can work

with the single function F , which exists, such that

B2 - Fy ' A2 = Fx '

and for which it may be assumed that F vanishes at infinity. Thus this

function F satisfies the biharmonic equation, and the compatibility

condition

The boundary conditions, when expressed in terms of F , will be satisfied

https://doi.org/10.1017/S000497270004483X Published online by Cambridge University Press

https://doi.org/10.1017/S000497270004483X


84 J.J. Mahony

if one

1)

2)

3)

chooses

for

for

for

a

a

a

rigid surface

no-shear surface

plane of symmetry

F =
z

F
zz

F
zz

o ;

= 0 ;

= 0 .

Now any biharmonic function F which satisfies equation (8) must also

satisfy

V 9 / v A- — v i/i • t>> j ,

33 IX ly

Thus {F - (A +B )} is a harmonic function, which it is convenient to

write as V , so that one can represent

(10) Fz = V - j (4^+B^) •

Now if V is any harmonic function vanishing at infinity and F is

defined from it by equation (10), then it follows that such an F is

biharmonic since A\ and Si are biharmonic. Since equation (10) implies

equation (9) the function F so generated also satisfies the compatibility

condition (8). Thus one can determine F by finding a harmonic function

¥ , vanishing at infinity and satisfying boundary conditions on ¥ or H1

z
determined from equation (10) and the relevant boundary conditions on F

z
or F . I n this way the determination of F is reduced to determination

zz

of a harmonic function satisfying standard boundary conditions. This

organization of the calculations has thus removed the coupling of the

boundary conditions which made the original formulation of the problem

intractable. Whatever methods one may have to resort to in order to solve

the biharmonic and harmonic functions involved, the complexity of the

calculations will be reduced by the organization proposed here.

To complete the general calculations one may note that the velocity
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components are given by

u = -B, - f + [ [A. +B, ) ,Is y \ ( Ixy \yy> '
3

v = 4, + V - I (-4, +B, 1 ,

la; It/

The pressure field can be obtained by integrating any one of the momentum

equations from infinity.

3. Modification of a shear flow by no-shear zone

Consider a shear flow with a velocity field y T(s, 0, 0) occupying

the half space z > 0 . Here we will look at the modification of this flow

when there are some no-shear zones on the plane 2 = 0 . For all

subsequent discussion only the disturbance field will be considered and the

appropriate boundary conditions for this disturbance velocity field, in any

no-shear zone, are

u = -u"1? , v = 0 , w = 0 ,

and on the remainder of the plane

u = 0 , u = 0 , w = 0 .

Thus, in the notation of the previous section, 4j = 0 and the boundary

conditions for B\ become, on 2 = 0 ,

Bn = 0 , f? = y T in any no-shear zone

-i- 1 2 2

and

B = 0 , B = 0 elsewhere.

It is apparent that the biharmonic function z§ , where ej> is a harmonic

function, solves the problem if

4> = 4 P 1 in any no-shear zone,
2 *•

<}> = 0 elsewhere.
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Further simplification can be achieved by using this particular form in

equation (9) which becomes

The equation

has a particular integral y$ , and so

Fg = y<$> + ty '

where 1(1 is a harmonic function satisfying the boundary conditions

ty = - -|u Ty in any no-shear zone,

^ = 0 elsewhere.

The problem thus devolves to two mixed boundary value problems for

Laplace's equations. In terms of these two solutions the complete field

may be shown to be described by

u = -

v = yp + ip ,

w — z§ ,

p = 2p<f>

It is a trivial matter to verify that these satisfy equations (l) and (2)

and will satisfy the boundary conditions.

For a circular no-shear zone the solutions for (f> and <JJ are

available from work in other contexts, for example, Levey and Wynter [4J,

and one could compute the disturbance velocity field. However this would

not appear to offer any fair basis of comparison of the effects of slots

and finite regions of no-shear zones. In any fair comparison the areas

should be comparable so that one wants a distribution of finite domains

occupying the same fraction of the area of the plane as the slots.

