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Analysis of 470,000 exome-sequenced cases and
controls fails to identify any genes impacting
risk of developing affective disorder

David Curtis
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Abstract

Objective: A previous analysis of 200,000 exome-sequenced UK Biobank participants using
weighted burden analysis of rare, damaging variants failed to identify any genes associated with
risk of affective disorder requiring specialist treatment. Exome-sequence data has now been
made available for the remaining 270,000 participants and a two-stage process was applied in
order to test for association in this second sample using only genes showing suggestive evidence
for association in the first sample. Methods: Cases were defined as participants who reported
having seen a psychiatrist for ‘nerves, anxiety, tension or depression’. Exhaustive testing of the
first sample was carried out using rare variant analyses informed by 45 different predictors of
impact of nonsynonymous variants. The 100 genes showing the strongest evidence for
association were then analysed in the second sample using the same predictor as had been most
statistically significant in the first sample. Results: The results for the 100 nominated genes
conformed closely with the null hypothesis, with none approaching statistical significance after
correction for multiple testing. Conclusion: Risk of common affective disorder, even if severe
enough to warrant specialist referral, is not sufficiently impacted by effects of rare variants in a
small enough number of genes that effects can be detected even with large sample sizes.
Actionable results might be obtained with a more extreme phenotype but very significant
resources would be required to achieve adequate power. This research has been conducted using
the UK Biobank Resource.

Significant outcomes

• In spite of a very large sample, the study fails to implicate any specific genes in the
aetiology of affective disorder.

• The results raise questions about the optimal study design for identifying genetic
factors impacting affective disorder.

Limitations

• The phenotype used consisted of self-report of being referred to a psychiatrist.
• The phenotype was not diagnosis-specific, though shown to be genetically related to
the diagnosis of depression used in other large scale studies.

Introduction

Studies of large exome-sequenced case-control cohorts have been successful in identifying genes
harbouring extremely rare variants with large effects on the risk of schizophrenia and these
results may plausibly assist the development of novel treatments (Palmer et al., 2022; Curtis,
2022a; Liu et al., 2023; Heinzer & Curtis, 2024; Singh & The Schizophrenia Exome Meta-
Analysis (SCHEMA) Consortium, 2022). However when a similar study design was applied to a
phenotype related to affective disorder in a sample of 200,000 exome-sequenced UK Biobank
participants (https://www.ukbiobank.ac.uk/about-biobank-uk/), including nearly 23,000 cases,
no gene approached statistical significance after correction for multiple testing and the results
were reported to conform closely to those expected under the null hypothesis (Curtis, 2021). The
phenotype in question was defined as answering positively to the question ‘Have you ever seen a
psychiatrist for nerves, anxiety, tension or depression?’. Given that UK Biobank participants
consist of volunteers who tend to be relatively healthy and middle-aged or elderly, with under-
representation of schizophrenia, personality disorder, substance misuse and learning disability,
it was argued that the bulk of those answering positively to this question would have a mood
disorder. It was also argued that, because in Britain most cases of anxiety and/or depression are
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treated in primary care without referral to a psychiatrist, people
responding positively would have had relatively severe illness.
Another reason for choosing this item as the phenotype of interest
was because the question was answered by almost all participants,
whereas other psychiatric phenotypes were only available for
smaller numbers.

The fact that a similar sample size was sufficient to identify
genes implicated in schizophrenia pathogenesis but not this mood
disorder phenotype could be explained by schizophrenia having a
higher heritability than depression, and also possibly with major
effects concentrated in a smaller number of genes. This mirrors the
findings of genome-wide association studies using common
variants, for which depression has a lower yield of statistically
significant findings than schizophrenia (Kendall et al., 2021).

