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SIMULATION ANALYSIS OF SYSTEM LIFE
WHEN COMPONENT LIVES ARE DETERMINED
BY A MARKED POINT PROCESS

SHELDON M. ROSS,∗ University of Southern California

Abstract

We consider an r component system having an arbitrary binary monotone structure
function. We suppose that shocks occur according to a point process and that, independent
of what has already occurred, each new shock is one of r different types, with respective
probabilities p1, . . . , pr . We further suppose that there are given integers n1, . . . , nr such
that component i fails (and remains failed) when there have been a total ofni type-i shocks.
Letting L be the time at which the system fails, we are interested in using simulation to
estimate E[L], E[L2], and P(L > t). We show how to efficiently accomplish this when
the point process is (i) a Poisson, (ii) a renewal, and (iii) a Hawkes process.
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1. Introduction

Suppose that r components, each of which is either working or failed at any point of time,
constitute a system having a binary nondecreasing structure function φ. That is, whether or
not the system is working depends solely on which components are working, and if xi is the
indicator for the event that component i is working then φ(x1, . . . , xn) is the indicator for the
event that the system is working. Suppose that shocks occur according to a point process,
that each shock is one of r types, and that independent of what has previously occurred each
new shock is type i with probability pi,

∑r
i=1 pi = 1. Furthermore, suppose that for specified

integers n1, . . . , nr , component i fails (and remains failed) when there have been a total of ni

type-i shocks, i = 1, . . . , r. Letting L be the time at which the system fails, we are interested
in efficiently using simulation to estimate E[L], E[L2], and P(L > t).

Let N(t) denote the number of shocks by time t , and let Sn be the time of the nth shock.
Also, let N be the number of shocks that have occurred at the moment that the system fails; that
is, L = SN . Because the type of a new shock is independent of what has previously occurred, it
follows that N is independent of the process {N(t), t ≥ 0}, and so the conditional distribution
of L given N = n is the unconditional distribution of Sn. Thus, for instance,

P(L > t | N = n) = P(Sn > t) = P(N(t) < n)

and
E[L | N = n] = E[Sn].
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In Section 2 we consider the multinomial stopping time random variable N. We use
Poissonization both in generating such a random variable and in obtaining efficient estimators
of E[N ], E[N2], and P(N > m). The estimator of P(N > m) is a conditional expectation
estimator, whereas the estimators of E[N ] and E[N2] are linear combinations of a conditional
expectation estimator and a second unbiased estimator. In Section 3 we show how to estimate
E[L], E[L2], and P(L > t) in the cases where N(t), t ≥ 0, is, respectively, a Poisson process,
a renewal process, and a Hawkes process. Some concluding remarks are made in Section 4.
Throughout, we use the notation 1{A} to represent the indicator variable for the event A, equal
to 1 if A occurs and to 0 otherwise.

2. Multinomial stopping time N

Consider multinomial trials, where each trial results in one of the outcomes 1, . . . , r with
respective probabilities p1, . . . , pr . We say that the quota for type-i events is met when there
have been at least ni of them, i = 1, 2, . . . , r . Let Xi(n) equal 1 if the quota for type-i events
has not been met when n trials have occurred, and let it equal 0 otherwise. The random variable
N is defined by

N = min{n : φ(X1(n), . . . , Xr(n)) = 0}.
For instance, if 1 ≤ k ≤ r and

φ(x) = 1
{ r∑

i=1

xi ≥ k

}

then N is the number of trials until there have been at least ni type-i outcomes for exactly
r − k + 1 of the values i = 1, . . . , r. If, for given constants c1, . . . , cr , c,

φ(x) = 1
{ r∑

i=1

(1 − xi)ci < c

}

then we can imagine that a cost ci is incurred whenever there have been ni type-i outcomes
and that the process stops when the total incurred cost is at least c.

