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THE PRINCIPLE OF LIMITING ABSORPTION AND DECAY
OF LOCAL ENERGY FOR THE LINEARIZED EQUATION
OF MAGNETOGASDYNAMICS
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§0. Introduction

The present paper is a continuation of [6] and [7] in which the principle
of limiting absorption has been verified for symmetric systems of first order
with long-range perturbations, but the operators considered there are of
constant rank. On the other hand, operators with non-constant rank are
also important in application as well as from a purely theoretical point
of view. In this paper, we consider the linearized equation of magneto-
gasdynamics with long-range perturbation as an important example of
such operators.

There are only a few works on the spectral and scattering theory for
symmetric hyperbolic systems with non-constant rank.

In [5], Ralston considered an operator of the form

0.1) L=> A3, +Bx), o =aox,,
j=1

where he assumed that the symmetric matrices A,(x) are smooth functions
and take the constant values Aj for (x| > R and that B(x) is also a smooth
function and it vanishes for (x| > R. He further assumed that the null
space of A(x, &) = > 7., A(%)¢; is at most one dimensional for £ == 0. How-
ever, his results do not cover the linearized equation of magnetogas-
dynamics, since the null space of this system is not one dimensional, as
shown later.

Recently, in [2] (or [1]), Avila and Costa considered an operator of
the form

0.2) L=E®*§£®,
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Aj being a constant symmetric matrix, where they assumed that E(x) —
E, = O(x|"%, 6 > 1, as |x| > oo, for some positive definite matrix E(short-
range perturbation). Without any assumptions on the roots 1 = (&) of
the characteristic equation

P(3, &) = det (,on _ Z A‘;&,.) —0,

they proved the existence of wave operators associated with L and the
unperturbed operator L, = E;'> %, A%, (The completeness was not
proved.) Murata [8] has also proved the existence of wave operators for
more general symmetric hyperbolic systems.

The perturbed linearized operator of magnetogasdynamics to be dis-
cussed here is formulated in the form like (0.2). Under the assumption
E(x) — E, = O(x|™%), 6 > 0, (long-range perturbation), we shall prove the
principle of limiting absorption and, as a result, the decay of local energy
is verified for solutions to the symmetric hyperbolic equation (8/0¢t — L)u
= 0. (We require some additional assumptions on the derivatives of E(x).
The precise formulation is given in Section 1.) In the case of short range
perturbations, the completeness of wave operators will be proved by use
of the principle of limiting absorption and the detailed result will be
stated in another paper.

§1. Formulation of results

In this section, we give the precise formulation of the results to be
obtained here together with several notations and assumptions.

1.1. Notations. We first list up the notations to be used throughout
our entire discussion.

(1) We work exclusively in 3-dimensional euclidean space R: with
generic point x = (x,, X, x;). R} denotes the 3-dimensional space dual to
R and the generic point & in R: is denoted by & = (&, &, &). Furthermore,
we denote by x-& the scalar product; x-& = >335, x,§,.

(2) C* denotes the k-dimensional unitary space with the usual scalar
product ((,)) (The notation ((,)) is used only for & = 3, 7.)

(3) For a multi-index m = (m,, m,, m,), m; being a non-negative integer,
we denote by |m| the length of m. We write 3, = (9/ox,, 9/dx,, 8[dx,), D,
= (D, D,, D)), D, = — id/ox, (i = ¥/ —1) and 37 = (3/0x,)™*(3/0x,)"*(3/0x;)™ for
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m = (m,, m,, m;). (We use the symbols m and n to denote multi-indices
throughout this paper.)
(4) We denote by I, the identity matrix of size j X j.

1.2. Functional spaces. We shall introduce the various functional
spaces in which we work.

(1) We denote by H, (H, = L,) the usual Sobolev space of order s
over the whole space R:, s being not necessarily a non-negative integer,
and the norm in H, is denoted by || [, (| I, = | |-

(2) We denote by H,, the weighted Sobolev space with weight «;
H, . = {¢; 0+ |xP)**¢ € H}, and the norm in H,, by [, = 1A+ x|,
When s = 0, we write H,, = L; ..

(3) We further denote by H{ the direct sum of H,, (¢ summands);
HO =S @ H,, (LY, = H{), and the norm in H{) is denoted by | (). In
the later argument, the space H{) (¢ = 7) is most frequently used, so we
simply write | |,, instead of | |, for the norm in H{".

(4) For a domain 2 in R:, we denote by H({2) the Sobolev space of
order s over . The notation H)(2) is also used with the same meaning
as above.

1.8. The linearized equation of magnetogasdynamics. The perturbed
linearized equation of magnetogasdynamics to be discussed here is described

as follows:

1.1 1(0/o)h +V X (B, X v) =0,

1.2) p(x)@fotv +Vp + B, X F X h) =0,
(1.3) a(x)(@/otp +V-v=0.

Here the unknown functions A, v and p denote the magnetic vector field,
velocity vector, and pressure, respectively (A and v are 3-dimensional
vector-valued functions, p scalar function), while the constants g, and B,
denote the magnetic permeability and given uniform magnetic vector field,
respectively, and p(x) and a(x) are given positive scalar functions. The
physical meanings of p(x) and a(x) will be clarified in the derivation of
equations (1.1) ~ (1.3) which is done in Appendix.

We set u = h,v,p) (7-dimensional vector-valued function). Then,
equations (1.1) ~ (1.3) can be put into the symmetric hyperbolic system of
the following form:

149 10/0t)u = E(x)"'Ly(D.)u ,
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where
o1, 0
(1.5) E(x) = p(x)1,, R
0, a(x)

0, ADYIB], O
(1.6) LyD,) = |[BJA(D,), 0, ADy) |,

0, A*(D,), 0

0, -D, D,

AD Y= — iV X) =|D,, 0, —D,], 4* = -4,

1.6) _D, D, 0

A(Dz)(= - lV) = t(Dla DZ: DB):

A*(Da:)(z - iV) = (Db D2, Da ’

and [B,] denotes the 3 X 3 matrix corresponding to the operation B,X;

Without loss of generality, we assume that B, = (1,0, 0), so that

[Bo])I< = - [-Bo]-
0, 0
[BO] = 0’ 0:
0, 1,

0
—1].
0

We further assume that p(x) and a(x) converge to some positive constants
0, and a, as |x| — oo, respectively, and put

1y,

1.7 E,

0
1.4, Assumptions.

AssumPTION (A).

0

PoIay

@

We make the following assumptions on E(x)*:

(A.1) E(x) is smooth and positive definite uniformly in x;

(A.2)
(A.3)

E(x) — E, = O(x|™),

AssumpTioN (B).

®B.1)

§>0,
3E(x) = O(x[~"*),

as [x| = oo ;

lm| = 1.

Mo % Qo .

*) These assumptions will be weakened in Section 7.

https://doi.org/10.1017/50027763000020225 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000020225

EQUATION OF MAGNETOGASDYNAMICS 17

Physically, this assumption means that the speed of Alfvén wave
(| Bs)(op0)™ "%, | By] = 1) and the speed of sound ((a,0,)""/%) do not equal each
other and guarantees that the normal surfaces of the unperturbed system
E;'L(D,) have no triple intersecting points (Courant-Hilbert [3], p. 615).
Unfortunately, our method developed in [7] cannot be applied to such a
case. If y, = a,, then the normal surfaces have at most double intersecting
points. From now on, we assume, for brevity, that

(1'8) /10 > ao .

1.5. Statement of results. We see that the operator L(x, D,) =
E(x)"'L(D,) has a natural self-adjoint realization (denoted by the same
symbol L) in L{} with the energy scalar product

@ s = | (B3, e,

and that the domain 2(L) is given as
2(L) = {u; ue LN, Lue L7} .
Now, we shall state the main results on the spectral properties of the
operator L. We always assume that Assumptions (A) and (B) are satisfied.