Exome sequence data for the remaining 270,000 UK Biobank
participants has now been released, meaning that a two-stage
strategy could be applied. Even though analysis of the first 200,000
did not yield any genes producing results significant after
correcting for multiple testing of 20,000 genes, a number of genes
did produce fairly small p values of 0.001 or less. Although at least
some of these would be chance findings it might be that some of
these smaller p values could reflect a true effect. One might select
those genes which produced the lowest p values in the first sample
and test only these genes in the second sample, which would then
require a much less rigorous correction for multiple testing than
having to correct for all 20,000 genes. This strategy has been
successfully applied to three other common, clinically important
phenotypes – hypertension, hypercholesterolaemia and type 2
diabetes (Curtis, 2023a, b, 2024). For each of these, only the few
dozen genes significant at p < 0.001 in the 200,000 sample were
tested for association in the 270,000 sample. For each phenotype,
this allowed the identification of a small number of genes which
demonstrated clear evidence of association which was statistically
significant after correction for the number of genes tested.

This two-stage strategy was further modified before being
applied to the affective disorder phenotype. Previously, in order to
test the strength of evidence for association of each gene a weighted
burden analysis had been used. To implement this, a system of
weights is applied to each variant depending on the category of
predicted effect by Variant Effect Predictor (VEP), such as loss of
function (LOF), nonsynonymous, synonymous, intronic, etc
(McLaren et al., 2016). For nonsynonymous variants the weight
is further adjusted using the predicted impact of the amino acid
change according to SIFT and PolyPhen (Kumar et al., 2009;
Adzhubei et al., 2013). A weight is also devised according to the
rarity of the variant and then the functional weight and rarity
weight are multiplied together. For each gene, each subject is
assigned a weighted burden score which consists of the sums of the
weights of the variants which they carry and logistic regression is
used to see if this score is associated with the phenotype. However,
the weighting scheme is devised in advance and an obvious
problem is that if the assigned weights do not adequately reflect the
actual biological impacts of the different variant types then power
will be reduced. A separate study has shown that that there is
variability across genes and phenotypes as to the relative
contributions of LOF and nonsynonymous variants, and also for
the different predictors of impact of nonsynonymous variants
(Curtis, 2022b). Thus, for some genes predictors such as SIFT and
PolyPhen might work fairly well while for other genes a different
predictionmethodmight be superior. In order to address this issue,
it was decided to reanalyse the 200,000 sample using repeated
analyses with different prediction methods. For each gene, the

weights for LOF and nonsynonymous variants would be fitted
separately and multiple analyses would be performed using
different predictors of impact of nonsynonymous variants. Then
the genes producing the most highly significant results overall
would be carried forward to be analysed in the second sample,
using for each gene only the predictor which had yielded the most
significant result.

It was decided to enter 100 gene-predictor pairs into the second
stage of the analysis. The expectation was that if variants in a gene
were actually associated with the phenotype then the best-
performing predictor for that gene might produce evidence for
association significant at p < 0.0005 or so in the first stage.
Subsequently in the second stage a result would only need to
produce a p value of 0.05/100 = 0.0005 or less in order to be
regarded as statistically significant after correction for multiple
testing. There would be an expectation that through the winner’s
curse effect there might be a weaker association evident in the
second sample, although this might be somewhat mitigated by the
fact that the second sample is larger than the first.

It was hoped that applying this extensive search to find
suggestive evidence for association in the first sample followed by
attempts at confirmation in the second sample could lead to the
identification of genes involved in susceptibility to affective
disorder.

Materials and methods

Relevant UK Biobank phenotype fields had been downloaded
along with the variant call files for 200,632 subjects who had
undergone exome-sequencing and genotyping by the UK Biobank
Exome Sequencing Consortium using the GRCh38 assembly with
coverage 20X at 95.6% of sites on average (Szustakowski et al.,
2021). The UK Biobank Research Analysis Platform was used to
access the Final Release Population level exome variants in PLINK
format for 469,818 exomes which had been produced at the
Regeneron Genetics Center based on DNA extracted from stored
blood samples and using the protocols described here: https://dna
nexus.gitbook.io/uk-biobank-rap/science-corner/whole-exome-se
quencing-oqfe-protocol/protocol-for-processing-ukb-whole-exo
me-sequencing-data-sets (Backman et al., 2021). All variants were
then annotated using the standard software packages VEP,
PolyPhen and SIFT (Kumar et al., 2009; Adzhubei et al., 2013;
McLaren et al., 2016). To obtain population principal components
reflecting ancestry, version 2.0 of plink (https://www.cog-genomi
cs.org/plink/2.0/) was run with the options – maf 0.1 – pca 20
approx (Chang et al., 2015; Galinsky et al., 2016). UK Biobank had
obtained ethics approval from the North West Multi-centre
Research Ethics Committee which covers the UK (approval
number: 11/NW/0382) and had obtained informed consent from
all participants. The UK Biobank approved an application for use
of the data (ID 51119) and ethics approval for the analyses was
obtained from the UCL Research Ethics Committee (11527/003).

