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1. Introduction. This paper deals with several related properties of 
bounded summability fields of regular, real matrices. For a matrix A = (ank) 
and a sequence x = {xn}} we write formally 

An(x) = Y^TC ank. xk and A (x) = limn An(x). 

We denote by m the space of bounded real sequences, and by A* the bounded 
summability field 

{x: x £ tn, and limn An(x) exists} 

of A. The strong summability field of A is the set 

\A\ — {x: x £ m and I i m n ^ \ank\ \xk — a\ = 0 for some a}. 

In §2 we characterize the bounded summability fields A* whose elements 
can be uniformly approximated by finite linear combinations of characteristic 
functions (of disjoint subsets of the natural numbers) belonging to A*. In §3 
we study the multipliers of A*, and we show that if the elements of the matrix 
A are non-negative, then the multipliers of A* coincide with the sequences 
that are strongly summable by A. Section 4 deals with the strong summability 
field of a regular matrix. 

2. Approximations by characteristic functions. We denote the set of 
positive integers by N and the normed linear space of bounded real sequences 
by m. Let L be a closed linear subspace of m. A subset E of N is L-admissible 
if the characteristic function XE is a member of L. An L-admissible partition of 
N is a finite partition of N into L-admissible subsets and an L-admissible 
function is a function of the form 

n 

$ = X) X* XEi 

where the coefficients A* are real numbers and the Et constitute an L-admissible 
partition of N. We obtain first a sufficient condition for L to be an algebra 
and then, for the case where L is a bounded summability field, a necessary 
condition. 

THEOREM 2.1. If L is the closure of the L-admissible functions, then L is an 
algebra. 
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Proof. Let Gi and G2 be L-admissible sets, and set 

^ = XGI + 2x(72-

Then ^ is in L and hence there exists an L-admissible function $ such that 
| | $ — ^|| < J. We may write 

4 

where ft = iV\ (Gi W G2), ft = Gi \G 2 , ft = G 2 \Gi , ft = d H G2. Let 

TO 

$ = ]C X* Xi?;. 

For each j = 1, . . . , n there is exactly one i between 1 and 4 such that 
ft P\ E;- is not empty. Otherwise, if n\ Ç ftx P\ E^ and w2 6 ft2 H ft-, then 
$0zi) = $(w2) while |^(wi) — \t/(n2)\ > 1. But |^(wi) — ^(w2)| < 1 since 

Moreover, ft D ft since 

4 

k=l 

Thus because of the disjointness of the ft's and of the ft's, each ft is the 
disjoint union of ft's and consequently each ft is an L-admissible set. This 
implies that the class of L-admissible sets is an algebra of sets. 

But this in turn implies that any function of the form 

n 

X) Xi XGi 

(where all the Gt are L-admissible sets but not necessarily disjoint) is an L-
admissible function. Thus the set of L-admissible functions is an algebra, 
and since L is the uniform closure of the L-admissible functions, K is also 
an algebra. 

Henriksen and Isbell (3) have shown that a bounded summability field is 
an algebra if and only if it is the strong summability field of a matrix method. 
Using their result, we obtain a partial converse of Theorem 2.1. 

THEOREM 2.2. If a bounded summability field A* is a subalgebra of m, then 
it is the linear closure of the A*-admissible functions. 

Proof. We first prove that A* is closed, a fact that does not depend on A* 
being an algebra. 

If {xiP)} is a sequence of elements from A* and limp x
{v) = x in the uniform 

norm of w, then 

\An(x) - As(x)\ < \An{x) - An(x™)\ + \An(x<») - A^v))\ 

+ \AJ(x™) -A,{x)\. 
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For sufficiently large p, the first and third terms are small. Fixing p and letting 
j and n become large, we see that {An(x)} is a Cauchy sequence. I t follows 
that x belongs to A*, and hence A* is closed. 

