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THE PRINCIPLE OF LIMITING ABSORPTION AND DECAY

OF LOCAL ENERGY FOR THE LINEARIZED EQUATION

OF MAGNETOGASDYNAMICS

HIDEO TAMURA

§ 0. Introduction

The present paper is a continuation of [6] and [7] in which the principle

of limiting absorption has been verified for symmetric systems of first order

with long-range perturbations, but the operators considered there are of

constant rank. On the other hand, operators with non-constant rank are

also important in application as well as from a purely theoretical point

of view. In this paper, we consider the linearized equation of magneto-

gasdynamics with long-range perturbation as an important example of

such operators.

There are only a few works on the spectral and scattering theory for

symmetric hyperbolic systems with non-constant rank.

In [5], Ralston considered an operator of the form

(0.1) L = f] M*)dj + B(x) , dj = 3/9*, ,

where he assumed that the symmetric matrices A3(x) are smooth functions

and take the constant values A] for [*| > R and that B(x) is also a smooth

function and it vanishes for \x\ > R. He further assumed that the null

space of A(x} ξ) = Σ5=i ^-J(X)^J * S a ^ most o n e dimensional for ξ Φ 0. How-

ever, his results do not cover the linearized equation of magnetogas-

dynamics, since the null space of this system is not one dimensional, as

shown later.

Recently, in [2] (or [1]), Avila and Costa considered an operator of

the form

(0.2) L = £?(*)-' Σ A'β1,
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14 HIDEO TAMURA

A] being a constant symmetric matrix, where they assumed that E(x) —

Eo = O(\x\~δ)9 δ > 1, as \x\ -> oo, for some positive definite matrix ^(short-

range perturbation). Without any assumptions on the roots λ = λ(ξ) of

the characteristic equation

P t t ξ) = det (λE« - ± A]ξ^ = 0 ,

they proved the existence of wave operators associated with L and the

unperturbed operator LQ = EQ1 ][]$βl A)ds. (The completeness was not

proved.) Murata [8] has also proved the existence of wave operators for

more general symmetric hyperbolic systems.

The perturbed linearized operator of magnetogasdynamics to be dis-

cussed here is formulated in the form like (0.2). Under the assumption

E(x) — Eo = O(\x\'δ)9 δ > 0, (long-range perturbation), we shall prove the

principle of limiting absorption and, as a result, the decay of local energy

is verified for solutions to the symmetric hyperbolic equation (djdt — L)u

= 0. (We require some additional assumptions on the derivatives of E(x).

The precise formulation is given in Section 1.) In the case of short range

perturbations, the completeness of wave operators will be proved by use

of the principle of limiting absorption and the detailed result will be

stated in another paper.

§ 1. Formulation of results

In this section, we give the precise formulation of the results to be

obtained here together with several notations and assumptions.

1.1. Notations. We first list up the notations to be used throughout

our entire discussion.

(1) We work exclusively in 3-dimensional euclidean space Rl with

generic point x = (xί9 x2, x3). R] denotes the 3-dimensional space dual to

Rl and the generic point ξ in R) is denoted by ξ = (ξ19 ξ29 ξ3). Furthermore,

we denote by x-ξ the scalar product; x ξ = ΣJ-iXjfj.

(2) Ck denotes the /^-dimensional unitary space with the usual scalar

product ((,)) (The notation ((,)) is used only for k = 3, 7.)

(3) For a multi-index m = (mu m2, m3), rrij being a non-negative integer,

we denote by |τn| the length of m. We write dx = (3/9JC15 d/dx29 9/9#3), Dx

= (A, A, A), Dj = - ίd/dxj (i = </=!) and a? = (dldx^id/dx^idldx^ for
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EQUATION OF MAGNETOGASDYNAMICS 15

m = (mu m2, ra3). (We use the symbols m and n to denote multi-indices

throughout this paper.)

(4) We denote by I5 the identity matrix of size j X j .

1.2. Functional spaces. We shall introduce the various functional

spaces in which we work.

(1) We denote by Hs (Ho = L2) the usual Sobolev space of order s

over the whole space Rl, s being not necessarily a non-negative integer,

and the norm in Hs is denoted by || ||, (|| ||, = | |$)

(2) We denote by Hsa the weighted Sobolev space with weight a;

Hs,a = {φ; (1 + \x\ψ2φ e H,}, and the norm in Hs,a by \\φ\\s,a = ||(1 + |*|2)β/VII.

When s = 0, we write HOa = L2>a.

(3) We further denote by Hi% the direct sum of Hsa (S summands);

Hίfi = Σ ® Hs>a (U2% = m% and the norm in m% is denoted by ( | £ . In

the later argument, the space Hgl (£ = 7) is most frequently used, so we

simply write | |,fβ instead of | \™a for the norm in Hgl.

(4) For a domain Ω in Rl, we denote by HS(Ω) the Sobolev space of

order s over Ω. The notation H{

S%Ω) is also used with the same meaning

as above.

1.3. The linearized equation of magnetogasdynamics. The perturbed

linearized equation of magnetogasdynamics to be discussed here is described

as follows:

(1.1) μo{dfit)h + V X (Bo X v) = 0 ,

(1.2) p(x)(d/dt)v + Vp + Bo X (F X h) = 0 ,

(1.3) a(x)(dldt)p + F v = 0.

Here the unknown functions h, v and p denote the magnetic vector field,

velocity vector, and pressure, respectively (h and v are 3-dimensional

vector-valued functions, p scalar function), while the constants μ0 and Bo

denote the magnetic permeability and given uniform magnetic vector field,

respectively, and p(x) and a(x) are given positive scalar functions. The

physical meanings of ρ(x) and a(x) will be clarified in the derivation of

equations (1.1) — (1.3) which is done in Appendix.

We set u = ι(h, υ, p) (7-dimensional vector-valued function). Then,

equations (1.1) — (1.3) can be put into the symmetric hyperbolic system of

the following form:

(1.4) Uβldt)u = E{x
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where

(1.5) E(x) = p(x)I3,

\ 0, a(x

0, A(DX)[BO], 0

(1.6) Lΰ(Dx) = l[Bΰ]A(Dx), 0, A(DX)\,

\ 0, A*(DX), 0

/o, -A, A\
= A, 0, - A ,

\ /( L 6 / ) \ - A , A , 0

A(A)( = - iΓ) = '(A, A, A), A*(A)( = - iV •) = (A, A, A ) ,

and [Bo] denotes the 3 x 3 matrix corresponding to the operation Bo X

Without loss of generality, we assume that Bo = {(1, 0, 0), so that

10, 0, 0\

[Bo]= 0, 0, - 1 .

\0, 1, 0/

We further assume that p(x) and a(x) converge to some positive constants

p0 and a0 as |x| —>• oo, respectively, and put

Iμ Ju

(1.7) EQ = pjs,

\ 0 α0/

1.4. Assumptions. We make the following assumptions on E(x)*):

ASSUMPTION (A).

(A.I) E{x) is smooth and positive definite uniformly in x;

(A.2) E(x) -Eo = O(\x\-% δ>0, as [ac| -+ oo

(A.3) d™E(x) = O([a;|-(1+i>), |m| ̂  1 .

ASSUMPTION (B).

(B.I) μ0 # σ 0 .

*> These assumptions will be weakened in Section 7.
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EQUATION OF MAGNETOGASDYNAMICS 17

Physically, this assumption means that the speed of Alfven wave

(\B0\(μ0pQ)~1/2, \B0\ = 1) and the speed of sound ((a0ρ0)~ί/2) do not equal each

other and guarantees that the normal surfaces of the unperturbed system

E^LoiDx) have no triple intersecting points (Courant-Hilbert [3], p. 615).