Moreover the lack of realism associated with the assumption of uniform

shear in the basic flow weighs against heavy calculations. Thus here a
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distribution of no-shear zones of dimension small in comparison with their

spacing will be compared with Phi lip's [5] results for a distribution of

parallel slots. This solution predicts a finite value of limw as z

tends to infinity and this seems a reasonable measure to adopt for the

non-local effect of the no-shear zones. While Philip's answers are not

restricted to small area ratios it would require very heavy calculations to

obtain the corresponding answers even for the simplest bounded domain.

Consider first a series of similar no-shear zones, of typical

dimension a , with their centroids at the points {ml, nl, 0) where n

and n assume all integer values independently and I is the spacing.

Then the small fraction e of the area occupied by no shear zones is given

by Tfa2/l2 . Because each zone is relatively far from the other the

disturbance shear stress on any zone due to the others should be small and

hence as a reasonable first approximation one should be able to merely

superpose the fields due to individual zones. To confirm this one may note

the form of the boundary conditions for (j> and <|> , and using an

electrostatic analogy, argue that at large distances <j> behaves as a

dipole field and ^ as a quadrupole field. Thus it can be shown that the

velocity field due to a single no-shear zone is 0(u~ Ta /r ) , while the

shear stress is 0{fa /r ) . With the fields of each zdne superposed the

Q <• 2 2*\ —3/2
shear stress on any one zone is bounded by KZT(,a/l) [m +n ) which is

3/2
strictly smaller by E than the stress which initially had to be

removed. Thus for small enough £ one could in principle continue to

reduce the error by repetition and hence to regard the fractional error

o(e ) in the velocity field obtained by superposition.

Let the leading term in the far field expansion for <j> be

-Qz{x +y +3 ) where Q is a positive constant which depends on the

shape of the no-shear zone. Then it may be shown that, for the single

zone, the far field velocity component u is given by

When the fields of the individual zones are superposed and one considers

z/l large,
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% 3Qz~2Z(ml/z)2{(ml/z)2+(nl/z)2+l}~5/2 .

O o O c /o

if f(x, y) denote x [x +y +1] then the summation is of the values

taken by f{x, y) at intervals (l/z) in both x and y . Thus it

follows that

lim u = 3Ql

It is apparent that the zones do not have to be exactly evenly spaced for

this result to apply but they could be distributed statistically provided

that the distribution would be such as to permit [ f / to be determined

from them. Moreover a similar form of result would apply even if the

zones vere not identical in their values of Q but had them randomly

distributed (for many appropriate probability distributions).

The quantity Q which depends on the particular no-shear zone being

considered can only be -determined easily for simple regions, but many

properties can be established quite simply. If the value of <j> was known

on the no-shear zone then the standard representation (Jeffreys and

Jeffreys [2])

makes it possible to show that

Q = -(2TT)"1

By considering the boundary value problem satisfied by ((> it is easy to

show by scale transformations that ]iQ/{Ta3) is a function solely of the

shape of the no-shear zone D . Hence

lim M = K(D)Ta3/(I2\i) .
2->co

Moreover by simple applications of the Maximum Principle for harmonic

functions it is possible to show that for two domains D and D' , with

D r> D' , K(D) > K(D') which provides a means of bounding the values of K
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for awkward shaped domains for which calculations are not easy. If one

applies the results available in Levey and Wynter [4] it may be shown that

for a circle K takes the value 2/3 , which provides a basis for

comparison with the corresponding result of Phi lip [5]. Both results are

proportional to Tac/\i , where for the slot a is its half-width, and the

radius for the circle, but there is a distinct difference in the constant

of proportionality. For the circle the constant is 2/(3n) whereas for

the slot it is TT/U . This would suggest that the use of results for slots

to estimate the effect of no-shear zones of finite extent may give

estimates which are rather large.
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