THEOREM 1.1. The non-zero eigenvalues of L are of finite multiplicity
and discrete with possible accumulating points 0 and + oo.

THEOREM 1.2. Assume that 2, 2 % 0, is not an eigenvalue of L. Let
R + ix) = (L — (2 i)', 0 <k < 1. Then, the following statements hold:

(i) There exists a constant C = C, independent of r such that for
feLi, a > 1/2,

IR £ ix)flo,-a = Clfloya -

(ii) There exist bounded operators R(A + i0) from L{, to L{" , such
that R(2 + ix) converge to R(2 +i0) weakly in L{"., as £ — 0;

1igl (RQ % i0)f, 8)r = (B2 £ 10)f, &)z

for any f and ge L{". Furthermore, the convergence above is uniform in
A when 2 ranges over a compact interval not containing the eigenvalues of
L.

TuEOREM 1.3. The local energy of solution u(x,t) to the symmetric
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hyperbolic system (1.4) decays as t— 4 oo for all initial data orthogonal
to the eigenspace of L.

The proof of Theorem 1.2 is based on the following two a priori
estimates: Let we L{} be a solution to the equation

1.9 Lu—-Qxiru=f, 0<k<1l, 2x0,

with fe L{", « > 1/2. Then, there exists a constant C independent of &
such that

(1.10) ulo-a < C{floa + [%]-1,-a}

(1.11) [l - < C{Iflo,a + [y, -0}

for any v, 1/2 <v < @. The main part of our argument in the sequel is
devoted to the proof of the two a priori estimates above. For notational
convenience, the proof is done only for the “ 4+ ” case and we assume
that 1> 0.

1.6. Proof of Theorem 1.3. Though Theorem 1.3 is an immediate
consequence of Theorem 1.2, we shall prove it here for the sake of com-
pleteness.

Proof of Theorem 1.3. Let &(2) be the spectral resolution associated
with L; L = .“Rd@@(l). Since the total energy of solutions to equation (1.4)
is conserved and since L{",, @ > 1/2, is dense in L{}, we have only to prove

the decay of local energy for initial data of the form &((a, b))f, fe L

2,a9

where (a, b) is a finite interval not containing the eigenvalues of L. First
we note that the strong measurability of R(21 £ i0)f, fe L{", in 2 follows
from the weak measurability which is shown by Theorem 1.2, and hence

&((a, f = (2ri)! j (RO + 10) — R — i0)f

for ¢ < 2 <b. On the other hand, the solution u(x, f) to the equation (1.4)
with initial data &((a, b))f is represented as

u(x, t) = jb et de(Af .
Hence, it follows that

u(x, t) = (2mi)-! J " e F()dA
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where F(2) = (R(2 4+ i0) — R(2 — i0))f. Since F(2) can be regarded as an
integrable function of 2 with valuesin L{"_,, the Riemann-Lebesgue theorem
completes the proof.

§2. Preliminaries
2.1. Normal surfaces. We define the matrix L(x, &) of size 7 X 7 as
L(x, §) = E(x)"'L(%) .

Then, after a simple but tedious calculation, the seven eigenvalues of L(x, &)
are given as follows:

(1) =zero eigenvalue with simple multiplicity, A(x, &) = 0;
(ii) not identically zero eigenvalues, 1..(x, &), A..(x, &);
R:tl(x’ S) = =+ (ﬂop(x))ﬁl/zsl )
2.2, 8) = £ (o)) "V 12((s(x) + VISP — [EVX(x, §))

where £(x) = pfa(x) and

X(x, &) = (6(x) + |6 — ()& (=20).

(iii) positive eigenvalue, 2,(x, £);

2,(%, &) = (uop(2))"*V1/2((x) + 1)P|EF + €V X(x, &) .

(iv) negative eigenvalue, 2,(x, &); 2,(x, §) = — 2,(x, &).

Consequently, as is easily seen, the rank of L(x, &) is not constant;
rank (L(x, &) = 6 (for & = 0), = 2 (for & = 0 (&€ % 0)).

We denote the seven eigenvalues of the unperturbed system E;'Ly(§)
by 27(¢), 29(8) (j =1, 2), 27(8) and 2(§). These eigenvalues are expressed
by the same relations as above with #(x) and p(x) replaced by &, = wfa,
and p,, respectively. We further define the normal surfaces S.; (j =1,2)
and S, as follows:

@1 Sy =1{62400@ =1, S ={&40)=1}.

Then, since «, % 1 by Assumption (B), we see that all the eigenvalues of
E;'L(&) are smooth functions of & (§ % 0), and since x, > 1 by (1.8), the
normal surfaces S,, and S,, (resp. S_, and S_,) intersect with each other
only at (200" 0, 0) (resp. (— (10" 0, 0)). If £, = 1, then the three normal
surfaces S,,, S,, and S, (S_, S_; and S,) intersect with each other at
the same point as above (Courant-Hilbert [3] p. 615).
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2.2. Eigenvectors of L(x,&). We denote by eyx, &), e.(x, & (=1, 2),
e,(x, & and e,(x, &) the normalized eigenvectors of L(x, &) corresponding
to the eigenvalues 2(x, &), 2. ,(x, &), 2,(x, &) and 2,(x, £), respectively. Simi-
larly, we denote by e{”(¢), e)(&) (j =1, 2), eQ(&) and e”(§) the normalized
eigenvectors of the unperturbed system E;'L(¢). Then, it is easily seen
that all the eigenvectors are homogeneous of degree zero in & and that

(2'2) eo(x, 5) = e(()O)(S) = t(sb 82, &3, 0’ O: 0, 0)9 [&l =1.

LemmaA 2.1, Let 2 (C {&;|&] = 1}) be a small neighborhood of {§; & =0,
|&] = 1}. Then, e.(x, &) (j =1,2), ex, &) and e,(x,&) can be chosen as
smooth functions of (x, &), (x,&) € R% X 2, Furthermore, it holds that

e.y(x, &) — e = O(x|™) ,
a?exj(x’ E) = O(Ix|-(1+6))’ |m| g 1 9

as |x| — oo, uniformly in & &€ 2. Similar estimates also hold for e, (x, &)
and e,(x, ).

Proof. The proof is a direct but tedious calculation, so we give only
a sketch. First, it should be noted that the eigenvalues 1. ,(x, &) (j = 1, 2),
2,(x, &) and 2,(x, &) are smooth in R} X 2, if 2 is chosen small enough.
The assertion for e,(x,&) and e,(x,&) can be easily verified, since the
eigenvalues 1,(x, &) and 2,(x, &) are simple in R} X 2.

We write the eigenvalue problem Ly(&u = AE(X)u, u = “h, v,p) (h, v
3-dimensional vectors, p 1-dimensional vector) as

2.3 Hy&v = imwh ,
2.4) H§(©h + A@G)p = 2op(x)v ,
(2.5) A*(E)v = Aa(x)p ,
where Hy(&) (= A(&)[B,]) and A(¢) are defined by (1.6');
O’ 62, ES
HO(E) = Os "—SI: O
0; 0, "‘S 1

The above problem is readily reduced to
(2.6) (HHEH(E) + v(0)AG)A* = mv .

The eigenvalues p,x,&) (j =1,2,3) of (2.6) are related to the original
eigenvalues 1,,(x, &) (j = 1,2) and 2,(x, §) by
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‘uj(x? E) = Auop(x)'z:j(xa 5)2 9 j = 13 2 9
1%, &) = pop(2)2,(%, ) (= pop()2,(x, €)) .

Set e = %(1,0,0) (= B,). Then, we see that & = b(§)(¢ X e) = b(&)(0, &, —&,),
b(&) = (& + &)72 (x 0 in 92), is the eigenvector corresponding to p,(x, £).
Furthermore, H(£)¢ = O(¢&,]) and A*(¢)Z = 0. Hence, e, (x, &) are deter-
mined as smooth functions of (x, §) by use of relations (2.3) and (2.5).