The phenotype was determined according to how participants
had responded in their initial assessment to the touchscreen
question: ‘Have you ever seen a psychiatrist for nerves, anxiety,
tension or depression?’ Those answering ‘Yes’ were taken to be
cases and all those answering ‘No’ were taken to be controls. No
attempt was made to screen out controls whomight have had some
other psychiatric diagnosis.

In order to gain further insight into the appropriateness of this
phenotype, its genetic correlation with major depressive disorder
(MDD) was determined. Firstly, summary statistics for association
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between the phenotype and the UK Biobank Axiom array single
nucleotide polymorphisms were calculated for 415,318 partic-
ipants reporting White British ancestry (Bycroft et al., 2018). Next,
the Psychiatric Genetic Consortium site (https://pgc.unc.edu/for-
researchers/download-results/) was accessed to obtain summary
statistics from a genome wide association study (GWAS) of MDD
using 135,458 cases and 344,901 controls, of whom 14,260 cases
and 15,480 controls were UK Biobank participants (Wray et al.,
2018). Finally, the genetic correlation between the two sets of
summary statistics was calculated using linkage disequilibrium
score analysis implemented in the LDSC programme (Bulik-
Sullivan et al., 2015a, b).

SCOREASSOCwas used to carry out logistic regression analysis
to test whether, in each RefSeq gene, sequence variants which were
rarer and/or predicted to have more severe functional effects
occurred more commonly in cases than controls (Curtis, 2012).
Attention was restricted to rare variants with minor allele
frequency (MAF) ≤ 0.01. All genes having at least one such
variant were tested, consisting of 22,560 genes in total. For each
gene, two scores were produced for each subject, a LOF variant
score and a nonsynonymous variant score. For every LOF variant
and nonsynonymous variant, a weight based onMAF was assigned
using the previously described method to fit a parabolic function
such that variants with MAF = 0.01 were given a weight of 1 while
very rare variants with MAF close to zero were given a weight of 10
(Curtis, 2012). For each subject, the LOF variant score consisted of
the sum of these weights for any LOF variants which that subject
carried, consisting of stop, frameshift and essential splice site
variants. For every nonsynonymous variant, additional functional
weights based on predicted impact were assigned using different
methods intended to predict the likely pathogenicity of a variant.
These functional weights consisted of the rank scores for each of 43
different prediction and conservation methods as provided for all
possible nonsynonymous variants in dbNSFP v4 (Liu et al., 2020).
Two additional functional weights were obtained for annotations
using AlphaMissense by running VEP with the options b –
canonical –regulatory – plugin AlphaMissense (Cheng et al., 2023).
This outputs two AlphaMissense annotations, a raw score and a
categorisation of likely pathogenic, likely benign or ambiguous,
these three categories being converted to numerical scores of 2, 0 or
1 respectively. Thus, each nonsynonymous variant had a total of 45
different functional weights, produced by 45 different prediction
methods. These were multiplied by the weight due to MAF to give
45 different overall weights for that variant. The nonsynonymous
variant score for the subject would consist of the sum of the weights
for all nonsynonymous variants that subject carried and there
would be 45 different versions of this score, depending on which
annotation method was used.

For variants on the X chromosome, hemizygous males were
treated as homozygotes. Variants were excluded if there were more
than 10% of genotypes missing or if the heterozygote count was
smaller than both homozygote counts. If a subject was not
genotyped for a variant then they were assigned the subject-wise
average score for that variant.