Unfortunately, our method developed in [7] cannot be applied to such a

case. If μ0 ^F aQ9 then the normal surfaces have at most double intersecting

points. From now on, we assume, for brevity, that

(1.8) μ0 > a0 .

1.5. Statement of results. We see that the operator L(x, Dx) =

E{X)~1LQ{DC) has a natural self-adjoint realization (denoted by the same

symbol L) in L$ with the energy scalar product

(Φ, Ψ)E = f ((E(x)φ, ψ))dx ,

and that the domain @{L) is given as

Now, we shall state the main results on the spectral properties of the

operator L. We always assume that Assumptions (A) and (B) are satisfied.

THEOREM 1.1. The non-zero eigenvalues of L are of finite multiplicity

and discrete with possible accumulating points 0 and ± oo.

THEOREM 1.2. Assume that λ, λ ^ 0, is not an eigenvalue of L. Let

i?(Λ ± iic) = (L — (λ ±itc))-\ 0 < K < 1. Then, the following statements hold:

( i ) There exists a constant C = Ca independent of K such that for

feUH, a>l/2,

\R(λ±i*)f\o.-a£C\f\o,a.

(ii) There exist bounded operators R(λ ± ίO) from L£l to L^_a such

that R(λ ± itc) converge to R(λ ±ίθ) weakly in L{^a as /c-> 0;

lim (R(λ ± iκ)f, g)E = (R(λ ± iθ)f, g)E

for any f and g e L^l. Furthermore, the convergence above is uniform in

λ when λ ranges over a compact interval not containing the eigenvalues of

L.

THEOREM 1.3. The local energy of solution u(x, t) to the symmetric
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hyperbolic system (1.4) decays as t -> ± oo for all initial data orthogonal

to the eίgenspace of L.

The proof of Theorem 1.2 is based on the following two a priori
estimates: Let u e Li]l be a solution to the equation

(1.9) Lu - (λ ± iκ)u = / , 0 < A; < 1 , ^ 0 ,

with feL&y a > 1/2. Then, there exists a constant C independent of K
such that

(1.10) |κ|o-.

for any v9 1/2 < v < a. The main part of our argument in the sequel is
devoted to the proof of the two a priori estimates above. For notational
convenience, the proof is done only for the " + " case and we assume
that λ > 0.

1.6. Proof of Theorem 1.3. Though Theorem 1.3 is an immediate
consequence of Theorem 1.2, we shall prove it here for the sake of com-
pleteness.

Proof of Theorem 1.3. Let S(X) be the spectral resolution associated

with L; L = λd$(X). Since the total energy of solutions to equation (1.4)

is conserved and since Li]l, a > 1/2, is dense in L$, we have only to prove
the decay of local energy for initial data of the form £({a9 6))/, / e L£i,
where (α, b) is a finite interval not containing the eigenvalues of L. First
we note that the strong measurability of R(λ ± iθ)f, feD£a9 in λ follows
from the weak measurability which is shown by Theorem 1.2, and hence

S((μ, λ))f = {2πiYι Γ (R(λ + iO) - R(λ - iθ))f
Ja

for a < λ <b. On the other hand, the solution u(x91) to the equation (1.4)
with initial data S((a9 b))f is represented as

u{x9t)= f e-ίtλd£(λ)f.
J a

Hence, it follows that

u(x91) = (2πi)~ι P e-ίtλF(X)dλ ,
J a
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EQUATION OF MAGNETOGASDYNAMICS 19

where F(λ) = ((R(λ + ίO) - R(λ - iθ))f. Since F(λ) can be regarded as an

integrable function of λ with values in L^}_α, the Riemann-Lebesgue theorem

completes the proof.

§ 2. Preliminaries

2.1. Normal surfaces. We define the matrix L(x, ξ) of size 7 X 7 as

Then, after a simple but tedious calculation, the seven eigenvalues of L(x, ξ)

are given as follows:

( i ) zero eigenvalue with simple multiplicity, λo(x, ξ) = 0;

(ii) not identically zero eigenvalues, λ±ι(x, ξ), λ±2(x, ξ);

λ±1(x,ξ)= ±

λ±2(x, ξ) = ±

where κ(x) — μja{x) and

X(x, ξ) = (Λ (X) + iY\ξ|2 - 4c(x)β ( ^ 0) .

(iii) positive eigenvalue, λp(x, ξ);

λp(x, ξ) =

(iv) negative eigenvalue, λn(x, ξ); λn(x, ξ) = - λp(x, ξ).

Consequently, as is easily seen, the rank of L(x, ξ) is not constant;

rank (L(x, ξ)) = 6 (for ft # 0), = 2 (for ft = 0 (£ * 0)).

We denote the seven eigenvalues of the unperturbed system EόιL0(ξ)

by 40)(ί), #±°}(£) 0' = 1, 2), 40)(?) and λ™(ξ). These eigenvalues are expressed

by the same relations as above with tc(x) and p(x) replaced by ΛΓ0 = μ0la0

and p09 respectively. We further define the normal surfaces S±j (j = 1, 2)

and Sp as follows:
p

(2.1) S±j = {ξ; λfj(ξ) = 1}, Sp = {ί; 40)(f) = 1} .

Then, since κ0 =̂ 1 by Assumption (B), we see that all the eigenvalues of

E^Loiξ) are smooth functions of ξ (ξ ^ 0), and since ΛΓ0 > 1 by (1.8), the

normal surfaces S+1 and S+2 (resp. S.j and S_2) intersect with each other

only at (Wo)1/2, 0, 0) (resp. ( - (μ0pQ)1/2

9 0, 0)). If fc0 = 1, then the three normal

surfaces S+19 S+2 and Sp (S_19 S_2 and Sp) intersect with each other at

the same point as above (Courant-Hilbert [3] p. 615).
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2.2. Eigenvectors of L(x, ξ). We denote by eo(x, ξ), e±j(x, $) (j = 1, 2),

eP(x> I) and en(x, ξ) the normalized eigenvectors of L(x, ξ) corresponding

to the eigenvalues λo(x, ξ), λ±j(x9 f), λp(x9 ξ) and λn(x9 ξ), respectively. Simi-

larly, we denote by e<0)(f), e™(ξ) (j = 1, 2), e^(ξ) and e^($) the normalized

eigenvectors of the unperturbed system E^Loiξ). Then, it is easily seen

that all the eigenvectors are homogeneous of degree zero in ξ and that

(2.2) eo(x, ξ) = e«\ξ) = '(ft, ft, ft, 0, 0, 0, 0), |f| = 1 .

LEMMA 2.1. Lβί β ( c {f |f ] = 1}) be a small neighborhood of {£; ft = 0,

|fI = 1}. Then, e±j(x,ξ) (j = 1,2), ep(x,ξ) and en(x,ξ) can be chosen as

smooth functions of (x, ξ), (x, ξ) e R\ X β, Furthermore, it holds that

as |x|-> oo, uniformly in ξ, ξ eΩ. Similar estimates also hold for ep(x,ξ)

and en(x, ξ).

Proof The proof is a direct but tedious calculation, so we give only

a sketch. First, it should be noted that the eigenvalues λ±j{x, ξ) (j = 1, 2),

λp(x, ξ) and λn(x, ξ) are smooth in Rl X Ω, if Ω is chosen small enough.

The assertion for ep(x, ξ) and en(x, ξ) can be easily verified, since the

eigenvalues λp(x, ξ) and λn(x, ξ) are simple in Rl x Ω.