Let » = b(8)'(0, &, &). Obviously, (e, {, ) forms an orthonormal system
and it holds that e X { =179, Xe=¢( X np=e and & =&e + b))y
We write the eigenvector w = w(x, &) corresponding to p(x, &) as w =
a(x, &)e + PB(x, &y (& + f# = 1) and insert it into (2.6). Then, using the
relations

FOHGw =e X § X § XeX w=Bl&f,
AGA w = (&, w)§ = (b, + BbE) NEe + b)),

we obtain the relation between « and §;

w(x)ad, + Bb(§) & = (%, §a .

Hence, if we note that u(x, &) = O(¢,[), we can determine « and 8 as
smooth functions so that @« = O(1) and B = O(|&,|), respectively. Thus,
since 2..(x, &) = O(/&,)), the eigenvector e.,(x,£) can be chosen as smooth
functions by use of (2.3) and (2.5).

2.3. Weighted pseudo-differential operators. The next symbol class of
pseudo-differential operators has been already introduced in [6].

DerFiNiTION 2.1. We say that P(x, &) = {p;u(®, )} k=10 (%, &) € RS X RY,
belongs to A{,(¢), ¢ = 6 = 0, when the following conditions are satisfied:

(@) pjx, &) is smooth in R X R:;

(®) |82psu(x, §)] < Co(X + [x7°(Q + [§)* "5

(© [3202D5u(x, )] < CpuL + [£) (L + [E)17, [m] = 1.

We say that a family of P(x, &;¢) with parameter ¢ belongs to A{,(4)
uniformly in ¢, if the above constants C, and C,, , are taken uniformly
in e.

We now define the pseudo-differential operator P(x, D,) with symbol
P(x, &) e AP(¢) as follows:

Pu = (2) j et P(x, £)i()de

for u(x) = “(u(x), - - -, ulx)) e &, & being the Schwartz space of rapidly
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decreasing smooth functions, where #(¢) is the Fourier transform of u;

uwe) = Ie“”'fu(x)dx and the integration with no domain attached is taken

over the whole space.

DeriniTION 2.2. We say that P(x, D,) e OPA{, (), when it is a pseudo-
differential operator with symbol P(x, §) € A, (4).

For the calculus of pseudo-differential operators of class OPA,(4),
the fundamental properties have been formulated as Propositions 2.3 and
2.4 in [6], so we do not state these properties here.

§3. The proof of a priori estimates, I
In this section, we consider the equation

3.1) Lu—QA+iu=f, 2>0, 0<k<1,

with fe L{"), « > 1/2, and prove the a priori estimate (1.10). The proof is
rather long and is divided into several steps.
For 6 in Assumption (A.2), we fix 4 so that

(3.2) 0<o<o

and assume that

1 1
: L Lta+o,
(3.3) 2<¢x<2(+)

which obviously loses no generality.

3.1. The first step. Let I'(&) be the projection onto the zero eigen-
space (one dimension) of L&) and let I'(¢) = I, — I'(¢). By (2.2), we see
that I"(&) is expressed as

|§]*AG)A%E), 0, 0
F 0(5) = 07 0’ 0 ’
0, 0, 0

where A(¢) is defined by (1.6"), and hence both I'(¢) and I'(§) are com-
mutative with E(x).

Let @ be an open set in R} such that

(3.9 Q= 1{¢ =(5,6,8; 16| > N, |&] > d|¢]},
where N (large enough) and d(> 0, small enough) are fixed arbitrarily.
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Lemma 3.1. Let ¢(¢) (€ A1) be a smooth non-negative function with
support in Q and let I'(§) = $(&)['(€). Let u (e L)) be a solution to equation
(8.1). Then, I'(D,)u belongs to L{", and

IF(D)ule < C{floe + [u]-r,-a}
for C independent of k.
Proof. We write the equation (3.1) as
(3.5) L(D,)u — (2 + ir)E(x)u = E(x)f .
We set v = I'(D,)u. Then, v obeys the equation
(3.6) L(D,)v — (4 + ie)E(x)v = [(D)E@f + r

with r = A + ix) [['(D,), E(x)lu, [,] being the commutator. By the com-
mutativity of I'(¢) with E(x) and by assumption (A.3), we have [[(D,), E(x)]
€ OPA{-P(7), ¢ = 1 + 0, and hence it follows from assumption (3.3) that

(3‘7) |rlo,v+a S Cv[ul—l,v—a ’ O é v é @ .

If we take N large enough in (3.4), then Ly(&) — (2 + ix)E(x) is invertible
in 0 = R® X @ uniformly in « and in (x, §) (€ @), and we have

|L&pl = CIEFIT P, £€@,
for any pe C". This proves the lemma.

LEmMa 3.2. Let ¢(5) be as in Lemma 3.1 and let I'|(&) = (&) (&).
Then,

\To(D)uly o < Clfloa -

Proof. We start with equation (3.5). Set v = I'(D,)u. Then, since
I'(D,) is commutative with E(x), we have

— (A + iDE(x) = I'(DJEM®S .

This proves the lemma.

We now combine Lemma 3.2 with Lemma 3.1 to obtain the following
result.

LemmA 3.3. Let ¢(&) be as in Lemma 3.1. Then,

I¢(D.Z')u|0.a é C{lfl(),a + iu]—l,—a}
for C independent of «.
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3.2. The second step. Let G be an open set in R? such that
3.8 G={;1&> N, 5] <d|&l},

where N and d are fixed arbitrarily as before. Let (&) (e A{%(1)) be a
smooth non-negative function with support in G. Then, (D,)u satisfies
the equation

L(DJ(Dy)u — (2 + i) B (D,)u = W(D)E@®)f + 1,

where r = (1 + ir)[V(D,), E(x)]u satisfies an estimate similar to (3.7) with
another constant C.

Here we introduce new notations. 1) If y(&)y(&) = (&) for a smooth
non-negative function x(§) (e A{®%(1)) with support in G, then we write
1> v. 2) We denote by r=r(x), r="4r,,---,r), all terms satisfying
estimates of the same type as in (3.7) with another constant C.

We now write the differential operator E(x) /*L(D,)E(x)~"* as

E(x)""L(D,)E(%)"* = L(x, D,) + B(x),

where the symbol L(x, &) of L(x, D,) is E(x)~"2L(&)E(x)-""* and B(x) satisfies
orB(x) = O(x|~*?), |m|] = 0, by assumption (A.3). We set

(3.9) i = E(x)"y(D)u .
Then, & obeys the equation
(310)  L(x, D)a + B(x)a — (2 + ir)a = Ex)"y(D)E@)f + r.

We want to diagonalize the equation (3.10). By Lemma 2.1, there
exists a unitary matrix U(x, &) smooth in 4 = R% X G such that in A~

U(x, &)L(x, §)UX(x, &) = D(x, &) ,

where 9(x, &) is a diagonal matrix of the following form:

2(x, E) = Asss

L A )
Let 2> v and we define U(x, &) as U(x, &) = x(&)U(x, &), which belongs
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to AN, 0 =1+ (2 (From now on, we use ¢ with the meaning ascribed
here.) We define U*(x, &) similarly. For & defined by (3.9), we set
(8.11) , v=U(x,D,)i .

LemmA 3.4. Let v be as above., Then,
0= ﬁ*(x, D, + R(x, D))v + 7,

where f],k(x, D,) is the pseudo-differential operator with symbol U *(x, &),
while R(x, D,) e OPA{-P(7T) and 7 satisfies the estimate |7,,., < C,|u|_,a
0vLa.

Proof. We may write
U.(x, DJv = ((D.) + R, D)E(x)"4(D,)u

with Ry(x, D,) € OPA{P)(7), where 7(§) = x(§)*. Since x> ¢ (x(§) =1 on
the support of v), [x(D.), E(x)”]y(D,) belongs to OPA!P(7) for any s
(large enough), and hence we have

(3.12) 4 = Uy(x, D)v — Ryx, D)a + 7.