The first phase of analysis was applied to the initial cohort of
200,000 exome-sequenced participants. For each gene, a logistic
regression analysis was carried out to test whether the gene-wise
LOF score and/or nonsynonymous score were associated with
phenotype. To do this, the log likelihood was calculated for the null
hypothesis model using only sex and the first 20 population
principal components to predict phenotype status. Then the log
likelihood was calculated for the alternative hypothesis model

additionally including the LOF score and nonsynonymous score.
Twice the difference between these two log likelihoods was taken to
be a likelihood ratio statistic expected to be distributed as chi-
squared with two degrees of freedom. The p value obtained for this
statistic was converted to a minus log10 P (MLP) value for
convenience. For each gene, this process was repeated 45 times, for
each of the different predictors of nonsynonymous variant
pathogenicity. Then for each gene the predictor producing the
highest MLP, termed MaxMLP, was identified.

Once a MaxMLP was obtained for every gene, the top 100
MaxMLPs were used to select gene-predictor pairs for the second
phase of the analysis, to be carried out in the second sample of
270,000 participants. The same likelihood ratio test based on
logistic regression was applied to see if the LOF and/or
nonsynonymous score were associated with phenotype, but for
each of the 100 genes only a single nonsynonymous score was used,
using the predictor which had produced the highest MLP in the
first sample. This meant that a total of only 100 tests for association
would be performed.

Results

The genetic correlation between the phenotype based on answering
positively to the question about having seen a psychiatrist for
‘nerves, anxiety, tension or depression’ and the phenotype ofMDD
as used in the previous GWASwas calculated by LDSC as rg= 0.87.

For the first phase of analysis, there were 22,886 cases and
176,486 controls. 22,560 genes were analysed as described above
and the 100 highest MaxMLPs ranged from 3.50 for AKNAD1 to
6.03 for AZIN1. Results for all genes and all 45 tests are provided in
Supplementary Table 1.

For the second phase of analysis there were 30,864 cases and
236,674 controls. The 100 genes nominated in the first phase were
analysed to see if the LOF score and/or nonsynonymous score were
associated with phenotypes, the nonsynonymous score being
generated using the predictor which had produced the MaxMLP
for each gene in question. The results obtained from this second
phase are shown in Supplementary Table 2. AQQ plot of theMLPs
obtained from these 100 analyses against the expected null
hypothesis distribution is shown in Fig. 1. It can be seen that the
results conform very closely to what would be expected under the
null hypothesis that there are no genes for which the LOF score or
nonsynonymous score is associated with the phenotype. The
highest MLP produced by any gene is 1.90 for MGAM, equivalent
to p = 0.012. In order for any result to be regarded as statistically
significant, given that 100 genes were tested, the MLP would need
to exceed -log10(0.05/100) = 3.30.

Discussion

In spite of exhaustive efforts, it did not prove possible to find any
genes which demonstrated even suggestive evidence of association
with the phenotype tested. The results were just as would be
expected under the null hypothesis. The 100 genes which seemed
to demonstrate the most evidence in favour of association in the
first phase of analysis showed no evidence at all for association in
the second phase.

It may be worth reiterating that this kind of approach has been
effective in the same sample in identifying genes implicated in the
common, physical illness phenotypes mentioned above. For
example, using hypertension and implementing a fixed weighting
scheme for variants, 42 genes achievedMLP> 3 in the first phase of
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analysis with 200,000 participants and went through to the second
phase with 270,000 participants (Curtis, 2023a). GUCY1A1, which
codes for a subunit of soluble guanylate cyclase, achieved an MLP
of 5.54 in the first phase and 5.06 in the second, while DBH, which
codes for the enzyme producing norepinephrine, produced an
MLP of 3.4 in the first phase and 5.61 in the second (with variants
inDBH reducing hypertension risk). Thus, both genes were clearly
implicated at conventional levels of statistical significance, in sharp
contrast to the results obtained from the current study.