To obtain an efficient way to estimate E[N ], we use the standard Poissonization trick (see
[2] or [6]) of supposing that the times at which trials are performed constitute the event times
of a Poisson process with rate λ = 1. If we then say that the Poisson event is of type i if the trial
outcome is i then, with Ni(t) equal to the number of type-i events by time t, it follows that the
processes {Ni(t), t ≥ 0} are, for i = 1, . . . , r, independent Poisson processes with respective
rates pi. Hence, if we let Ti be the time until there have been a total of ni type-i trial outcomes
then T1, . . . , Tr are independent gamma random variables with respective parameters (ni, pi).

To obtain our estimators, generate the random variables T1, . . . , Tr and order them so that
TI1 < TI2 < · · · < TIr . For a subset S ⊂ {1, . . . , r}, let xi(S) = 1{i /∈ S} and define

φ(S) = φ(x1(S), . . . , xr (S)).

That is, φ(S) is the indicator of whether a system with structure function φ works when S is
the set of failed components.

Now, define
K = min(j = 1, . . . , r : φ({I1, . . . , Ij }) = 0)

and set T = TIK
. Thus, T is the time of trial number N . Hence, with Nj = Nj(T ) equal to the
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number of type-j trial outcomes by time T , we have

N =
r∑

j=1

Nj =
r∑

j=1

NIj
.

Now, for j < K , the quota of type-Ij outcomes was met at time TIj
and the additional number

of type-Ij outcomes that would have occurred by time T is Poisson distributed with mean
pIj

(T − TIj
). For j > K, the nIj

th outcome of type Ij occurred at time TIj
> T . As the joint

distribution of the times of the first nIj
− 1 type-Ij outcomes is that of independent uniformly

distributed random variables on the interval (0, TIj
), it follows that the conditional distribution

of NIj
given T = (T1, . . . , Tr ) is, for j > K , that of a binomial random variable with parameters

nIj
− 1, T /TIj

. As the number of type-IK trial outcomes by time T is nIK
, and as all of the

preceding binomial and Poisson random variables are conditionally independent given T , it
follows that

N | T =d n(T ) + X(T ) +
r∑

j=K+1

Bj (T ), (1)

where n(T ) = ∑K
j=1 nIj

and X(T ) and BK+1(T ), . . . , Br(T ) are conditionally independent
given T . Here X(T ) is Poisson distributed with mean

∑K−1
j=1 pIj

(T − TIj
), and Bj (T ), j > K,

is binomially distributed with parameters (nIj
− 1, T /TIj

).

2.1. Estimating EEE[N]
It follows from (1) that

E[N | T ] =
K∑

j=1

nIj
+

K−1∑
j=1

pIj
(T − TIj

) +
r∑

j=K+1

(nIj
− 1)

T

TIj

, (2)

which yields an unbiased estimator of E[N ].A second unbiased estimator is obtained by noting
that

T =
N∑

j=1

Yj , (3)

where Y1, Y2, . . . are the interarrival times of the Poisson process. Because these interarrival
times are independent of the successive event types, and thus of N , we see that

E[T | N ] = NE[Yj ] = N,

showing that T is also an unbiased estimator of E[N ]. If we had to choose between the two
unbiased estimators of E[N ] then E[N | T ] would be the choice since, by the Rao–Blackwell
theorem,

var(T ) ≥ var(E[T | N ]) = var(N) ≥ var(E[N | T ]).
However, there is no need to choose, as we can do better by taking an estimator of the form
αE[N | T ] + (1 − α)T , which is equivalent to using the estimator E[N | T ] along with the
zero-mean control variate E[N | T ] − T . The estimated best value of α would be determined
from the simulation (see Section 9.2 of [7]).

Remark. An approach to compute the mean of a stopping time of a sequence of multinomial
trials by using Dirichlet integrals was given in [8].
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Example. Suppose r = 2, n1 = n2 = 1, p1 = p2 = 1
2 , and that the system is parallel and thus

fails when there has been at least one outcome of each type. As N is distributed as 1 plus a
geometric with parameter 1

2 , it follows that var(N) = 2. Now, E[N | T ] = 2 + 1
2 (T(2) − T(1)),

where T(1), T(2) are the ordered values of the exponential random variables T1, T2. As T(2)−T(1)

is exponential with rate 1
2 ,

var(E[N | T ]) = 1.