We write the eigenvalue problem L0(ξ)u = λE(x)u9 u = ι(h, v, p) (h, v

3-dimensional vectors, p 1-dimensional vector) as

(2.3) HQ(ξ)v = λμQh ,

(2.4) m(ξ)h + A(ξ)p = λp{x)υ ,

(2.5) A*(ξ)υ = λa(x)p ,

where H0(ξ) ( = Λ(ξ)[B0]) and A(ξ) are defined by (1.60;

/0, ft, f,\
fli(e)= o, - f t , o .

\0, 0, -ft/

The above problem is readily reduced to

(2.6) (H

The eigenvalues μj(x9 ξ) (j = 1, 2, 3) of (2.6) are related to the original

eigenvalues λ±j(x9 ξ) (j = 1, 2) and λp(x, ξ) by
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μj(x9 ξ) = μop(x)λ±j(x, ζ)2 , j = 1, 2 ,

μ,(x, ξ) = ftp(x)Xp(x, ξ)2 ( = μop(x)λn(x, ξ)2) .

Set e = '(1, 0, 0) ( = £0). Then, we see that ζ - &(£)(£ χ e ) = &(£)<((), f3, -f 2 ),

5(f) = (ξ2

2 + f|)"1/2 ( ^ 0 in β), is the eigenvector corresponding to μx{x, ξ).

Furthermore, iϊo(£)C = Ofl&l) and A*(f)ζ = 0. Hence, e±ί(x,ξ) are deter-

mined as smooth functions of (x, ξ) by use of relations (2.3) and (2.5).

Let η = b(ξY(O, ξ2, f3). Obviously, (e, ζ, J?) forms an orthonormal system

a n d i t h o l d s t h a t e X ζ = η, η χ e = ζ, ζ X η = e a n d ξ = ξ ,e + b ( ξ Y ι η .

We write the eigenvector w = w(x, ξ) corresponding to μ2(x, ξ) as w =

α(x, f)β + β(x, f)9 (α2 + i32 = 1) and insert it into (2.6). Then, using the

relations

H*(ξ)Hΰ(ξ)w = eχξχξχeχw = β\ξ\2

v ,

A(ξ)A*(ξ)w = ((f, ιι;))f = («£ +

we obtain the relation between a and ]8;

Hence, if we note that μ2(x, ξ) = O(|fj|2), we can determine α and β as

smooth functions so that a = 0(1) and β = OdfJ), respectively. Thus,

since λ±2(x, ξ) = Ofl&l), the eigenvector e±2(jc, ί) can be chosen as smooth

functions by use of (2.3) and (2.5).

2.3. Weighted pseudo-differential operators. The next symbol class of

pseudo-diίferential operators has been already introduced in [6].

DEFINITION 2.1. We say that P(x, ξ) = {pJt(x, ξ)}Jtkmlti, (x, ξ)eRlχ R]9

belongs to A(

β

s]σ(£), σ >̂ Θ ̂  0, when the following conditions are satisfied:

(a) Pjkfa f) is smooth in Rl X R];

(b) \%pJk(x, ξ)\ £ Cn(l + \x\Yθ(l + |£D'-'*i;

(c) |3?9?pifc(x, f)| ^ CWfn(l + |x|)-σ(l + If I)-"", \m\ ̂  1.

We say that a family of P(x, ξ; ε) with parameter ε belongs to A{

θ%£)

uniformly in e, if the above constants Cn and Cm>7l are taken uniformly

in e.

We now define the pseudo-differential operator P(x, Dx) with symbol

P(x,ξ)eA&(£) as follows:

Pu = (2ττ)-

for w(x) = Xu^x), , w/x)) e ^ , S? being the Schwartz space of rapidly
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decreasing smooth functions, where ύ(ξ) is the Fourier transform of u;

ύ(ξ) — e~ix'ξu(x)dx and the integration with no domain attached is taken

over the whole space.

DEFINITION 2.2. We say that P(x, Dx) e OPA(

Θ

S^(£), when it is a pseudo-
differential operator with symbol P(x, ξ) e A^a(β).

For the calculus of pseudo-differential operators of class OPA^σ(£),
the fundamental properties have been formulated as Propositions 2.3 and
2.4 in [6], so we do not state these properties here.

§ 3. The proof of a priori estimates, I
In this section, we consider the equation

(3.1) Lu-(λ + iφ=f, λ>0, 0 < * < l ,

with feL^l, a > 1/2, and prove the a priori estimate (1.10). The proof is
rather long and is divided into several steps.

For 3 in Assumption (A.2), we fix Θ so that

(3.2) 0 < θ < δ

and assume that

(3.3) 1 < a < 1 ( 1 + θ) ,

which obviously loses no generality.

3 1. The first step. Let Γ0(ξ) be the projection onto the zero eigen-
space (one dimension) of L0(ξ) and let Γ(ξ) = I7 — Γ0(ξ). By (2.2), we see
that Γ0(ξ) is expressed as

Γ 0(f)=

where A(ξ) is defined by (1.6r), and hence both Γ0(ξ) and Γ(ξ) are com-
mutative with E(x).

Let Q be an open set in i?| such that

(3.4) Q = {ξ = (ξ» f2, Q; \ξ\ > N, \ξt\ > d\ς\],

where N (large enough) and d(> 0, small enough) are fixed arbitrarily.

o,
o,

f), o,
o,
o,

°\
0 .

o
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LEMMA 3.1. Let φ(ξ) ( e A$(l)) be a smooth non-negative function with

support in Q and let Γ(ξ) = φ(ξ)Γ(ξ). Letu(eL$) be a solution to equation

(3.1). Then, f(Dx)u belongs to D£a and

for C independent of K.

Proof. We write the equation (3.1) as

(3.5) L0(Ds)u ~(λ + u)E(x)u = E(x)f.

We set i; = Γ(Dx)u. Then, v obeys the equation

(3.6) L0(Dx)v -(λ + iκ)E(x)υ = f(Dx)E(x)f + r

with r — (λ + i/c) [Γ(DX), E(x)]u, [,] being the commutator. By the com-

mutativity of Γ(ξ) with E(x) and by assumption (A.3), we have [f(Dx), E(x)]

e OPAi~P(7), σ = 1 + θ, and hence it follows from assumption (3.3) that

(3.7) | r | 0 , y + β ^ Cv\u\-u»-« , O ^ v ^ a .

If we take N large enough in (3.4), then L0(f) — (λ + ίκ)E(x) is invertible

in 0 = Rl X Q uniformly in K and in (x, ξ) ( e Θ), and we have

\LQ(ξ)pf ^ Q ξ | 2 | Γ ( f ) p | 2 , ξ e Q ,

for any p e C\ This proves the lemma.

LEMMA 3.2. Let φ{ξ) be as in Lemma 3.1 and let fo(ξ) = φ(ξ)Γ0(ξ).

Then,

\fo(Dx)u\o,a ^ C|/|Ofβ .

Proof We start with equation (3.5). Set v = Γ0(Dx)u. Then, since

fQ(Dx) is commutative with E(x), we have

- (λ + ίκ)E(x)v = Γ0(Dx)E(x)f.

This proves the lemma.

We now combine Lemma 3.2 with Lemma 3.1 to obtain the following

result.

LEMMA 3.3. Let φ(ξ) be as in Lemma 3.1. Then,

\

for C independent of K.
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3 2. The second step. Let G be an open set in R\ such that

(3.8) G = {ξ;\ξ\>N,\ξ1\ <d\ξ\},

where N and d are fixed arbitrarily as before. Let ψ(ξ) ( e A(

0%ί)) be a

smooth non-negative function with support in G. Then, ψ(Dx)u satisfies

the equation

L0(Dx)ψ(Dx)u -(λ + u)E(x)ψ(Dx)u = ψ(Dx)E(x)f + r ,

where r = (λ + ίκ)[ψ(Dx), E(x)]u satisfies an estimate similar to (3.7) with

another constant C.