We have only to insert this expression into # in the second term on the
right side. Thus, the proof is completed.

LEmMma 8.5. We have
xDJv=v+e,

where e satisfies the estimate |e|,,.. < C,,|U|_1v-00 0Z v Z @, for any s
large enough.

Proof. The proof is easily done by use of the relation y > 4.

Now, we diagonalize the equation (3.10). We let U(x, D,) operate
on equation (3.10) and insert the expression for # in Lemma 3.4 into the
resulting equation. Then, we obtain, using Lemma 3.5, an equation of the

diagonalized form;

(3.13) (@(x, D;) — @ + ie))y(DJv + T(x,DJv =g +r,
where T'(x, D,) e OPAY(7), and g is expressed as
(3.14) g = U(x, D)E(x) " W(D)E®)f .

It is convenient in the discussion below to write a vector-valued
function & = A(x) with seven components as
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ho=Yhyhyphh), h=4hiyhoh ho).
LEmmA 3.6. v, satisfies the estimate
vl < CAiflos + 18]s-, —ae=<v=a;
similarly for v,.
Proof. By (3.13), v, obeys the equation
(x, D;) — A + ie)y(DJv, = &, — h, + 15,

where h = T'(x, D,)v. Since 2,(x, §) — (2 + ix) is invertible in &/ = R, X G
uniformly in x, we obtain the desired estimate immediately. The proof
for v, is also done in a similar way.

Lemma 3.7. v, satisfies the estimate
[l < CAlflo,s + [8]-t-ay —a@=Sv=a.

Proof. We write & = E(x)"*(D)u as @ = (i, - - -, ii;). As is easily
seen from (2.2), e (x, &) = e{(&) = |&|™! Y&, &, £1, 0,0, 0, 0) is the normalized
eigenvector of L(x, &) corresponding to the identically zero eigenvalue.
Thus, we have

3
Uy = Z; aj(Dx)uj ’
=

where a,§) = x(§)§,/|¢]. Hence, it follows from the definition of I'(D,)
that

X2(D1)F0(Dz)i2 = l(al(Dz)vm a2(Dz)v()’ a3(Dz)v(b 0’ 03 0> 0) *
This implies that
3
(3-15) Xz(Dz)vo = ; aJ(Dx)[Xz(Dx)F O(Dx)a]j s

where [y(D,)[(D,)i]; denotes the j-th component. We can write (3.15) as

(D)v, = z a(D)E@) (D)),

because of the commutativity of y(D,)I(D,) with E(x)?, where I'|(§) =
Vv(E)(¢). By the same argument as in the proof of Lemma 3.2, it can be
verified that |I"(D,)ul,, < C.|f)., (—a <v < a), and hence we obtain the
desired estimate by use of Lemma 3.5.

We combine Lemmas 3.6 and 3.7 to obtain the equation for 0;
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(3.16) (9(x, D) — A + i)y(D)o + T(x, D)o =& + q,
where T'(x, D,) e OPA®,(4) and 9(x, &) is of the form

(Ao o )
A I 2+2’
Y (x,8) =
A1
0
A

while g satisfies the estimate
(3.17) lgl§te £ CAlfb-u + lUl1pd, 0=Sv=a.

3.3. The third step. We further continue the reduction for equation
(3.16). Since it is convenient in the discussion below to clarify the sepa-
ration of the variable x, from (x,, x,), we write ¢ = x, and y = (x,, x,), and
denote by & = (¢, ), 1 = (9, 75), the coordinates dual to x = (¢,y). Let I
be an open set in R} such that

(3.18) I = {y; 5] > N|2},

N being as in (3.8). We can take d in (3.8) so small that G C {(s, 3);
pell}.
LEMMA 3.8. There exist functions o.(x,7), 1 < j < 2, smooth in M =
R x IT such that in /' = R: X G
2:j(x’ S) — 2= k:j(x’ S)(T - G:j(x’ 77))

with k. (x, &) (k,; > 0,k_; < 0) smooth in A". Furthermore, 0. (x, ) satisfy
the estimate

1050 (x, )] < Co(1 + [ph)1"",

(3.19) 0770 (%, )| £ Coa(l + 2= 2(A + [9)~™, Im[ = 1,

and &)k, (x, &) belongs to A1) for any (&) (e AQ(1) with support in G.

Proof. For j =1, it follows from the definition of 2.,(x, §) that 2.,(x, &)
— 2= =+ (op(x))" "z F (rop(x))/22). For j = 2, we solve the equation 2..(x, §)
= A for z. After a direct calculation, the roots o.,(x,7) are obtained as

7%, 7)) = £42b(a + (a* + 4xb)")*,

where
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a = a(x, 1) = (@) [9f — pp(x)(r(x) + DT,
b = b(x, 7) = (uoo(x)(k(x) + Dyl — pip(x)*2)2* .

We define k.,(x, &) as
B, & = [ 025, 0 + (L= 0)0..(, 1), 1) .

Then, 2.,(x, &) — 2 = k., (x, §)(r — g.,(%, 7). It is easily verified that ¢..(x, )
satisfy the required estimates. Furthermore, since 9.1,.(x, &) > 0 for d (in
(3.8)) small enough and since C,(1 + ) £ (1 + [§) £ C.(1 + |3) in G, we
see that k.,(x,&) >0 in 4 and that #(&)k..(x, &) e A1) for any (&)
(e AR@1)) with support in G. The proof for k_,(x,&) is also done in a
gimilar way. Thus, the proof is completed.

Now, with k. ,(x, &) in the above lemma, we define the symbols H(x, &)
and K(x, &) (e AP (4)) as follows:

B
R ’
H(x, &) = x(8) (= by )
O -~1. ’ l
(3.20) (k-
ki
k2, 0
Keo-x|
: (~ko

We further define w as
w = H(x, D,)0 .
Lemma 3.9. We have
? = K(x, D,)w + R(x, D,)w + 7

with R(x, D,) e OPA{P(4), where 7 satisfies the estimate |F|(*),, < Clu|_ 10—
0vo.

Proof. The proof is done by the same argument as in the proof of
Lemmas 3.4 and 3.5.

Let w() be a smooth non-negative function with support in /7 such
that w(y) = 1 for [p|— co and y(&)w(y) = x(&). Define the symbol A(x,7)
as
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Oy 0 ]
Az, 7) = o(y) |

T_1
0 J
L o,

for o, (x,7) in Lemma 3.8. Then, by Lemma 3.9, we see from (3.16) that
w satisfies the equation

(3.21) (D, — A(x, D))w + S(x, D)w — ixJK(x, D,Yw = h + q

with another g satisfying an estimate similar to (3.17), where S(x, D,) e
OPA®,(4), h is given as h = JK(x, D,)g and

L, 0
J = .
( 0 —L)
Summing up, we obtain the following result.

LemmaA 3.10. Let u be a solution to equation (3.1) with fe L, 1/2 <
a < (1/2)A + 6). Set

(3:22) w = H(z, D)[U(x, D)E(®)"(D.u]",

where [ ° denotes the last four components of U(x, D)E(x)"y(D)u (7-
dimensional vector). Then, w satisfies the equation (3.21) with h, where h
is given by

(3.23) h = JK(z, D,)[U(x, D.)E(x)""W(D)E®)f1" .

Equation (3.21) is our basic equation from which the o priori estimate
(1.10) is derived.