An obvious limitation of the current study is that the phenotype
is vague, poorly defined and perhaps overinclusive, given that it
identifies around 10% of participants as cases. However, we can
note that the hypertension phenotype was also rather weakly
defined, consisting of anyone who either self-reported that they
had high blood pressure or who was recorded as having a
hypertension-related diagnosis or who was taking a medication
commonly prescribed for hypertension (Curtis, 2023a). This
algorithm resulted in over 35% of participants being classified as
cases. Nevertheless, the methods used were still able to
convincingly implicate biologically plausible genes. As previously
stated, the phenotype chosen for this study was used because most
participants had answered Yes or No to the question of whether
they had seen a psychiatrist and because in the UK seeing a
psychiatrist would indicate significant morbidity, as most mental
disorder is dealt with in primary care. More detailed information
regarding mental health is only available for a smaller proportion
of participants. We also note that this phenotype has a high genetic
correlation with the phenotype of MDD as used in the previous
GWAS, suggesting that similar genetic variation contributes to
both conditions.

Another team has carried out analyses of the same UK
Biobank dataset using seven different definitions for depression

(Tian et al., 2024). Although they were able to demonstrate that
the overall genome-wide burden of LOF and rare damaging
missense variants was associated with depression, no individual
genes were statistically significant after correction for multiple
testing. For two genes, SLC2A1 and NOG, the evidence was
reported as ‘suggestive’ but neither could be replicated in another
dataset and neither seems biologically plausible. Considering
that study alongside the present one, a variety of approaches to
deriving a phenotype reflecting significant affective disorder
have failed to implicate specific genes using this dataset.

The results obtained (or lack of them) suggest that relatively
commonmood disorders, even if severe enough to warrant referral
to a specialist, are genetically too heterogeneous for rare variant
analyses to be effective using realistic sample sizes. An alternative
approach could be to use a much more restrictive phenotype
definition aimed at focusing on very severe illness, such that the
lifetime prevalence might be more in the region of 1%, comparable
with schizophrenia. Such a phenotypemight resemble that used for
the CONVERGE genome-wide association study, defined as severe
recurrent depression requiring hospital treatment and perhaps
additionally restricted to include only cases of melancholia (Cai
et al., 2015). The experience with schizophrenia and other non-
Mendelian phenotypes suggests that numbers of cases running into
the tens of thousands are required to implicate specific genes using
rare variants identified through exome-sequencing studies
(Backman et al., 2021; Singh & The Schizophrenia Exome Meta-
Analysis (SCHEMA) Consortium, 2022; Wang et al., 2021). If the
phenotype to be studied were depression so severe as to have a
prevalence of only 1%, then a biobank sample drawn from the
general population would need to have a total sample size of at least
2 million in order to expect that it might contain 20,000 cases.
Alternatively, research subjects could be specifically recruited,

Figure 1. QQ plot of minus log10 Ps (MLPs) for rare variant analyses
in 270,000 UK Biobank participants of 100 genes tested for
association with referral for psychiatric treatment, showing observed
against expected MLP for each gene. The null hypothesis expectation
is that the results will fall on the x = y diagonal.
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which would still require a large, multicentre effort. While focussed
recruitment might require a smaller total sample size, a
disadvantage is that exome-sequencing might then allow detection
of rare variant associations with depression but not with any other
phenotypes. Whereas a biobank sample can provide information
about a wide range of phenotypes, potentially adding value to the
costs entailed in sequencing.

Whichever way one looks at it, the resource costs which would
be involved in strategies providing a reasonable expectation of
producing actionable results seem daunting. An alternative
approach might be to temporarily abandon further attempts at
elucidating depression genetics and instead to focus efforts on
identifying genes impacting risk of bipolar disorder. The hope
would then be that insights gained from bipolar disorder research
into the biological mechanisms underlying control of affect might
subsequently be applied to more focused attempts to elucidate the
pathogenesis of depression. That said, at time of writing the only
gene to be implicated in bipolar disorder risk, using exome
sequence data from 14,000 cases, is AKAP11 and its mechanism of
action is far from clear (Palmer et al., 2022).

To conclude, this study utilising exome sequence data from
over 50,000 cases withmood disorder sufficiently severe to warrant
referral to a specialist fails to detect even a hint of a signal of
association of rare, damaging variants within any specific gene.

Supplementary material. The supplementary material for this article can be
found at https://doi.org/10.1017/neu.2025.10025.
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