Here we introduce new notations. 1) If χ(ξ)ψ(ξ) = ψ(ξ) for a smooth

non-negative function χ(ξ) (6 A$(ί)) with support in G, then we write

χ > ψ . 2) We denote by r = r(x), r = t(r1, , r7), all terms satisfying

estimates of the same type as in (3.7) with another constant C.

We now write the differential operator E(xyi/2LQ(Dx)E(x)~ί/2 as

E(x)-^L0(Dx)E(x)-^ = L(x, Dx) + B(*),

where the symbol L(x, ξ) of L(x, Dx) is E(x)-ί/2L0(ξ)E(x)-1/2 and JB(x) satisfies

3?JB(X) = O(|x]-(1+δ)), \m\ ̂  0, by assumption (A.3). We set

(3.9)

Then, ύ obeys the equation

(3.10) L(x, Dx)ύ + B(x)u

u = E(xr2ψ(Dx)u .

u)ύ = r .

We want to diagonalize the equation (3.10). By Lemma 2.1, there

exists a unitary matrix U(x, ζ) smooth in Jί — R\ X G such that in Jί

where 2>(x, ξ) is a diagonal matrix of the following form:

Mo,

, ξ) =

0

0

Let % > ψ and we define U(x, ξ) as ί/(x, | ) = χ(ξ)U(x, ξ), which belongs
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to A^(7), σ = 1 + 0. (From now on, we use σ with the meaning ascribed

here.) We define U*(x, ξ) similarly. For ύ defined by (3.9), we set

(3.11) v = U{x, Dx)ύ .

LEMMA 3.4. Let v be as above. Then,

it =. ϋ*(x, Dx)v + R(x, Dx)v + f ,

where U*(x, Dx) is the pseudo-differential operator with symbol U*(x, ξ),

while R(x, Dx) e OPA^iJ) and f satisfies the estimate \f\ltV+a ^ Cv\u\_ϊtV_a,

Proof. We may write

#*(*, Ds)v = (h(Dx) + R0(x, Dx))E(xy*ψ(Dx)u

with R0(x, Dx) e OPAi;P)(7), where χ2(ξ) = χ(ξ)\ Since χ > ψ (χ(ξ) = 1 on

the support of ψ), [χ2(Dx), E(x)1/2]ψ(Dx) belongs to OPA{-?(Ί) for any s

(large enough), and hence we have

(3.12) ύ - ϋ*(x, Dx)v - RQ(x, Dx)ύ + r .

We have only to insert this expression into ύ in the second term on the

right side. Thus, the proof is completed.

LEMMA 3.5. We have

χ(Dx)v = v + e,

where e satisfies the estimate \e\s,v+a <* CSiV\u\_Uv_a, 0<^v<z®, for any s

large enough.

Proof. The proof is easily done by use of the relation χ > ψ.

Now, we diagonalize the equation (3.10). We let U(x, Dx) operate

on equation (3.10) and insert the expression for ύ in Lemma 3.4 into the

resulting equation. Then, we obtain, using Lemma 3.5, an equation of the

diagonalized form;

(3.13) (β(χ9 Dx) ~(λ + h))χ(Dx)v + T(x, Dx)v = g + r,

where T(x, Dx) e OPA^a{Ί), and g is expressed as

(3.14) g = U(x, Dx)E(xy^(Dx)E(x)f.

It is convenient in the discussion below to write a vector-valued

function h = h(x) with seven components as
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h = ι(hQ, hp, hn, h) , h = %(h+u h+2, h_ί9 h_2) .

LEMMA 3.6. vp satisfies the estimate

\vp\Si ^ Cv{\f\o, + \uU-a} , - a ^ v ^a

similarly for vn.

Proof. By (3.13), vp obeys the equation

(λp(x, Dx) ~(λ + iκ))χ(Dx)vp =gp-hp + rp9

where h = T(x, Dx)v. Since λp(x9 ξ) — (λ + itc) is invertible in Jί = Rx x G

uniformly in /c, we obtain the desired estimate immediately. The proof

for υn is also done in a similar way.

L E M M A 3.7. v0 satisfies the estimate

\υQ\$ ^ Cv{\f\0>v + \uU.a} , -a£v£a.

Proof We write ύ = E(x)1/2ψ(Dx)u as ύ = '(Sj, , ύ7). As is easily

seen from (2.2), eo(x, ξ) = e(

0

0)(ξ) = \ξI"1 f̂,, ξ2, f8, 0, 0, 0, 0) is the normalized

eigenvector of L(x, ξ) corresponding to the identically zero eigenvalue.

Thus, we have

3

= Σ
where α/f) = χ(ξ)ξjl\ξ\. Hence, it follows from the definition of ΓQ(DX)

that

χ2(Dx)Γ0(Dx)ύ = '(a^D^Vo, a2(Dx)v0, a3(Dx)v0, 0, 0, 0, 0) .

This implies that

(3.15)

where [χ2(Dx)Γ0(Dx)ύ]j denotes the j-th component. We can write (3.15) as

Σ
yi

because of the commutativity of fa(Dx)Γ0(Dx) with E(x)ί/2, where fQ(ξ) =

ψ(ξ)Γ0(ξ). By the same argument as in the proof of Lemma 3.2, it can be

verified that \Γ0(Dx)u\0>v ^ Cv\f\0)V, (— a ^ v <L a), and hence we obtain the

desired estimate by use of Lemma 3.5.

We combine Lemmas 3.6 and 3.7 to obtain the equation for v;
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(3.16) {9{x, Dx) - (λ + iκ))χ(Dx)v + f (x, Dx)v =

where f(x, Dx) e OPA< »σ(4) and Φ(x, ξ) is of the form

27

Λ + 2>

0

while q satisfies the estimate

(3.17) | g ^ + . _α + |w|-i,v-«} , 0 <I v ^ a .

3.3. The third step. We further continue the reduction for equation

(3.16). Since it is convenient in the discussion below to clarify the sepa-

ration of the variable xt from (x2, #3), we write t = x1 and y = (x2, x3), and

denote by ζ = (τ, rj), η = (η2, %), the coordinates dual to x = (t, y). Let Π

be an open set in R2

V such that

(3.18) Π = {,; \η\ > iV/2} ,

N being as in (3.8). We can take d in (3.8) so small that G C {(τ, η);

veΠ}.

LEMMA 3.8. There exist functions σ±j(x, ή), 1 <ί j ' ^ 2, smooth in Jl =

Rl X Π such that in Jί = Rl X G

*±j(x> f) ~ * = *±X^ f)(τ ~ σ±j(x> V))

with k±j(x, ξ) (k+3 > 0, k_j < 0) smooth in Jί. Furthermore, σ±j(x, rj) satisfy

the estimate

(3.19)

%{ξ)k±j{x, ξ) belongs to A™(ΐ) for any χ(ξ) ( e

\m\ ^

wiίA siippori in G.

Proo/. For j = 1, it follows from the definition of Λ±1(x, ξ) that λ±1(x, ζ)

- λ = ± {μφ(x)Yyβ(τ + W W ) 1 / 2 4 For i = 2, we solve the equation λ±2{x, ξ)

= λ for τ. After a direct calculation, the roots <7±2(Λ;, 9) are obtained as

σ±2(x, η) =

where
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a = a(x, η) = κ(x)\ηf - μop(x)(κ(x) + l)λ2 ,

b = b(x, η)

We define &±2(Λ;, ?) as

k±i(x, ξ) = P (StJ±ί)(*, 0τ
Jo

Then, λ±9(x, ξ) — λ = k±2(x, ξ)(τ — σ±2(x, η)). It is easily verified that σ±2(x, rj)

satisfy the required estimates. Furthermore, since dτλ+2(x, ξ) > 0 for d (in

(3.8)) small enough and since 0,(1 + \η\) ̂  (1 + \ξ\) ̂  C2(l + \η\) in G, we

see that k±2(x9ξ)>0 in Jί and that χ(ξ)k+2(x, ξ) e ̂ ( 1 ) for any χ(f)

( e A$(l)) with support in G. The proof for k_2(x, ξ) is also done in a

similar way. Thus, the proof is completed.