3.4. The fourth step. Let o# = L{)(R?). Denote by {,) and || || the
scalar product and norm in #, respectively. We regard w = w(t, -)
defined by (3.22) as a function with values in 2# and take the scalar product
{,> of —ik()w with equation (8.21), where

ko) = exp(—2M [ (1 + s9ds)

and M, M > 0, is a constant (large enough) to be determined later. We
further take the real part of both sides of the resulting relation and
obtain

(3.24) %{axw, k@)w) — L(@.k®))w, wy} + Im (A(x, D )w, k(Hw) = :V:‘lJ @),
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where

Ji®) = — Im {<h, kOw) + <g, k(B)w)},
J(®) = — xRe (JK(x, D,)'w, k@)w) ,
Ji(8) = Im {S(x, D)w, k(t)w) .

‘We integrate (3.24) over (— oo, co) with respect to ¢ to obtain

@2) |7 (M@ + o IROWI + In (AR, D)w, Kowpldt = 3 T,

where k) = k()" and T, = r J(H)dt.

We shall estimate each term 7 on the right side of (3.25). Since
1R, < C|fy,. by the definition (3.23) of A4 and since |g[§"), < C{|fh.. + |©]-1,-.}
we have

ITy < C{fl.a + |u|-1, -} b, -a

for C independent of M, because k(f) is bounded uniformly in M. K(x, D,)
is of class OPA{"(4) and hence it is a bounded operator from L{}(R?) to
itself. Hence, the term T, is estimated as |T,| < «C(lu)y)>. On the other
hand, it follows from equation (3.1) that #(uo)* £ C|fh,.|t),-.. Thus, we
have

| Te] < Clflo,oltlo,-a -

The term T, is estimated as follows. S(x, D,) is of class OPA{",(4) and
hence [&,(2), S(x, D,)] is of class OPA{;’(4). Hence, we have

@20 LISCG[ @+ O kO] dt + Kalul, -l

for C; independent of M. (K, may depend on M.)

Next, we shall estimate the term T, = Im J-w {A(x, D,)w, k(t)yw)dt on

the left side of (3.25). A(x, ) is a diagonal matrix with real elements and
hence it is symmetric. Therefore, by estimate (3.19) in Lemma 3.8, we see
that

@.27) IZIS G| @+ o lh@wrd

for C, independent of M.
Since the constants C, in (3.26) and C, in (3.27) are independent of
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M, we can take M so large that M — (C, 4+ C,) > 1. Hence, if M is fixed
as above, then we have

(3.29) [T a+oreword < . + lul.,-ul.

Now, we shall prove the a priori estimate (1.10).

THEOREM 3.1. Let u(e L) be a solution to equation (3.1) with fe L{),
1/2 < a < A/2)A + ). Then, there exists a constant C independent of «,
0 <k <1, for which (1.10) holds.

Remarks. (1) It is easily seen that the constant C above is also
independent of 2, when 1 ranges over a compact interval not containing
the origin. (ii) Estimate (1.10) is still valid for ¢ = 0, if it is assumed
that a solution to (3.1) with £ = 0 belongs to L.

Proof. First, by (3.28)
(wli?)* < C{floe + |1, -}, -
Hence, it follows from Lemmas 3.6, 3.7 and 3.9 that
(3.29) (0]o,-o)* = C{flo e + [8]-1,-H Floe + e, o} -

Furthermore, by Lemma 3.4, we see that (|y(D,)u), _,)* is majorized by the
same bound as above with another constant C. Thus, we combine this
fact with Lemma 3.3 to obtain the desired estimate and the proof is now

completed.

3.5. A priori estimate for the eigenfunctions. The next theorem is
used in the proof of Theorem 1.1.

THEOREM 3.2. Let u (e L{D) be an eigenfunction of the operator L with
eigenvalue 2, 2 > 0; Lu = Au. Then, there exists a constant C such that
[t < Clul_1,, where the constant C is independent of 1€ K, K being a
compact interval not containing the origin.

Proof. We start with equation (3.21) with £« = 0 and ~ = 0;
(3.21) (D, — A(x, D)))w + S(x, D)w = q ,
where ¢ satisfies the estimate
(3.29) g8, < Cluls, O0=<v<a.

We take the scalar product {,> in # between equation (3.21') and iw,
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and the real part of both sides of the resulting relation;
1 3

(3.30) - —2~6t<w, wy = j;l X,

where

X)) = Im (A(x, D))w, wp, X)) =Im<g, w) and
X)) = — Im {S(x, Dyw, w) .

Integrating (3.30) over (s, o) with respect to ¢ gives
3
(3.31) SIw@F = 2 Y46,

where Y,(s) = r X,(t)dt. We further integrate (3.31) over (T, o) with

respect to s and obtain
1 o 3
= werds = 32,
T =1
where Z, = r Y, (s)ds.
T
We make an estimate of each term Z, First, Z, is estimated as
1z < e [ jwlFdt,
T
since (X,(0)| < CA + &) *||w(@)|*. Next, we have
Z, = r (t — T)Im (g, wHds .
T
Hence, by the Schwarz inequality and by (3.29), it follows that
1z < {7 [ wodt + (.07
Similarly, for any ¢ (>0) small enough, we have
1] < CI [ wdlFdt + (uh)

since S(x, D,) belongs to OPA{",(4). Thus, for any ¢ (>0) small enough,
there exists a constant T = T'(¢) such that

(3:82) [ 1worrd < eui + CQul-0 -
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By the same argument as above, we have
-r
(3.82) | 1w e < ub + Culor
On the other hand, we combine (8.28) with (1.10) to obtain
T
(3:33) [, worde < c.qul,p

for T = T(¢) fixed above. Hence, by the same reasoning as in the proof
of Theorem 3.1, it follows from (3.32) and (8.33) that

(|ulo,0)2 = 50(]“]0,0)2 + Cs(lu]—],{))z

for any ¢ (> 0) small enough. This completes the proof.

§4. The proof of a priori estimates, 11

In this section, we continue to consider the equation (3.1) and prove
the a priori estimate (1.11) by applying the results obtained in [6] on the
basis of Agmon’s idea.

4.1. Decomposition. Let 6 be as in (3.2). Then, we can decompose
E(x) as follows: For any ¢ (> 0) small enough, there exists a constant
R = R(e, 6) such that: () E(x) = E(x;e) + E(x;¢); (1) E(x) = E(x;e)
for |x] > R, and hence E,(x;¢) is of compact support; (iii) |E(x;e) — Ey]
<eC@l + |x)? and |07E(x;¢)| < C, (L + |x)°, Im| =1 (¢ =1+ 0), for all
x.

We rewrite the equation (3.1) as

4.1) L(D)u — 2 + ir)E(x; u = E(@)f + (2 + i)E(x; )u
and, for notational convenience, we denote by f the terms on the right
side again; f = E(x)f + (1 + ir)E.(x; )u.
4.2. Reduction. We start with the equation
4.1) LDy — A+ in)E(x;u=f, 2>0, 0<s<1,
with fe L, 1/2 < a < (1/2)6. Let G and /I be as in (3.8) and (3.18), re-

2, a9
spectively, and let (&), x(&) (e A{®(1)) and o(y) be as before. We apply
the same argument as in section 3 to (4.1) to obtain the following equation

corresponding to (3.21):
4.2) (D, — A(x, D,; )w + S(x, D,; ew — irdK(x, D,; ef'w = h + q(e) ,
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where w = w(e) and A = h(e) are defined by

(4.3) w(e) = H(x, D.; [U(x, D.; )E(x; &) (D.)ul”,
(44 h(e) = JK(x, D,; OIU(x, D.; E(x; &) W(D)f1",

and q(¢) satisfies the estimate
(4.5) |Q(5)|(()g+a é. EC{IfIO,v—a + lul-l,v-a} b O é v é (24 ’

for C independent of e. Furthermore, the symbols of pseudo-differential
operators in (4.2)-(4.4) have the following properties:

(P.1) Let a.(x, 5;¢) (= o(p)o.x,79;¢), 1 <j<2, be the (diagonal)
elements of diagonal matrix A(x, 7;¢). Then, a.,(x, 5;¢) satisfies the esti-
mate (see (3.19) in Lemma 3.8);

(4.6) 07050 (%, ;)| < eC(L + [x)~ (L + [p)~"™",  'm[=1.

