APPROXIMATION IN BOUNDED SUMMABILITY
FIELDS

J. D. HILL AND W. T. SLEDD

1. Introduction. This paper deals with several related properties of
bounded summability fields of regular, real matrices. For a matrix 4 = (a,)
and a sequence x = {x,}, we write formally

Ay (x) = Zk Anie X and A(x) = lim, A,(x).

We denote by m the space of bounded real sequences, and by 4* the bounded
summability field
{x: x € m, and lim, A4,(x) exists}

of A. The strong summability field of A4 is the set
4| = {x:x € m and lim, ), |au| | — a| = 0 for some a}.

In §2 we characterize the bounded summability fields 4* whose elements
can be uniformly approximated by finite linear combinations of characteristic
functions (of disjoint subsets of the natural numbers) belonging to 4*. In §3
we study the multipliers of 4*, and we show that if the elements of the matrix
A are non-negative, then the multipliers of 4* coincide with the sequences
that are strongly summable by 4. Section 4 deals with the strong summability
field of a regular matrix.

2. Approximations by characteristic functions. We denote the set of
positive integers by IV and the normed linear space of bounded real sequences
by m. Let L be a closed linear subspace of m. A subset E of N is L-admissible
if the characteristic function xz is a member of L. An L-admissible partition of
N is a finite partition of N into L-admissible subsets and an L-admissible
function is a function of the form

=D A\ xm
i=1

where the coefficients \; are real numbers and the E,; constitute an L-admissible
partition of N. We obtain first a sufficient condition for L to be an algebra
and then, for the case where L is a bounded summability field, a necessary
condition.

THEOREM 2.1. If L is the closure of the L-admissible functions, then L is an
algebra.
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Proof. Let G1 and G: be L-admissible sets, and set
¥ =Xxa + 2xe,-

Then ¢ is in L and hence there exists an L-admissible function ® such that
[|® — ¢|| <% We may write

4
N=UF4.

=1

where F1 = N\(Gl U Gg), Fz = Gl\Gz, F3 = Gz\Gl, F4 = Gl f\ G2. Let

‘1)=Z)\1X_E.'-

i=1
For each j = 1,...,n thereis exactly one 7 between 1 and 4 such that
F; N E; is not empty. Otherwise, if n; € F;; N\ E; and ny € F;, N E;, then
®(m) = ®(ny) while [¢(n1) — ¢(ns)| > 1. But [¢(m1) — ¢(ns)| < 1 since
@ — ¢l <3
Moreover, F; D E; since

4
kE)]. Fk mEj = E].

Thus because of the disjointness of the E,’s and of the F,’s, each F, is the
disjoint union of E,’s and consequently each F, is an L-admissible set. This
implies that the class of L-admissible sets is an algebra of sets.

But this in turn implies that any function of the form

Z N X

i=1

(where all the G; are L-admissible sets but not necessarily disjoint) is an L-
admissible function. Thus the set of L-admissible functions is an algebra,
and since L is the uniform closure of the L-admissible functions, K is also
an algebra.

Henriksen and Isbell (3) have shown that a bounded summability field is
an algebra if and only if it is the strong summability field of a matrix method.
Using their result, we obtain a partial converse of Theorem 2.1.

TurEoREM 2.2. If a bounded summability field A* is o subalgebra of m, then
it is the linear closure of the A*-admissible functions.

Proof. We first prove that A* is closed, a fact that does not depend on 4*
being an algebra.
If {x®} is a sequence of elements from A* and lim, x® = x in the uniform
norm of m, then
|4, (%) — 4;(0)] < [4u(x) — 4u(x@)] + |42 (x®) — 4;(x®))]
+14,G) — 4,6)].
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For sufficiently large p, the first and third terms are small. Fixing p and letting
j and # become large, we see that {4,(x)} is a Cauchy sequence. It follows
that x belongs to A*, and hence 4* is closed.

Now we must show that each x in A* may be approximated by an A4*-
admissible function. Assume without loss of generality that [|x|| < 1 and
A(x) = 0. Using the above-mentioned result of Henriksen and Isbell, let
A* = |B|. Then given ¢ > 0, let

F,={kpe<x, < (p+ 1)¢ p=0,=x1, £2,...).
Observe that since «x is bounded, all except finitely many F, are empty. If
p > 1, then
1
2 el X, (B) < = 22 [bui] |aci,
k pe %

while if p < —1, then
1
b, B) < ———3 1bwel |2l
Zk l Icl XFp( ) < H?-I- IIe; I k| leI
Hence if p # 0, —1, then xz, is strongly B-summable to 0. Thus if
E = N\\Upo_1 Fp,
then xz is A-summable to 1. Therefore, if we let

®(n) = §p if n€ F, p#0,—1and F, is not empty,
0 if n € E,

then @ is an A*-admissible function and ||® — x|| < e

3. Multipliers of bounded summability fields. We define a new sub-
set of A*. Let

A¥ = {x € m:xy = {xy) € A* for each y € 4*}.

Since xx is in 4%, we see that A** C A* and 4** = A* if and only if 4A* is
a subalgebra of m. Moreover, A** is itself a closed subalgebra of .

Our first theorem shows that the linear functional 4 (x) is multiplicative on
A* when A* is an algebra. This property of 4 (x) has been assumed in previous
papers dealing with summability fields that are algebras; see (1, 2).