Now, with k±j(x, ξ) in the above lemma, we define the symbols H(x, ξ)

and K(x, ξ) ( e A$»(4)) as follows:

H(x,ξ)=χ(ξ)

(3.20)

0

rh~1/2

1,-1/2
« + 2 >

We further define w as

w = H(x, Dx)ϋ .

LEMMA 3.9. We have

with Rx(x, Dx) e OPA(

σ~P(4)9 where f satisfies the estimate \f\i%a ^ C\u\,ίtV.a9

Proof. The proof is done by the same argument as in the proof of

Lemmas 3.4 and 3.5.

Let ω(yj) be a smooth non-negative function with support in Π such

that ω(η) = 1 for \η\ -* oo and χ(ξ)ω(η) = χ(ξ). Define the symbol A(x, η)

as
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A(x, η) = ω(η)

o

o

for σ±j(x, η) in Lemma 3.8. Then, by Lemma 3.9, we see from (3.16) that

w satisfies the equation

(3.21) (Dt - A(x, Dy))w + S(x, Dx)w - hJK(x, Dx)
2w = h + q

with another q satisfying an estimate similar to (3.17), where S(x9 Dx) e

), h is given as h — JK(x, Dx)g and

-4
Summing up, we obtain the following result.

LEMMA 3.10. Let u be a solution to equation (3.1) with feLQ, 1/2 <

a < (1/2)(1 + θ). Set

(3.22) w = H(x, Dx)[U(x, 1

[ "P denotes the last four components of ϋ(x, Dx)E(x)1/2f(Dx)u (7-

dimensίonal vector). Then, w satisfies the equation (3.21) ztώ& h, where h

is given by

(3.23) h = JZ(x, i?J[t/(*, Dx)E(x)-^yKDx)E(x)fΓ

Equation (3.21) is our basic equation from which the a priori estimate

(1.10) is derived.

3.4. The fourth step. Let JP = U%R\). Denote by <, > and || || the

scalar product and norm in f̂, respectively. We regard w = w(t, •)

defined by (3.22) as a function with values in 2tf and take the scalar product

<, ) of — ik(i)w with equation (3.21), where

k(t) = exp ( - 2M Γ (1 + s2)-ads\

and M, M > 0, is a constant (large enough) to be determined later. We

further take the real part of both sides of the resulting relation and

obtain

(3.24) ±-{dt(w, k(t)w) - {{dtk{t))w, w)} + Im <A(x, Dy)w, k(t)w} -
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where

= - Im {(h, k(t)xv) + (q, kit)w}} ,

J2(t) = - /cRe (JK(x, DxYw, k(t)w) ,

Jit) = Im (S(x, Dx)w, k(i)w} .

We integrate (3.24) over (—00, 00) with respect to t to obtain

(3.25) Γ {M(l + f)-" II Πt)w I)2 + Im (A(x, Dv)w, k(t)w)}dt =ΣTj}

J-00 j=ι

where k,{t) = k(t)"2 and Ts = Γ Jj(t)dt.
J - 0 0

We shall estimate each term Tj on the right side of (3.25). Since

\H% ^ C|/|0,α by the definition (3.23) of h and since \q\& £ C{\f\0>a + | tt | . l f.β},

we have

for C independent of M, because k(t) is bounded uniformly in M. K(x, Dx)

is of class 0PA^l(4) and hence it is a bounded operator from L(

2%Rl) to

itself. Hence, the term T2 is estimated as \T2\ <̂  fcC(\u\0}0)
2. On the other

hand, it follows from equation (3.1) that fc(\u\o>oy <̂  C|/|o,α|w|o,-α. Thus, we

have

The term T3 is estimated as follows. S(x, Dx) is of class 0PA(^σ(4) and

hence [k^t), S(x, Dx)] is of class 0PA(-^(4). Hence, we have

(3.26) |Γ 8 | ^ Cx Γ (1 + ί 2 )-« | |^)α; | | 2 ^ + KM\uU_a\u\Q,_a
J - o o

for Ci independent of M. (ίΓ^ may depend on M.)
Λoo

Next, we shall estimate the term T4 = Im (A(x, Dy)w, k(t)w)dt on
J —00

the left side of (3.25). A(x, rj) is a diagonal matrix with real elements and

hence it is symmetric. Therefore, by estimate (3.19) in Lemma 3.8, we see

that

(3.27) |Γ4 | ^ C2 Γ (1 + eya\\Πt)w\fdt
J - o o

for C2 independent of M.

Since the constants CΊ in (3.26) and C2 in (3.27) are independent of
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M9 we can take M so large that M — (CΊ + C2) > 1. Hence, if M is fixed

as above, then we have

(3.28) Γ (1 + f)-"\\w(t)fdt ^ C{\f\0>a + |κ | - l f - β } |M| O f β .
J -co

Now, we shall prove the a priori estimate (1.10).

THEOREM 3.1. Let w ( e i g ) be a solution to equation (3.1) with feL^a,

1/2 < a < (1/2)(1 + θ). Then, there exists a constant C independent of /c,

0 < K < 1, for which (1.10) holds.

Remarks, (i) It is easily seen that the constant C above is also

independent of λ, when λ ranges over a compact interval not containing

the origin, (ii) Estimate (1.10) is still valid for ιc = 0, if it is assumed

that a solution to (3.1) with K = 0 belongs to Li7}.

Proof First, by (3.28)

Hence, it follows from Lemmas 3.6, 3.7 and 3.9 that

(3.29) (|u|0,.α)2 < C{|/lo β + M-lf-β}{|/|Ofβ

Furthermore, by Lemma 3.4, we see that (\ψ(Dx)u\Qf.a)
2 is majorized by the

same bound as above with another constant C. Thus, we combine this

fact with Lemma 3.3 to obtain the desired estimate and the proof is now

completed.

3.5. A priori estimate for the eigenfunctions. The next theorem is

used in the proof of Theorem 1.1.

THEOREM 3.2. Let u ( e Li7)

0) be an eigenfunction of the operator L with

eigenvalue λ, λ ^ 0; Lu — λu. Then, there exists a constant C such that

\u\Oιo^ C|w|_lf0, where the constant C is independent of λeK, K being a

compact interval not containing the origin.

Proof. We start with equation (3.21) with K = 0 and h = 0;

(3.210 (A - A(x, Dy))w + S(x, Dx)w = q ,

where q satisfies the estimate

(3.29) \q\$+a<a\uUv.a, O^v^a.

We take the scalar product <, > in ^f between equation (3.210 and iw,
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and the real part of both sides of the resulting relation;

(3.30) -λdt(w,w} = £x#)9
Δ j=ι

where

X^t) = Im <A(x, Dy)w, w) , X2(t) = Im (q, w) and

X3(t)=-lm<S(x9Dx)w,w).

Integrating (3.30) over (s, oo) with respect to t gives

(3.31) | l l ^ ) U 2 = Σ T O ,
2 y-i

where Yj(s) = f °° Xj(t)dt. We further integrate (3.31) over (T, oo) with
J s

respect to s and obtain

where Zj = Yj(s)ds.

We make an estimate of each term Zj. First, Zλ is estimated as

since \X,(t)\ ^ C(l + ί2)-α||α;(ί)|Γ. Next, we have

Z2 = Γ (t - Γ) Im <g, α;>dί.