(P.2) e'S(x, &;¢) belongs to A%,(4) uniformly in e.

P.3) K(x,&;¢), H(x,&;¢) and U(x, &; ¢) take the following form: K =
Ko@) + K,(x,&¢), H=H®"E) + H(x,&¢) and U= 09 + Ulx, &; ),
where ¢'K, and ¢ 'H, (vesp. ¢-'U,) belong to AP(4) (resp. AP(7)) uniformly
in e. Furthermore, K“(¢) and H®(§) are 4 X 4 diagonal matrices (see
(3.20)) and satisfy the relation K“(§)H (&) = (&)1, and also U©(&) satisfies
To@@OEN* = x(@rL.

4.3. The proof of a priori estimate (1.11). For the proof of (1.11), we
fix ¢ small enough throughout this subsection. (We note that all constants
C below may depend on e.)

First, we introduce several new notations to rewrite the equation (4.2).
We write the solution w to equation (4.2) as w = (w,,, W,, w_,, w_;) and
also use the same notation as above for the terms A and g(¢) on the right
side of (4.2). Next, we set hA='G.yhoh ,h)=— S(x, D,; e)w. Since
S(x, D,; ¢) e OPAY,(4), we have lizlé‘ff, < Clwf?.,. Furthermore, for the de-
composition K(x, &;¢) = KO©¢) + K(x,&;¢) with K, e AP 4) ((P.3)), we
denote by £Li(¢) (€ AQ%(1)) the (diagonal) elements of diagonal matrix K (),
and define g = (g.1,8:»8-1,8-2) by §=—J (K(x, D,; ¢ — KO(D,))w.
Since K,(x, D,;¢) € OPAY,(4), we have

4.7 £(1810)" < kC(ulo) = Clflool b, -a -

With the notations above, we now rewrite the equation (4.2) into the fol-
lowing equivalent form:
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(4‘8)¢j atwj:j - ia::j(xy Dy; e)wij i Kk(l?)j(Dx)Zwij = ’Cgtj + ptj ’

where p.; = i(h.; + h.; + . ).

Now, we are in a position to apply Propositions 3.2 and 3.3 in [6] to
equation (4.8).;.

First, by Proposition 3.2 in [6], we have

[ a+ o e ora
< CPo b + (w207 + K0, 0" + (8- )

for any v, 1/2 <y <a, where || | denotes the norm in L{}}(R}). Since
[P:sl6% = C{fl,« + |uh,-o} and since #(|8.,05%)* = C|f..luh,-q it follows that
(4.9) |w](()(,1)—v é Cv{|f|0,a + iulo-a}

for any v, 112 <yv < a.

Next, by Proposition 3.3 in [6], we obtain, using the same argument
as above, that

(4.10) j:, A + e w, @OFdt < C{fl. + |uf -},

[ @+ oo rde < Cfe. + ub,-)
for any g, 0 < pr <20 — 1.
Now, we shall prove the a priori estimate (1.11).

THEOREM 4.1. Let u be a solution to equation (3.1) with f L{", 1/2 <

2,a9

a < (1/2)a. Then, there exists a constant C, independent of r, 0 <& <1,
such that for any, 1/2 <y < a,

lu|0,~v é fo{|f]0,a + luIO,—a} .

Furthermore, the above constant C, is taken independently of 2, if 2 ranges
over a compact interval not containing the origin.

Proof. Let G be as in (3.8). We may assume that ¥(§) =1 in G by
extending G slightly, if necessary. We combine (4.9) with Lemmas 3.6 and
3.7 to obtain

I‘!’(Dz)ulo,—u = Cv{!flo,a + |u|0,-—a} .

Let ¥.(&8) =1 — 4(¢) and define the surfaces S.,(?) (j =1,2) and S,(2)
as 8., = {2298 = 2} and S,() = {&; AP(&) = 4}, 2> 0, respectively.
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As is easily seen, the intersection of the support of ,(¢) with S, ,(1) and
S,(2) is bounded. Therefore, we can apply the same reasoning as in [6]
and [7] to equation (4.1’) with ¢ small enough and obtain

WADouh, - < CAIf b« + %, -d} -
In particular, the analysis near the double intersecting points of S,,(2)
and S,,(2) (S_,(2) and S_,(2)) uses the idea in [7]. Thus, the desired esti-
mate is obtained and the proof is completed.

§5. The proof of Theorem 1.2

The proof of Theorem 1.2 is done in almost the same way as in
section 8 of [6], and so we give only a sketch here.

Proof of Theorem 1.2. First, we shall prove statement (i) by contra-
diction. We assume that there exist sequences {«,}, 0 < «, <1, and {f,},
f. € LY, such that £, — 0, f, — 0 in L, and |u,l,-. = |RQ + ik, )fol -« = 1.
Then, there exists a subsequence of {u,} (denoted by the same symbol
{u,}) such that u, — u as n— oo weakly in L{",. Obviously, u satisfies
the equation Lu — Au = 0.

We shall show that u % 0. By Theorem 3.1,
1 = ]un!O,—a é C{l fnlo,a + ]unl—l,—-a}

for C independent of n. Hence, it follows that |u,|., ., = C for n large
enough. On the other hand, by Theorem 4.1, |u,},., < C for v, 1/2 <y
< a. Since a bounded set in H{", is pre-compact in L{"), {u,} forms a pre-
compact set in H") _, by duality. Therefore, u, converges to u strongly
in H% _,. Thus, u x 0.

Next, we shall show that ue L{, which leads us to the contradic-
tion, since 4 is not an eigenvalue of L by assumption. To prove this, we
apply Proposition 3.4 of [6].

We rewrite the equation Lu = Au as

6.1) L(D)u — AE(x; e)u = AE,(x; e)u

for ¢ small enough and reduce (5.1) to an equation of the form (4.2);
(5.2) (D, — A(x, Dy; e))w + S(x, D;;e)w = h + q(e) ,

where

G3) w = w(e) = H(x, D,; &)[U(x, D,; &)E(x; &)(D,)u]”,

h = h(e) = JK(x, D,; )[U(x, D,; )E(x; &) (D, )E (x; e)u]”
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and g(¢) satisfies the estimate (4.5) with v = 0
lg@) 5k = Clu), -a

for C independent of . (In the proof of this theorem, we regard ¢ as a
parameter and denote by C constants independent of e.)

According to (4.8).;, each component w.;, = w,(s) of w obeys the
equation

(5‘4)1:] (at - ia::j(xa Dy; 5))w:j = p:j(s).,

where p, (¢) = i(h.;+ h., + q. (o) and & = — S(x, D,; &)w. Sincee'S(x, D, ;e)
belongs to OPAQ®,(4) uniformly in ¢((P.2)), we have ]fz)gf?, < eCluly, -

Now, we want to apply Proposition 3.4 of [6] to equation (5.4).;. To
do this, we have to prove that

liminf |w,,@)|F = liminf |w_,@)|* =0,
t—t oo t—too

where || | denotes the norm in L{)(R?). However, in view of (4.10), we

have only to show that

lim inf |w, (£)|} = lim inf |w_,@)|F = 0.
{—s00 t——o0

To prove this, we denote by (,) the scalar product in L{}(R:) and take
the scalar product of w,; with equation (5.4),,. Furthermore, we integrate
the resulting relation with respect ¢ over (— T, T') and let T'— co. Then,
taking account of (4.10), we obtain

2 2
13_’12 ;:1 ”w+j(t)“z = —2 ]Z=;Im (h+j, w+j)1 + O(e) ’

where (,); denotes the scalar product in L{(R:). Similarly, taking the
scalar product {,> of —w_, with equation (5.4)_,, we obtain

2 2
lim 3% lw_ (@) =2 3 Im (b, w)) + OC)
We assert that

> (h_y w_), — Tm (o 0,))
= — Im (WDJu, W(DIE (53 ), + 06

If we recall the definition (5.3) of w and A, this assertion is verified by
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almost the same argument as in section 8 of [6] and hence, using a par-
tition of unity in the &-space as in [6], we can conclude from Im (u, E.(x; )u),
= 0 that

lti_'mw lw. @I = LIEI_I:O lw_®OIF =0.