Because T = T(2), using the estimator E[N | T ] along with the zero-mean control variate

Y ≡ E[N | T ] − T = 2 − 1
2 (T(1) + T(2))

yields, when the best constant c (obtained from the simulation) is used,

var(E[N | T ] + cY )

var(E[N | T ]) = 1 − corr2(E[N | T ], Y ).

Because T(2) is equal to T(1) plus an independent exponential with rate 1
2 , we have

var(T(2)) = 1 + 4 = 5, cov(T(1), T(2)) = var(T(1)) = 1.

Hence, var(Y ) = 1
4 (1 + 5 + 2) = 2, yielding

corr2(E[N | T ], Y ) = 1

16

cov2(T(2) − T(1), T(2) + T(1))

2
= 1

2
.

Hence, the best linear combination estimator has variance 1
2 .

Again, consider a parallel system with p1 = p2 = 1
2 , but now suppose that n1 = n2 = 2.

Now, N has the distribution 3 +X1 + IX2 where I, X1, X2 are independent, with the Xi being
geometric with parameter 1

2 , and P(I = 1) = 1
4 = 1 − P(I = 0), and we easily obtain, using

the conditional variance formula, that var(N) = 13
4 . To obtain the variance of the conditional

expectation estimator E[N | T ] = 4 + 1
2 (T(2) − T(1)), we use the fact that the distribution

of T(2) − T(1) is that of Y1 + IY2, where the Yi are exponential with rate 1
2 , I is equally

likely to be 0 or 1, and Y1, Y2, I are independent. This yields var(E[N | T ]) = 7
4 .

2.2. Estimating EEE[N2] and var(N)

To estimate E[N2], note from (1) that

var(N | T ) =
K−1∑
j=1

pIj
(T − TIj

) +
r∑

j=K+1

(nIj
− 1)

T

TIj

(
1 − T

TIj

)
. (4)

Using the fact that
E[N2 | T ] = E

2[N | T ] + var(N | T )

enables us to use (2) and (4) to obtain E[N2 | T ], which is an unbiased estimator of E[N2].
For a second unbiased estimator, we use (3) to obtain

E[T 2 − T ] = E[N2].
Consequently, we propose estimating E[N2] by the best estimator of the form αE[N2 | T ] +
(1 − α)(T 2 − T ). We can then use the estimates of E[N ] and E[N2] to estimate var(N).
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2.3. Estimating PPP(N > m)

To estimate P(N > m), we propose generating the values of the r −K independent binomial
random variables Bj (T ), j > K, and then using the estimator

P(N > m | T , Bj (T ) for j > K)

= P

(
X(T ) > m −

K∑
j=1

nIj
−

r∑
j=K+1

Bj (T )

∣∣∣∣ T , Bj (T ) for j > K

)
,

which, with I = m − ∑K
j=1 nIj

− ∑r
j=K+1 Bj (T ) and λ(T ) = ∑K−1

j=1 pIj
(T − TIj

), can be
written as

P(N > m | T , Bj (T )forj > K) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if I < 0,

∞∑
i=I+1

e−λ(T ) λ(T )i

i! if I ≥ 0.
(5)

Remark. Because m only comes into the simulation in the final computation (5), one simulation
run can be used to obtain estimates of P(N > m) for any set of values of m.

2.4. Generating N

It should be noted that none of our estimates call for the generation of the random variable N.

However, if we want to generate N , as we will in later sections, we could do so by first
generating T , then generating the (conditionally) independent random variables X(T ), Bj (T ),

j = K + 1, . . . , r, and then setting N = n(T ) + X(T ) + ∑r
j=K+1 Bj (T ). Except in cases

where N tends to be small, this approach will usually be more efficient than the one that
generates N by sequentially generating the outcomes of the multinomial trials.

3. Estimating the mean, variance, and tail distribution of the system life

We now consider estimating the mean, variance, and tail distribution of the system life in
cases where the point process is a Poisson process, a renewal process, and a Hawkes process.