Hence, by the Schwarz inequality and by (3.29), it follows that

|Z2| ^ C\T^^ \\w(t)\\2dt + (M-L

Similarly, for any ε (>0) small enough, we have

\zs\ ^ ar-2" Γ \\m\fdt + ε(\ui
JT

since S(x, Dx) belongs to OPA(^σ(4). Thus, for any ε (>0) small enough,
there exists a constant T = T(ε) such that

(3.32) Γ | |u;(ί) | | 2Λ ^ e(\u\0>0Y
JT
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By the same argument as above, we have

(3.320 Γ \\w(t)fdt £ ε(\u\0t0Y + C(\uU0)
2 .

On the other hand, we combine (3.28) with (1.10) to obtain

(3.33) Γ \\w(t)\\2dt ^ Cε(\uUoy
J -T

for T = T(ε) fixed above. Hence, by the same reasoning as in the proof

of Theorem 3.1, it follows from (3.32) and (3.33) that

for any ε (> 0) small enough. This completes the proof.

§ 4. The proof of a priori estimates, II

In this section, we continue to consider the equation (3.1) and prove

the a priori estimate (1.11) by applying the results obtained in [6] on the

basis of Agmon's idea.

4.1. Decomposition. Let Θ be as in (3.2). Then, we can decompose

E(x) as follows: For any ε (> 0) small enough, there exists a constant

R = R(ε, θ) such that: (i) E(x) = E(x; ε) + Er(x; ε); (ii) E(x) = E(x; ε)

for \x\ > R, and hence Er(x; ε) is of compact support; (iii) \E(x; ε) — EQ\

^ ε C ( l + | x | ) - * a n d \d™E(x; ε) | £ εCJl + \x\)-% \m\^l(σ = l + θ), for a l l

x .

We rewrite the equation (3.1) as

(4.10 L0(Dx)u -(λ + iκ)E(x; ε)u = E(x)f + (λ + ifc)Er(x; ε)u

and, for notational convenience, we denote by / the terms on the right

side again; / = E(x)f + (λ + iκ)Er(x; ε)u.

4.2. Reduction. We start with the equation

(4.1) L0(Dx)u - (λ + iκ)E(x; ε)u = / , λ> 0 , 0 < A: < 1 ,

with feUll 1/2 < a < (l/2)<7. Let G and Π be as in (3.8) and (3.18), re-

spectively, and let ψ(ξ), χ(ξ) ( e A$(l)) and ω(η) be as before. We apply

the same argument as in section 3 to (4.1) to obtain the following equation

corresponding to (3.21):

(4.2) (A - A(x, Dy; ε))w + S(x, Dx; ε)w - uJK(x, Dx; ε)2w - h + q(ε) ,
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where w = w(ε) and h — h(ε) are defined by

(4.3) w(e) = H(x, Dx; ε)[U(x, Dx; ε)E(x; ε)

(4.4) h(ε) = JK(x, Dx; ε)[U(x, Dx; ε)E(x;

and q(ε) satisfies the estimate

(4.5) \q(eWl+a ^ εC{\f\0,v_a + |i*|_lf,.β} , 0 ^ v ^ a ,

for C independent of ε. Furthermore, the symbols of pseudo-differential

operators in (4.2)-(4.4) have the following properties:

(P.I) Let a±j(x, η ε) ( = ω(rj)σ±j(x9 η; ε)), 1 <Ξ! j <I 2, be the (diagonal)

elements of diagonal matrix A(x, η; ε). Then, a±j(x9 η\ ε) satisfies the esti-

mate (see (3.19) in Lemma 3.8);

(4.6) \d^a±j(x, rj\ e)| £ εC(l + \x\)-°(l + |9|)-'» , m| ^ 1 .

(P.2) ε-ιS(x, ξ; ε) belongs to A<%(4) uniformly in ε.

(P.3) K(x, ξ; ε), iί(x, ξ ε) and C/(x, ξ; ε) take the following form: K =

JΓ<°>(£) + ifr(x, f ε), F = W0\ξ) + Hr(x, ξ; ε) and U = U^(ξ) + Ur(x, ξ; ε),

where ειKr and εxΐlr (resp. ε" 1 ^) belong to A£%(4) (resp. A^(7)) uniformly

in ε. Furthermore, X(0)(f) and Hi0)(ξ) are 4 X 4 diagonal matrices (see

(3.20)) and satisfy the relation K(0)(ξ)W0)(ξ) = χ(f)2/4, and also U(0)(ξ) satisfies

4.3. The proof of a priori estimate (1.11). For the proof of (1.11), we

fix ε small enough throughout this subsection. (We note that all constants

C below may depend on ε.)

First, we introduce several new notations to rewrite the equation (4.2).

We write the solution w to equation (4.2) as w = ι(w+ι, w+29 w_u w_2) and

also use the same notation as above for the terms h and q(ε) on the right

side of (4.2). Next, we set h = '(Λ+1, h+2, Λ_1? /L2) = — S(x, Dx; ε)w. Since

S(x, Dx;ε)e OPA^σ(4), we have |Λ|$ < C\w$la. Furthermore, for the de-

composition K(x, ξ; ε) = K^(ξ) + Kr(x9 ξ; ε) with Kr e A™σ(4) ((P.3)), we

denote by k(°)(ξ) ( e A$(l)) the (diagonal) elements of diagonal matrix K(0)(f),

and define g = %g+1, g+2, g.u g_2) by g = - J (K(x, Dx; εf - K^(DxY)w.

Since Kr(x, Dx; ε) e OPA^(4), we have

(4.7) fcdg^y ^ <cC(\u\o,oy ̂  C|/|o,α[w|o,_α .

With the notations above, we now rewrite the equation (4.2) into the fol-

lowing equivalent form:
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(48)±, dtw±j - ίa±j(x, Dy; ε)w±j ± tck(i)(Dx)
2w±j = κg±J + P±j ,

where p±j = i(h±j + h±j + q±j(e)).

Now, we are in a position to apply Propositions 3.2 and 3.3 in [6] to

equation (4.8)±J.

First, by Proposition 3.2 in [6], we have

for any v, 1/2 < v < a, where || || denotes the norm in Li%R2

y). Since

\p±j\$ £ C{\f\0>a + Mo,-J and since 4\g±JW ^ C\f\0.a\u\0,_a, it follows that

(4.9) \w\^v £ Cv{\f\o,* + Mo-*}

for any v, 1/2 < v < a.

Next, by Proposition 3.3 in [6], we obtain, using the same argument

as above, that

r
(4.10) J —

for any μ, 0 < μ < 2a — 1.

Now, we shall prove the a priori estimate (1.11).

THEOREM 4.1. Let u be a solution to equation (3.1) with f D£a, 1/2 <

a < (l/2)(7. Then, there exists a constant Cυ independent of K, 0 < /c < lγ

such that for any, 1/2 < v < or,

Furthermore, the above constant Cy is taken independently of λ, if λ ranges

over a compact interval not containing the origin.

Proof, Let G be as in (3.8). We may assume that ψ(ξ) = 1 in G by

extending G slightly, if necessary. We combine (4.9) with Lemmas 3.6 and

3.7 to obtain

Let ψr(ξ) = 1 - ψ(f) and define the surfaces S±3(λ) (j = 1, 2) and Sp(λ)

as S±j(λ) = {ξ; λ*)(ξ) = λ} and Sp(λ) = {ξ; λ«\ξ) = A}, ^ > 0, respectively.
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As is easily seen, the intersection of the support of ψr(ξ) with S±j(λ) and

Sp(λ) is bounded. Therefore, we can apply the same reasoning as in [6]

and [7] to equation (4.Γ) with ε small enough and obtain

In particular, the analysis near the double intersecting points of S+1(X)

and S+2(λ) (S-i(Λ) and S_2(Λ)) uses the idea in [7]. Thus, the desired esti-

mate is obtained and the proof is completed.