THEOREM 3.1. A (x) is multiplicative on A**.

Proof. If x is in A** and 4 (x) £ 0, then B = (a,;. x,/4 (x)) is a regular
matrix, and if y is in 4%, then xy belongs to A* while B,(y) = 4, (xy)/A4 (x).
Thus y belongs to B* and therefore 4* C B*. By the well-known consistency
theorem of Brudno and of Mazur and Orlicz, B(y) = A(y). But

B(y) = A(xy)/A(x);
hence A4 (xy) = A(x)A (y).
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If xis in A* and A(x) =0, let B = (au %z + au). Then B is regular,
and if y belongs to 4*, B,(y) = A,(xy) + A,(y). As before, A* C B*, so
A(y) = B(y) = A(xy) + A(y). Thus A(xy) =0 = A(x)4A(y).

THEOREM 3.2. Let x belong to A**, and let C denote the compact set of real
numbers consisting of the closure of the range of the sequence x and the poini
A(x). If Fis a continuous real-valued function on C, and y = {F(x;)}, then
y belongs to A** and A(yz) = A () F(A (x)) whenever 3 belongs to A*.

Proof. By the previous theorem, A4 (2x") = A(2)[4 (x)]* whenever x is in
A** z belongs to A*, and # is a non-negative integer. Therefore the theorem
holds when F is a polynomial. Using the fact that A (x) is continuous in the
uniform norm on m and applying the Weierstrass polynomial approximation
theorem we obtain the conclusion.

THEOREM 3.3. If ay > 0 for all n and k, then A** = |A].
Proof. Let F(t) = |t| and let 2, = 1 for each k. Since x is in 4** and
limnzk (0, — A (x)) = 0,
it follows from Theorem 3.2 that
lim, Dk @ |2 — A (x)| = 0.
Hence x belongs to |4|. The converse is clearly true.

THEOREM 3.4. If x belongs to A**, then A (x) lies in the interval [lim inf x;,
lim sup x;].

Proof. Let p be a positive integer and set

— Xry k>pr
e = inf %y, k< p.

Since A is regular, y is in A** and A(y) = A(x). Let ¢ = sup y;. Then
a — vy = |la — ¥y, and by Theorem 3.2 (with F(t) = |{| and 2, =1 for
each k)

0<[d(@—y)|=4@—-y)=a—A@l) =a— A@).

Therefore 4 (x) < @ = supssp %,. Since this is true for each p, 4(x) < lim
sup x;. Similarly, we see that lim inf x; < 4 (x).

A consequence of Theorem 3.4 is that if x belongs to A**, then A (x) must
be a limit point of the sequence x. Suppose that 4 (x) = 0; then by Theorem
3.2, |x| is in A** and |4 (x)| = A(|x|) = 0. By Theorem 3.4, the point 0 lies
in [lim inf |x|, lim sup |x;|]. Hence lim inf |x;] = 0. Brauer (1) has proved
this result when A** = A*,

In the next section we show that if x belongs to |4]|, then 4 (x) is a limit
point of x in a very cogent sense.
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4, Strong summability fields.

THEOREM 4.1. If A is a regular matrix, then the bounded sequence x is strongly
summable to a if and only if there exists a subset Z of N such that xanz is strongly
A-summable to 0, and lim,¢; x, = a.

Proof. Suppose that there is a such a subset Z of N. Let
xV = xz-x and %P = xymz-x,

so that x = x® 4 x®, Then

3 lowel It — al = 3 Jaw| [ = ol + 32 fous] 5 ~ al.
* kEN\Z

The matrix (|a.| xz(k)) carries null sequences into null sequences, while the
matrix (|au| xanz(k)) carries every bounded sequence into a null sequence.
Since limgez (Y — @) = 0 and |x» — ¢| is bounded,

lim, > |aw| |2 — a| = O.

Conversely, suppose that the last relation holds. Let vy, = x; — @, and for
each positive integer p, let

E, = {k; |y > 1/p}.
2 @i xz,(k) < b2k @] [yl

limnzk Iankl XEp(k) = 0.

We can now choose two sequences of positive integers {m,} and {n.} induc-
tively so that

Then

hence

lim max <k§nr+ > )Iankl = 0.

7 nr<n<lnr +1 k>mr +2
and
lim max Z |ank| Xz,.1 (k) = 0.
7 nr<n
Let
Fr= {kEEr:mr<k<mr+2}
and let

NN\Z = U, F,.
Then if n, < # < n,41, we have the inequality

Zk: lankl XN\Z(k) < <Z + 2 > lank! +Zk |ank] XEr-H(k)'

<mr k>mr+2

Thus
ling}c iank| XN\Z(k) =0,

and if &k is in Z and m, < k < m,ys, then |y;] < 1/r. Therefore

limnéz Yn = O
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THEOREM 4.2. If A* C B¥, then |A| C |B|.
Proof. 1f x belongs to |4]|, then

for some a, and hence if y belongs to m, then

lim, D |ane] |2z — al [3:] = 0.

This implies that (x — a)y belongs to A* when y belongs to m, and since
A* C B* then (x — a)y is in B*. It follows from a theorem of Schur (4) that

so that x is in |B].

The converse of Theorem 4.2 is false. For if A is the sequence-to-sequence
transformation given by

yn=(xn+xn+l)/2y n=12...,

and B is ordinary convergence, then |B| = |4]|; yet B* does not contain A*.
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