3.1. Case where the point process is a Poisson process

Suppose that the shock counting process {N(t), t ≥ 0} is a Poisson process with rate λ.

Using the fact that E[L | N ] = N/λ, we see that

E[L] = E[N ]
λ

.

Also, because var(L | N) = N/λ2, the conditional variance formula gives

var(L) = E[N ] + var(N)

λ2 .

Hence, we can estimate E[L] and var(L) by using the approach of Section 2 to estimate E[N ]
and var(N).

Now, suppose that we want to estimate P(L > t) for a range of values of t . This is
accomplished by using the fact that

P(L > t) = P(N(t) < N) = P(N(t) < n(T ) + X(T ) + B(T )),
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where N(t) is independent of the random variables on the right-hand side, which are given by
the representation (1).

We propose to estimate P(L > t) by generating T and then generating the independent
binomials whose sum is B(T ). If the generated values yield n(T ) = s, B(T ) = b, and∑k−1

j=1 pIj
(T − TIj

) = μ then

P(N(t) < n(T ) + X(T ) + B(T ) | T , B(T )) = P(N(t) < s + b + V ),

where V is Poisson with mean μ, N(t) is Poisson with mean λt, and V and N(t) are independent.
We can then use

P(N(t) < s + b + V ) =
∞∑
i=0

∑
j<s+b+i

e−λt (λt)j

j ! e−μ μi

i! (6)

as an estimator of P(L > t). Moreover, because L has the same distribution as T/λ, where T is
defined as in Section 2, 1{T > λt} is also an unbiased estimator of P(L > t). Both 1{T > λt}
and (6) can be obtained for multiple runs and then the best unbiased linear combination estimator
can be used.

Remarks. (a) If one wants to avoid computing the right-hand side of (6), the simulation
run could continue by generating the values of N(t) and V, and then taking the conditional
probabilities P(N(t) < s + b + V | N(t)) and P(N(t) < s + b + V | V ) as two unbiased
estimators from that run. After all the simulation runs are completed, the best linear combination
of the averages of the values of the two estimators over all runs can be determined.

(b) In the Poisson case considered in this section the component lifetimes are independent Erlang
(i.e. gamma with parameters (n, α) where n is a positive integer) random variables. Thus, for
instance, if the structure is k-of-r (which functions when at least k of the r components are
working) then the system life is the r − k + 1 order statistic of independent Erlang random
variables. Thus, our approach can be compared with the use of computationally intensive
recursive equations for finding the moments of such order statistics that is suggested in [1].
Interestingly, in the Poisson case we start with independent Erlang distributed component
lifetimes but then analyze by interpreting it as a shock model (sort of the reverse of the usual
Poissonization approach) and then employ Poissonization to obtain efficient estimators.

3.2. Case where the point process is a renewal process

If the shock counting process {N(t), t ≥ 0} is a renewal process with continuous interarrival
distribution F then E[L] and var(L) can be estimated exactly as in the Poisson process case.
Namely, with μ and σ 2 equal to the mean and variance of an interarrival time, we note that

E[L] = μE[N ], var(L) = μ2 var(N) + σ 2
E[N ],

and then use the approach of Section 2 to estimate E[N ] and var(N).

Suppose now that we want to estimate P(L > t). We can obtain an unbiased estimator by
first using the method of Section 2.4 to generate a random variable N . If the generated value is
N = n then P(X1 +· · ·+Xn > t) is an unbiased estimator of P(L > t), where, throughout this
section, X1, X2, . . . , are independent random variables with distribution F , Sj = ∑j

i=1 Xi ,
and Mj = maxi≤j Xi. Because P(X1 + · · · + Xn > t) is usually not easily computed, we
propose to estimate it by using the modification (given in [9]) of the Asmussen–Kroese (AK)
simulation approach for estimating a convolution (see [3]). We now outline this approach for
estimating P(X1 + · · · + Xn > t).
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3.2.1. Modified AK approach to estimate P(Sn > t).