§ 5. The proof of Theorem 1.2

The proof of Theorem 1.2 is done in almost the same way as in

section 8 of [6], and so we give only a sketch here.

Proof of Theorem 1.2. First, we shall prove statement (i) by contra-

diction. We assume that there exist sequences {κn}, 0 < κn < 1, and {/„},

fn e Lft, such that κn -* 0, fn -> 0 in Lft and |κn |0.-. = \R(λ + kn)fn\0>_a = 1.

Then, there exists a subsequence of {un} (denoted by the same symbol

{un}) such that un->u as n -> oo weakly in L^}_α. Obviously, u satisfies

the equation Lu — λu = 0.

We shall show that u ^ 0. By Theorem 3.1,

for C independent of n. Hence, it follows that |wn|_1,_α ^ C for n large

enough. On the other hand, by Theorem 4.1, \un\Qt_v ^ C for v> 1/2 < v

< a. Since a bounded set in Hί7

ti is pre-compact in Lgl, {un} forms a pre-

compact set in i/L7i,_α by duality. Therefore, un converges to u strongly

in H%.a. Thus, u ^ 0.

Next, we shall show that u e L$, which leads us to the contradic-

tion, since λ is not an eigenvalue of L by assumption. To prove this, we

apply Proposition 3.4 of [6].

We rewrite the equation Lu = λu as

(5.1) L0(DJu - λE(x; ε)u = λEr(x; ε)u

for e small enough and reduce (5.1) to an equation of the form (4.2);

(5.2) (A - A(x9 Dγ; ε))w + S(x, Dx; ε)w = h + q(ε) ,

where

(5 3)
h = h(ε) = JK(x,Dx; ε)[U(x, Dx; ε)E(x; ε)-^(Dx)Er(x; ε)ύ
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and q(ε) satisfies the estimate (4.5) with v = 0

\q(ε)\& < εC\u\0,_a

for C independent of ε. (In the proof of this theorem, we regard ε as a

parameter and denote by C constants independent of ε.)

According to (4.8)±J , each component w±j — w±j(ε) of w obeys the

equation

(5.4)±j (dt - ίa±j(x, Dy; ε))w±3 = p±j(ε),9

where p±j(ε) = i(h±j + h±j + q±j(ε)) and h = — S(x, Dx ε)w. Since ε^SOr, Dτ ε)

belongs to 0PA^σ(4) uniformly in ε((R2)), we have \h\(

0% < εC\u\Ot_a.

Now, we want to apply Proposition 3.4 of [6] to equation (5.4)±J. To

do this, we have to prove that

liminf ||w+/ί)ll2 = liminf ||w_/*)li2 = 0 ,
ί->±oo ί-»±oo

where || || denotes the norm in L(

2]l(R2

y). However, in view of (4.10), we

have only to show that

liminf ||w+J(t)\\2 = liminf \\w_j(t)||2 = 0 .
ί-oo ί—-oo

To prove this, we denote by <, > the scalar product in Li%Ry) and take

the scalar product of w+j with equation (5.4)+j. Furthermore, we integrate

the resulting relation with respect t over (— T, T) and let T-> oo. Then,

taking account of (4.10), we obtain

lim Σ \\w+ί(t)\f = - 2 Σ Im (h+j, w+J\ + O(ε) ,
ί-»oo j = l j = l

where (, )j denotes the scalar product in L$(Rl). Similarly, taking the

scalar product <, > of —w.j with equation (5.4)_;, we obtain

lim Σ \\w.j(t)\\2 = 2 Σ Im (h_j9 w^x + O(ε) .

We assert that

2

Σ {Im (h_j} w.j), - Im (h+j, w^),}

= - Im (ψ(Dx)κ, ψ(Dx)Er(x; ε)u)Ί + O(ε) .

If we recall the definition (5.3) of w and h, this assertion is verified by
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almost the same argument as in section 8 of [6] and hence, using a par-

tition of unity in the ξ-space as in [6], we can conclude from Im(w, Er(x; ε)u)7

= 0 that

w_j(t)\\2 — 0 .

Thus, we can prove by Proposition 3.4 of [6] that w e L $ and hence it

follows immediately that ψ(Dx)ueL^l

To see that ψr(Dx)u e L$, ψr(f) = 1 — ψ(ξ)> we use the same reasoning

as in [7] to analysis near the double intersecting points of the surfaces

S+ί(λ) and S+2(X) (S.^X) and S_2(λ)). Thus, we have ueL^l and statement

(i) is proved.

The proof of statement (ii) is also done by almost the same argument

as in section 8 of [6], and so we omit the detailed proof. In particular,

the uniform convergence in λ follows from the uniformity in λ of a priori

estimates (1.10) and (1.11).

§ 6. The proof of Theorem 1.1

In this section, we shall prove Theorem 1.1. The proof of this theorem

is also done by almost the same way as in section 7 of [6], and so we

give only a sketch.

Proof of Theorem 1.1. Let K be a compact interval (fixed arbitrarily)

not containing the origin. We have only to show that there exist only

a finite number of eigenvalues with finite multiplicity in K. We deny this

statement and assume that there exist an infinite sequence of eigenvalues

{λn}, λn e K, with repetition according to multiplicity; Luw = λnu
w

9

(u{n\ u{n))E = 1, (, )E being the energy scalar product. Then, there exists

a subsequence of {u(n)} (denoted by the same notation {uin)}) such that u(n)

converges to uφ) weakly in L $ as n—> oo. We may assume that uφ) = 0.

We assert that for some μ, μ > 0, there exists a constant Cμ independent

of n such that

(6.1) lo, * ^

If this assertion is proved, then the proof of the theorem is completed.

Indeed, (6.1) implies that u(n) converges to u(0) strongly in fll7ί,0. On the

other hand, it follows from Theorem 3.2 that

1 = (i*<n ), κ < n ) ) , ^ C | M ( n ) | - l f 0 .
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Therefore, |w(0)|_1>0 ^ C, which contradicts the assumption above.

Now, we shall prove the assertion (6.1) by applying Proposition 3.4

of [6] again. As in the proof of Theorem 1.2, we write the equation Lu{n)

= λnu
{n) as

(6.2) LQ(DMn) ~ KE(x; ε)u™ = λnEr(x; ε)u™

for ε small enough, and reduce (6.2) to an equation of the form like (5Λ)±j;

(6.3)±, dtwf - ia™(x, Dy; ε)w% = Λ<»> + h™ + ?Sfj(e) ,

where w(n) (resp. h(n)) with components w^}, j = 1, 2, (resp. h^}) are given

as the form like (5.3) with u = uw and λ = Jn, while h(n) = - S(7l)(x, Zλ,; ε)u;(n)

and g(n)(ε) satisfies the estimate (4.5) with v = α uniformly in M;

We again apply Proposition 3.4 of [6] to equation (6.3)±J and, for some

μ, μ > 0, we obtain

(6.4)

with Ĉ  independent of n, where || || denotes the norm in L£l(R2

y) again.

We derive an estimate similar to (6.4) for three linearly independent direc-

tions. If such estimates are obtained, then (6.1) is verified immediately.

Let z = (t, y), y = (y1? y2), be another orthogonal coordinate system

close enough to the original system x = (x19 x2, Λ:3). (From now on, the

notation z = (t, y) is used with the meaning different from the previous

one; t = x19 y = (x2, x3).) We denote by ζ = (τ, rj), η = (η19 τy2), the coordinate

system dual to z. Then, Lemma 3.8 is still valid for this coordinates, but

estimate (3.19) must be modified as follows:

\d?d»σ±j(z, η)\ ̂  Cm n(l + \z\Y^(l + l^l)1-'^, |m| ^ 1 .