Now we must show that each x in A* may be approximated by an A*-
admissible function. Assume without loss of generality that ||x|| < 1 and 
A (x) ~ 0. Using the above-mentioned result of Henriksen and Isbell, let 
A* = \B\. Then given e > 0, let 

Fp = {k: pe < xk < (p + l)e} (p = 0, ± 1 , ± 2 , . . .). 

Observe that since x is bounded, all except finitely many Fp are empty. If 
p > 1, then 

Z) \bnk\ XFp(k) < — XI \°nk\ \*k\, 
k Pe k 

while if p < — 1 , then 

Z ) \°nk\ XFP{k) < i . , , i Z ) \bnk\ \xk\. 
k \V \ l \ e k 

Hence if p ^ 0, — 1, then XFP is strongly ^-summable to 0. Thus if 

E = 7V\Up^ 0 l - i Fp, 

then XE is ^4-summable to 1. Therefore, if we let 

$(w) = fp iî n £ Fp, p ?£ 0, —1 and Fp is not empty, 
\ 0 if w G £ , 

then $ is an ^4*-admissible function and ||<£ — x|| < e. 

3. Multipliers of bounded summabil ity fields. We define a new sub­
set of A*. Let 

^4** = {x Ç w: xy = {xkyk} G ^4* for each y £ ^4*}. 

Since Xiv is in ^4*, we see that A** C A* and ^** = ^4* if and only if A* is 
a subalgebra of m. Moreover, ^4** is itself a closed subalgebra of m. 

Our first theorem shows that the linear functional A (x) is multiplicative on 
A* when A* is an algebra. This property of A (x) has been assumed in previous 
papers dealing with summability fields that are algebras; see (1, 2). 

THEOREM 3.1. A(x) is multiplicative on A**. 

Proof. If x is in yl** and A(x) 9e 0, then B = (ank xk/A (x)) is a regular 
matrix, and if y is in ^4*, then :ry belongs to A* while 23w(;y) = An(xy)/A(x). 
Thus y belongs to B* and therefore ^4* C B*. By the well-known consistency 
theorem of Brudno and of Mazur and Orlicz, B(y) = A(y). But 

B(y) = A(xy)/A(x); 

hence A (xy) = A(x)A(y). 
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If x is in A** and A(x) = 0, let B = (ank xk + ank). Then B is regular, 
and if y belongs to A*, Bn(y) = An(xy) + An(y). As before, A* C B*, so 
A(y) = B(y) = A(xy) + A(y). Thus A(xy) = 0 = A(x)A(y). 

THEOREM 3.2. Ze£ x belong to 4**, and /e/ C denote the compact set of real 
numbers consisting of the closure of the range of the sequence x and the point 
A(x). If F is a continuous real-valued function on C, and y = {F(xk)\, then 
y belongs to A** and A(yz) = A(z)F(A(x)) whenever z belongs to A*. 

Proof. By the previous theorem, A (zxn) = A (z) [A (x) ]n whenever x is in 
A**, z belongs to ^4*, and n is a non-negative integer. Therefore the theorem 
holds when F is a polynomial. Using the fact that A (x) is continuous in the 
uniform norm on m and applying the Weierstrass polynomial approximation 
theorem we obtain the conclusion. 

THEOREM 3.3. If ank > 0 for all n and k, then A** = \A\. 

Proof. Let F(t) = |/| and let zk = 1 for each k. Since x is in A** and 

l i m » ^ * 0 » * ^ - A(x)) = 0 , 

it follows from Theorem 3.2 that 

l i m w ] ^ ank \xk — A (x)\ = 0 . 

Hence x belongs to \A\. The converse is clearly true. 

THEOREM 3.4. If x belongs to ^4**, then A(x) lies in the interval [lim inf xk, 
lim sup xk]. 

Proof. Let p be a positive integer and set 

= fxk, k > p, 
Jk \mlxk, k < p. 