Thus, we can prove by Proposition 3.4 of [6] that we L{) and hence it
follows immediately that (D,)u e L{.

To see that ¥,(Dy)u e L7, ¥.(&) = 1 — 4(£), we use the same reasoning
as in [7] to analysis near the double intersecting points of the surfaces
S..(2) and S.,(2) (S_,(2) and S_,(2)). Thus, we have u e L{} and statement
(i) is proved.

The proof of statement (ii) is also done by almost the same argument
as in section 8 of [6], and so we omit the detailed proof. In particular,
the uniform convergence in 2 follows from the uniformity in 21 of a priori
estimates (1.10) and (1.11).

§6. The proof of Theorem 1.1

In this section, we shall prove Theorem 1.1. The proof of this theorem
is also done by almost the same way as in section 7 of [6], and so we
give only a sketch.

Proof of Theorem 1.1. Let K be a compact interval (fixed arbitrarily)
not containing the origin. We have only to show that there exist only
a finite number of eigenvalues with finite multiplicity in K. We deny this
statement and assume that there exist an infinite sequence of eigenvalues
{2.}, 2.€ K, with repetition according to multiplicity; Lu™ = 2,u™,
@™, u™); =1, (,); being the energy scalar product. Then, there exists
a subsequence of {u™} (denoted by the same notation {#™}) such that u™
converges to u® weakly in L{} as n— co. We may assume that u® = 0.

We assert that for some g, ¢ > 0, there exists a constant C, independent
of n such that

(6'1) lu(n) |0,,4 § C,u .

If this assertion is proved, then the proof of the theorem is completed.
Indeed, (6.1) implies that u™ converges to u® strongly in H", On the
other hand, it follows from Theorem 3.2 that

1=@@"™,u™); =< Clu(n)l—l,o .
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Therefore, |u®|.,, = C, which contradicts the assumption above.
Now, we shall prove the assertion (6.1) by applying Proposition 3.4

of [6] again. As in the proof of Theorem 1.2, we write the equation Lu™
=2,u™ as

(6.2) L(D)u™ — 2, E(x;e)u™ = 1,E (x; e)u™
for ¢ small enough, and reduce (6.2) to an equation of the form like (5.4),;;
(6.3).; oWy — ia?)Nx, D,; )we) = b + “” Qe

where w™ (resp. A) with components w(), j = 1, 2, (resp. A{")) are given

as the form like (5.8) with & = ™ and 2= 1,, while 4™ = — S™(x, D,; &)w™
and ¢™(e) satisfies the estimate (4.5) with v = « uniformly in n;

lg™ @, < eClu™),, < eC.

We again apply Proposition 3.4 of [6] to equation (6.3).; and, for some
u, p > 0, we obtain

(6.4) 2 a+erworae<c,

with C, independent of n, where || || denotes the norm in L{})(R:) again.
We derive an estimate similar to (6.4) for three linearly independent direc-
tions. If such estimates are obtained, then (6.1) is verified immediately.

Let z=(t,¥), ¥y = (y,y.), be another orthogonal coordinate system
close enough to the original system x = (x,, x,, x,). (From now on, the
notation z = (¢, y) is used with the meaning different from the previous
one; t = %, ¥ = (x,, x;).) We denote by ¢ = (z, p), » = (3., 3,), the coordinate
system dual to z. Then, Lemma 3.8 is still valid for this coordinates, but
estimate (3.19) must be modified as follows:

(6.5) |07, (2, 9| < C.(1 + |p)'™,
la;na'qlﬂ'ij(z, 77)! < C,..1L + lz|)—(1+a)(1 + lﬂl)l—"”, mi=1.

Furthermore, for this coordinates, we can derive the following equation
of the form similar to (6.3).;:

dawt) — iav)(z, D,; Jws = peie) ,

where p@)e) € L{}, and the symbols d%)(z, »;¢) satisfy the estimates (6.5)
uniformly in n. Let p,(y) = (1 + r|pP)~"% 7, r > 0, being a parameter small
enough, and define 0 by 0™ = p(D,)w?). Then, 7 obeys the equation
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(6.6).., 0} — 18¢U2, Dy; )0l = pLie)

where p0)(e) = o(D,)pT)(e) + [oAD,), iGT Nz, D,; o)]w?). By estimate (6.5),
we see that {p¥)(e)} is a bounded set in L{),. We apply Proposition 3.4
of [6] again to equation (6.6).; and let y — 0 to obtain an estimate similar
to (6.4). Thus, we have

W(D)u®,, < C,

For C, independent of n. And also we can show by the same reasoning
as in section 7 of [6] that

l‘!"r(Dm)u(m lo,p = Cy ’ \Pr(f) =1- "!/'(S) .

Therefore, estimate (6.1) is verified and the proof is complete.

§7. Concluding remark

The assumptions imposed on E(x) in section 1 are rather restrictive
and as stated in section 1, these assumptions are weakened in this section.
The statements of Theorems 1.1 and 1.2 are still valid for the following
class of perturbations.

AssumpTION (A’).

(A1) E(x) is positive definite uniformly in x and is decomposed as
E(x) = E(x) + E(x);

(A.2)) E/(x) satisfies (A.2) and (A.3);

(A.8) E(x) = O(x|""*?) as |x| > oo.

If E(x) satisfies (A.3) with |m| =1 only, then E(x) can be decomposed
into the above form by use of a mollifier technique. Furthermore, if the
perturbation E(x) is of short-range class (E,(x) = E,), then any assumption
is not required for the derivatives of E(x).

We shall discuss breifly how the proofs of Theorems 1.1 and 1.2 must
be modified for the perturbation E(x) satisfying Assumption (A’). The a
priori estimate (1.11) is still valid for such a E(x) without any essential
change, while the proof for (1.10) has to be modified.

For the decomposition E(x) = E(x) + E(x), we rewrite the equation
8.1) as

(7.1) L(DJu — A + i)E(x)u = E®)f + @ + in)E(x)u .

LemMaA 7.1. (cf. Lemma 8.1) Let '¢(¢) and I'(€) = ¢(5)I'(¢) be as in
Lemma 3.1. Then,
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|F(DJub, < CAlfl. + | Bl + |u]_y, -0}
for any v, —a < v < o

The proof is done by applying to equation (7.1) the same argument
as in the proof of Lemma 3.1.

LEMMA 7.2. (cf. Lemma 3.2) Let I'(&) = ¢(&)'\(&) be as in Lemma 3.2.
Then, for any v, —a < v < a, we have
(7'2) lFO(DJ:)u!O,u é Cy‘f]o,v ’
(7'3) l¢(Dz)u\0,v S Cv{\f\O,v + lEs(x)u‘—l,v + lul—l,—a} .

Proof. Estimate (7.2) follows from the commutativity of I'y(D,) with
E(x) and (7.3) is proved by combining (7.2) with Lemma 7.1.

Let (&) and U(x, &) be as in subsection 3.2. We note that Ulx, &) is
defined with E(x) replaced by E/(x): similarly for all the symbols below,
H(x, &), K(x, &), S(x, £), etc. We define v as

v = U(x, D,)E(x)"(D,)u

for the solution u to equation (7.1) (see (8.11)). As before, We write v =
Y(Vgy Upy Uny 0)y O = (04, V1o, Uy, U_y). Then, the following results are verified
by the same argument as in the proof of Lemmas 3.6 and 3.7.