• Noting that Pn ≡ P(Sn > t) = nP(Sn > t, Mn = Xn), the AK estimator of Pn is

EAK = nP(Sn > t, Mn = Xn | X1, . . . , Xn−1) = nF̄ (min(Mn−1, t − Sn−1)),

where F̄ = 1 − F.

• Let R = min{n − 1, min{j ≥ 1 : Mj + Sj > t}}. Conditioning on R, X1, . . . , XR gives
the improved AK estimator:

E = nP(Sn > t, Xn = Mn | R, X1, . . . , XR)

=

⎧⎪⎨
⎪⎩

n

n − R
(1 − Fn−R(MR)) if R < n − 1,

EAK if R = n − 1.

When R < n − 1, the preceding equation follows because P(Sn > t, Xn = Mn | R,

X1, . . . , XR) is the probability of the joint event that Xn is both the largest of the values
XR+1, . . . , Xn and is itself greater than MR; and this is equal to the probability of the joint
event that at least one of XR+1, . . . , Xn exceeds MR and that Xn is the largest of these n − R

values.
We now present our approach for using simulation to estimate P(L > t). Fix a value k

and use the approach of Section 2.4 to generate k independent random variables having the
distribution of N . Let m1 ≤ m2 ≤ · · · ≤ mk be the ordered sequence of these k generated
values. To simultaneously estimate P(Smi

> t) for each i = 1, . . . , k, generate X1, . . . , Xmk

and use these data to estimate P(Smi
> t) via the modified AK approach. That is, with

R = min{mk − 1, min{j ≥ 1 : Mj + Sj > t}}, the estimate of P(Smi
> t) is

Emi
=

⎧⎪⎨
⎪⎩

mi

mi − R
(1 − Fmi−R(MR)) if R < mi − 1,

miF̄ (min(Mmi−1, t − Smi−1)) if R ≥ mi − 1.

The quantity 1/k
∑k

i=1 Emi
is the estimate of P(L > t) from this run. These runs can be then

repeated in the usual simulation manner to obtain a final estimate (equal to the average of the
estimates over all runs.)

Remarks. An appropriate choice of k can be learned only from the simulation. The reason for
having k > 1 is that doing so yields, in each run, k unbiased estimates, with a computational
effort that increases concavely in k. Although these k estimators are dependent (and almost
certainly positively correlated), the following lemma shows that the run estimator, equal to
their average, has a variance that decreases in k.

Lemma 1. If W1, W2 . . . , is a sequence of exchangeable random variables, var(
∑k

i=1 Wi/k)

decreases in k.

Proof. Let σ 2 = var(W1) and c = cov(W1, W2). Using the formula for the variance of a
sum, we need to show that

(k + 1)σ 2 + (k + 1)kc

(k + 1)2 ≤ kσ 2 + k(k − 1)c

k2 ,

which reduces to c ≤ σ 2, and this is the case since c/σ 2 = corr(W1, W2).
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3.3. Case where the point process is a Hawkes process

A point process {N(t), t ≥ 0} is said to be a marked Hawkes process (see [4]) if its conditional
intensity function is given by

�(t) = λ +
N(t)∑
i=1

Mie
−α(t−Si),

where Si, i ≥ 1, are the successive event times of the point process, λ and α are specified positive
constants, and the sequence of marks Mi, i ≥ 1, are independent and identically distributed
positive random variables having a specified distribution G. In addition, Mi is independent
of S1, . . . , Si . The idea is that event i has a mark Mi attached to it, with the effect being that
the current value of the intensity function increases by Mi when event i occurs; moreover,
the increment of the intensity function beyond its base value λ decreases between events at an
exponential rate α. Thus, for instance,

P(N(s + t +h)−N(s + t) = 1 | �(t) = λ+v, N(s + t)−N(t) = 0) = (λ+ve−αs)h+o(h).

It is easy to simulate a Hawkes process by simulating its successive event times Si, i ≥ 1.