Since A is regular, y is in ^4** and A (y) = A(x). Let a = sup yk. Then 
a — yk = |a — ^ | , and by Theorem 3.2 (with F(t) = |/| and zk = 1 for 
each fe) 

0 < \A (a - y) | = A(a - y) = a - A{y) = a - A(x). 

Therefore A(x) < a = sup*->p xv. Since this is true for each p, A{x) < lim 
sup xk. Similarly, we see that lim inf xk < A(x). 

A consequence of Theorem 3.4 is that if x belongs to A**, then A (x) must 
be a limit point of the sequence x. Suppose that A(x) = 0 ; then by Theorem 
3.2, |x| is in ^** and \A{x)\ = A(\x\) = 0. By Theorem 3.4, the point 0 lies 
in [lim inf \xk\, lim sup \xk\]. Hence lim inf \xk\ = 0 . Brauer (1) has proved 
this result when ^4** = A*. 

In the next section we show that if x belongs to \A\, then A(x) is a limit 
point of x in a very cogent sense. 
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4. Strong summabil ity fields. 

THEOREM 4.1. If A is a regular matrix, then the bounded sequence x is strongly 
summable to a if and only if there exists a subset Z of N such that XN\Z is strongly 
A-summable to 0, and limnez xn = a. 

Proof. Suppose that there is a such a subset Z of N. Let 

* (1 ) = Xz'oc and x(2) = XN\Z'X9 

so that x = x(1) + x(2). Then 

53 Wk\ \xk - a\ = 53 \ank\ |4
1 } - a\ + 53 W |4 2 ) - a|. 

A; /b€Z k£N\Z 

The matrix (|aw&| Xz(&)) carries null sequences into null sequences, while the 
matrix (\ank\ XN\z(k)) carries every bounded sequence into a null sequence. 
Since l im^s (xfc

(1) — a) = 0 and |XA;(2) — a\ is bounded, 

lim„53* \ank\ \OCJC - a\ = 0. 

Conversely, suppose that the last relation holds. Let yk = xk — a, and for 
each positive integer p, let 

EP = {£;|;y*| > l / £} . 
Then 

53* K*| x^P(̂ ) < ^53* K*| W; 
hence 

lim„53* K*| X«„(*) = 0. 

We can now choose two sequences of positive integers {mT\ and {nr\ induc­
tively so that 

lim max ( 53 + 53 ) Wk\ = 0. 
T nrKn<nr+i \k<ntr k>mr+2' 

and 

lim max 53 \ank\ XEr+i(k) = 0. 
T nrKn k 

Let 
FT = {k £ E r : mr < & < mr+2} 

and let 
7V\Z = U r Fr. 

Then if n r < n < nr+i, we have the inequality 

5 3 \ank\ XN\z(k) < ( 5 3 + 2 3 ) Wnk\ + 5 3 knfcl Xtfr+i(*)-
k \k<mr k>mr+2' k 

Thus 
1 ^ 5 3 * W Xiv\z(^) = o, 

and if & is in Z and rar < & < w r+2, then | ^ | < 1/r. Therefore 

limw€Z ;yw = 0. 
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THEOREM 4.2. If A* C B*, then \A\ C \B\. 

Proof. If x belongs to \A\, then 

l i m w ^ I On* I \%k - 0\ = 0 

for some a, and hence if y belongs to m, then 

lim„X* \ank\ \%k - a\ \yk\ = 0. 

This implies that (x — a)y belongs to A* when y belongs to m, and since 
A* C -B*, then (# — a)y is in B*. I t follows from a theorem of Schur (4) that 

Hm»X* l&n*| |*A - a\ = 0 
so that x is in \B\. 

The converse of Theorem 4.2 is false. For if A is the sequence-to-sequence 
transformation given by 

yn = (xn + xn+1)/2, n = 1, 2, . . . , 

and £ is ordinary convergence, then \B\ = \A\; yet B* does not contain ^4*. 
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