Lemma 7.3. (cf. Lemma 3.6) v, satisfies the estimate
[0 < CAlf b + | Eul-r, + uly,-o}

for any v, —a <v <« A similar estimate holds also for v,.

Lemma 7.4. (cf. Lemma 3.7) v, satisfies the estimate

ool = CAlf b + lul-y,-o}

for any v, —a < v < a.

Furthermore, we define w as

w = H(z, D)[U(x, D)E(x)"(D.yu]

(see (3.22)). Then, w obeys an equation of the form like (3.21);
(7.4) D, — A(x, D,))w + S(x, D,)w — ixJK(x, D,Yw =h + q,
where S(x, D,) e OPA{(4) and h is expressed as h = h, + h,,
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h, = JK(x, D)U(x, D)E(x)""¥(D)E®f]",
hy = (2 + iR)JK (x, D)U(x, D)E (%) (D,)E(x)u]”

(see (3.23)), while g satisfies the estimate
(7'5) [qlé‘,ix)a+u é Cv{if!(),v—a + IEs(x)ul-—l,u-a + lu]-l,v—a}

for any v, 0 < v < @, which follows from Lemmas 7.3 and 7.4.

LEmMA 7.5. Let h, be as above. Then, there exist two pseudo-dif-
erential operators Bj(x,D,), j =1, 2, of class OPA{"(4) by which h, is
represented as follows:

(7'6) hz = Bl(x’ Dz)Es(x)BZ(x, Dz)w +p,

where E(x) is the 4 X 4 diagonal matrix with (j,j)-element 3 <j <17, of
the (diagonal) matrix E(x) and p satisfies the estimate

(7'7) [pl(():ix):+a _g_ Cv{lflo,u—a + IEs(x)ul—l,u—a + iul-l,v—a}
for any v, 0 < v < a.

Proof. First, by the definition of E(x), we may assume that the first
three diagonal elements of E,(x) vanish. Let ¢(¢) be as in Lemma 3.1. We
may further assume that there exist a non-negative smooth function ¢y(§)
with compact support such that ¥(e) + $(§) + ¢(&) = 1 and we denote by p
all terms majorized by the same bound as in (7.7) with another constant
C,. Then, by Lemma 7.2, we may write

U(x, D,)E(x)"4(D,)E(x)u
= U(x, D,)E(x)""y(D,)E(x)v(D,)u + p,

since | E(x)¢(D )y, .a < C.lu|_;,-. for any s (large enough). Furthermore,

making use of Lemma 3.4, we have
WD.Ju = E(x)"U\(x, D)o+ p .

Therefore, the desired representation (7.6) is obtained by Lemma 3.9 and
by Lemmas 7.3 and 7.4.
The next result corresponds to Theorem 3.1 (a priori estimate (1.10)).

TueoREM 7.1. Assume that the perturbation E(x) satisfies Assumption
(A'). Let u(eL) be a solution to equation (7.1) with fe L{, 112 < a <
(1/2)s. Then, there exists a constant C independent of £, 0 < k < 1, such that

(7.8) lth, -« < Clflo.a + |E0)u1,-0 + 0]y, -0} .
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Proof. We modify the argument used to derive the estimate (3.28).
To do this, we have only to estimate the term

T, — —Im f " hy KQwddt

where the notations k(f) (= k,(t)?) and {, ) are used with the same meanings
as in subsection 3.4. Since E/(x) = O(x| “*»), 2« < (1 + 4), Lemma 7.5
enables us to estimate 7; in the same way as T, in subsection 3.4. Thus,
we obtain, using (7.7), that

ZI= G a+ o Ihoula

+ Eu{[fl-a + |E0)u]1,-0 + 0]y, -oH U,

for C, independent of M. The other terms are also estimated in the same
way as in subsection 3.4 and (7.8) is proved.

Similarly, we can prove the following result corresponding to Theorem
3.2,

THEOREM 7.2. Assume that E(x) satisfies Assumption (A’). Let u( € L{})
be an eigenfunction of the operator L with eiganvalue A, 2 % 0. Then, there
exists a constant C such that |u), < C{{E(0)u]_,0 + |u|_1,0}

Now, we shall modify the proof of Theorem 1.2 for the perturbation
E(x) satisfying Assumption (A’).

Modification of the proof of Theorem 1.2. We have only to show that
the limit function u of the subsequence {u,}, v, = R + ix,)f,, converging
weakly in L{" , does not vanish. This follows from Theorem 7.1 at once.
Indeed, by Theorem 7.1, there exists a constant C independent of n large
enough such that |E(x)u,|_; . + |#,].1,-« = C. Since |u,),., < C,, 1/2<v
< @, by a priori estimate (1.11) and since |E(x)u,), < C by E(x) =
O(x|~“*9), we see that {u,} and {E(x)u,} form pre-compact sets in HY} _..
Therefore, it follows that

lEs(x)ul—l,—a + lul-l,—a >C (>0) .

This implies that © does not vanish.
Similarly, the proof of Theorem 1.1 is modified by use of Theorem 7.2.

Appendix; derivation of equations (1.1) ~ (1.3)

According to Pai [4] (p. 36), the non-linear system of equations of
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magnetogasdynamics for an ideal plasma (an inviscid, non-heat-conducting
and infinitely electrically conducting plasma) is described as follows:

V-H=0,

1@/)H + 7 X (pH X v) =0,

e{@/atyv + (v-P)v} +Fp + (pH) X ¥ x H) =0,

@/at)o + 7-(pv) = 0,

@/)S + (v-MS =0,

p=p"9),
where H is the magnetic vector field (3-dimension), p is the pressure, and
v, p and S are the velocity vector field (3-dimension), density and entropy
of the plasma. The first equation in the above system has the character
of an initial condition.

We consider a static solution with the density gradient for the above

system of equations. For a given constant pressure p,, we define py(x) and
Si(x) so that

(A.0) Py = p(Po(x)’ Si(x)) .

Then, (H, v, p, p, S) = (H,, 0, pi(x), po, Si(x)), H, being a constant magnetic
vector field, becomes a static solution to the above system.

To consider the perturbation from the static solution above, we set
H=H +h, (B,=pH), p=px)+p, p=p +p, and S = 8y(x)+ S.
(For notational convenience, we use the same notations p, p and S to
denote the perturbed quantities.) Omitting all terms of second order, we
obtain the linearized system of equations for (4, v, p, p, S);

(A1) V-h=0,
(A.2) @fat)h + 7V X (B, X v) =0,

(A.3) ox)@/o)v +Vp + By, X W X h) =0,
(A9 0/at)o + V- (px)v) =0,

(A.5) (3/09)S + (v-7)Si(x) =0,

(A.6) (0/ot)p = (9p/3p)«(9/0t)p + (0p[3S),3/32)S ,

where (9p/dp), and (9p/dS), are the values of (3/dp)p and (3/dS)p at (o,(x),
Si(x)), respectively. Furthermore, using the relation (A.0), we have

(A7) (9p[3p)V pi(x) + (Op[3S)F Sy(x) = 0 .
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We insert (A.4) and (A.5) into (A.6) and obtain, using (A.7), the following
relation:

(A.8) @/ot)p + (@p[p)px)V -v =10

Thus, if we set a(x) = (3p/dp); psx)~!, then (A.2), (A.3) and (A.8) become
the desired equations (1.1) ~ (1.3). Here c(x) = (ap/dp)i* and p,(x) are called
the local speed of sound and the equilibrium density, respectively.

In particular, if the given magnetic vector field H, = 0, then the
linearized equation of non-linear system is reduced to the well-known
acoustic equation (39/3t)’p = c(x)*o(x)V - p(x)"'Fp. The derivation of such
an acoustic equation in an inhomogeneous medium can be found in
Friedlander’s book, *“‘Sound Pulses”, (pp. 3 ~ 4), Cambridge University
Press, 1958.
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