The following algorithm simulates the first n event times. The value Vi is such that λ + Vi

is the intensity rate immediately after event i. (If we wanted to simulate up to a fixed time t ,
just replace ‘If J = n stop’ in step 4 with ‘if SJ > t stop’. The final value of J would equal
N(t) + 1.)

Step 1. Let S = 0, V = 0, and J = 1.

Step 2. Generate X, having hazard rate function h(s) = λ + V e−αs, s > 0.

Step 3. Let SJ = S + X.

Step 4. If J = n stop.

Step 5. Generate M having distribution function G.

Step 6. Let VJ = V e−αX + M .

Step 7. Let V = VJ , S = SJ , and J = J + 1.

Step 8. Go to step 2.

Remark. Step 2 generates a random variable X with hazard rate function h(s) = λ+V e−αs . As
X has distribution function F(t) = 1 − exp{− ∫ t

0 h(s) ds} = 1 − exp{−λt − V (1 − e−αt )/α},
it could be generated by the inverse transform method by generating a uniform (0, 1) random
variable U and then numerically solving

− log(1 − U) = λX + V
1 − e−αX

α
.

Because the right-hand side of the preceding equation is increasing in X, the computations are
not onerous. Another approach would be to generate the time of the first event of a nonstationary
Poisson process with intensity function λ + V e−αs , by using the thinning method on a Poisson
process with rate λ + V for example, and then set X equal to the generated value.

https://doi.org/10.1239/jap/1402578631 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1402578631


Simulation analysis of system life 385

Suppose now that the shock counting process is a Hawkes process, and that we want to
estimate E[L], E[L2], and P(L > t). To do so, fix a value k. The first run of the simulation
begins by using the method of Section 2.4 to generate k independent replicas of N , say
N1, . . . , Nk . Let their generated values be mi, i = 1, . . . , k, and set m = maxi mi . Now
generate the first m event times of the Hawkes process: S1, . . . , Sm.

The values of the unbiased estimators of E[L] and E[L2] from this run are, respectively,∑k
i=1 Smi

/k and
∑k

i=1 S2
mi

/k. With E[M] being the expected value of a mark, these estimators
can be improved by using

∑maxi Ni

i=1 (Mi − E[M]) as a control variable whose mean is 0 since
maxi Ni is independent of the sequence of marks. Because the control variable will be large
(small) when marks are higher (lower) than average it should be negatively correlated with
system lifetime.

To estimate P(L > t), we first estimate P(Smi
> t) by the estimator

Emi
≡ P(Smi

> t | Smi−1, Vmi−1),

given by

Emi
=

⎧⎪⎨
⎪⎩

exp

{
−

∫ t−Smi−1

0
(λ + Vmi−1e−αs) ds

}
if Smi−1 < t,

1 if Smi−1 ≥ t,

and then take E = ∑k
i=1 Emi

/k as the estimate of P(L > t) from the run. In addition, the
estimator can be improved by using

∑N(t)
i=1 (Mi − E[M]) as a control variable. Because the

event N(t) = j is independent of all marks observed after time t, it follows that it is independent
of Mj+1, Mj+2, . . . and so is a stopping time for the sequence M1, M2, . . . . Hence, by Wald’s
equation, E[∑N(t)

i=1 (Mi − E[M])] = 0.

4. Concluding remarks

There are many interesting generalizations of our model, with our techniques being directly
applicable in some but not in others. For instance, one generalization might suppose that the
number of type-i shocks that it takes until component i fails is a random variable Wi, with
W1, . . . , Wr having an arbitrary joint distribution. For this model, we could first generate the
values of W1, . . . , Wr , and then utilize our techniques (possibly also using antithetic variables
or control variables as related to the generated W1, . . . , Wr .) Other generalizations might
be to suppose that a shock could affect multiple components, or that there is some specified
decreasing function h such that the system performs at a level h(x1, . . . , xr ) if there have been
a total of xi type-i shocks, for each i = 1, . . . , r, with the system failing when this level falls
below some specified value. For these latter generalizations, new techniques for simulation
efficiency would be needed.

Also, in this paper we have not addressed rare event simulation that arises in cases where
the probabilities of interest are quite small.
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