Furthermore, for this coordinates, we can derive the following equation

of the form similar to (6.3)±;:

tW±j — ia±J\ £)W±J —

where p(

±

wj(ε) e L$ α and the symbols a^)(z, η; ε) satisfy the estimates (6.5)

uniformly in n. Let ργ{rj) = (1 + γ\r}f)"ι/2, γ, γ > 0, being a parameter small

enough, and define w^) by ϋb^) = pγ(Dy)w^). Then, w{±) obeys the equation
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(6.6)±i dM) ~ iβfφ, Dyl eW$ = m& ,

where p™(ε) = pr(Dy)p™(e) + [Pΐ(Dy), ia™(z, Dy; ε)]w<*}. By estimate (6.5),

we see that {pϊj(ε)} is a bounded set in Li%. We apply Proposition 3.4

of [6] again to equation (6.6)±j and let γ -> 0 to obtain an estimate similar

to (6.4), Thus, we have

For Cμ independent of n. And also we can show by the same reasoning

as in section 7 of [6] that

\ψr(Dx)u™\0,μ ^ Cμ , ψ r(f) = 1

Therefore, estimate (6.1) is verified and the proof is complete.

§7. Concluding remark

The assumptions imposed on E(x) in section 1 are rather restrictive

and as stated in section 1, these assumptions are weakened in this section.

The statements of Theorems 1.1 and 1.2 are still valid for the following

class of perturbations.

ASSUMPTION (A').

(A.10 E(x) is positive definite uniformly in x and is decomposed as

E(x) = Elx) + Es(x);

(A.20 Elx) satisfies (A.2) and (A.3);

(A.30 Es(x) = O(|x|-(1+δ)) as |x|-> oo.

If E(x) satisfies (A.3) with \m\ = 1 only, then E(x) can be decomposed

into the above form by use of a mollifier technique. Furthermore, if the

perturbation E(x) is of short-range class (E£(x) = Eo), then any assumption

is not required for the derivatives of E(x).

We shall discuss breifly how the proofs of Theorems 1.1 and 1.2 must

be modified for the perturbation E(x) satisfying Assumption (A7). The a

priori estimate (1.11) is still valid for such a E(x) without any essential

change, while the proof for (1.10) has to be modified.

For the decomposition E(x) = E£(x) + Es(x), we rewrite the equation

(3.1) as

(7.1) L0(Dx)u -(λ + iκ)Elx)u = E{x)f + (λ + h)Es(x)u .

LEMMA 7.1. (cf. Lemma 3.1) Let [φ(ξ) and Γ(ξ) = φ(ξ)Γ(ξ) be as in

Lemma 3.1. Then,
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\f(Dx)u\0,v ^ Cv{\f\0>υ + \Es(x)uUv + \uU_a}

for any v, — a ^ v <L a.

The proof is done by applying to equation (7.1) the same argument

as in the proof of Lemma 3.1.

LEMMA 7.2. (cf. Lemma 3.2) Let fo(ξ) = φ(ξ)Γ0(ξ) be as in Lemma 3.2.

Then, for any v, — a <̂  v <I a, we have

(7.2) \fo(DJu\o,» £ αi/lo., ,

(7.3) \Φ(Dx)u\o,» ^ α{|/|0,u + \Es(x)u\_1>v + \uU_a] .

Proof. Estimate (7.2) follows from the commutativity of fo(Dx) with

E(x) and (7.3) is proved by combining (7.2) with Lemma 7.1.

Let ψ(ξ) and U(x, ξ) be as in subsection 3.2. We note that U(x, ξ) is

defined with E(x) replaced by Ee(x): similarly for all the symbols below,

H(x, ζ), K(xy $), S(x, ξ), etc. We define υ as

υ = ΰ(x, Dx)E,(xy/2ψ(Dx)u

for the solution u to equation (7.1) (see (3.11)). As before, We write v —

*(̂ o> vv > vn-> v), v = t(v+u ι?+2, υ_u u_2). Then, the following results are verified

by the same argument as in the proof of Lemmas 3.6 and 3.7.

LEMMA 7.3. (cf. Lemma 3.6) υp satisfies the estimate

M i ^ W L + \Es(x)ulίtυ + \uU_a}

for any v, — a <ί v <L a. A similar estimate holds also for υn.

LEMMA 7.4. (cf. Lemma 3.7) v0 satisfies the estimate

M^α{|/ | 0 , y + M-i,-J

for any v, — a ^ v ^ a.

Furthermore, we define w as

ω = H(x, Dx)[U(x, Dx)E£xy<*ψ{Dx)uΓ

(see (3.22)). Then, w obeys an equation of the form like (3.21);

(7.4) ( A - A(x, Dv))w + S(x, Dx)w - ίκJK(x, Dxfw = h + q,

where S(x, Dx) e OPA^{&) and h is expressed as h = /ij + h2,
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A, = JK(x, Dx)[U(x, Dx)Ee(x)-^ψ(Dx)E(x)fΓ ,

h2 = (λ + iκ)JK{x, Dx)[U(x, Dx)Ee(x)-1/2ψ(Dx)Es(x)uΓ

(see (3.23)), while q satisfies the estimate

(7.5) |g|ft+. ^ α { | / L - + |tf.(*)κ|-i.,,-. + |i*U.-.}

for any v, 0 <Lv <, a, which follows from Lemmas 7.3 and 7.4.

LEMMA 7.5. Let h2 be as above. Then, there exist two pseudo-dif-

erential operators Bj(x, Dx), j = 1, 2, of class OPA(

0°^(4) by which h2 is

represented as follows:

(7.6) h2 = Bx{x, Dx)Es(x)B2(x, Dx)w + p ,

where Es(x) is the 4 x 4 diagonal matrix with (j, j)-element 3 <̂  j ^ 7, o/

ί/iβ (diagonal) matrix Es(x) and p satisfies the estimate

(7.7) |p |# + β ^ α{|/|M_α + |J2.(*)n|-lfl,-β + I^U^-J

/or αwj v, 0 ^ y ^ a.

Proof First, by the definition of E(x), we may assume that the first

three diagonal elements of Es(x) vanish. Let φ(ξ) be as in Lemma 3.1. We

may further assume that there exist a non-negative smooth function φo(ξ)

with compact support such that ψ(ε) + φ(ξ) + φo(ξ) = 1 and we denote by p

all terms majorized by the same bound as in (7.7) with another constant

Cv. Then, by Lemma 7.2, we may write

ΰ(x, Dx)Elx)-^(Dx)Es(x)u

= ϋ(x, Dx)E£(x)-^ψ(Dx)Es(x)ψ(Dx)u +p,

since \Es(x)φ0(Dx)u\0)V+a ^ Cs\u\.s$v.a for any s (large enough). Furthermore,

making use of Lemma 3.4, we have

ψ(Dx)u = ElxY^U^x, D > + p .

Therefore, the desired representation (7.6) is obtained by Lemma 3.9 and

by Lemmas 7.3 and 7.4.

The next result corresponds to Theorem 3.1 (a priori estimate (1.10)).

THEOREM 7.1. Assume that the perturbation E(x) satisfies Assumption

(A7). Let u(eL£l) be a solution to equation (7.1) with / e L g , 1/2 < a <

(l/2)σ. Then, there exists a constant C independent of K, 0 < K < 1, such that

(7.8) K,_α ^ C{|/|o,. + \Es(x)uU,.a + \uU_a}.
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Proof. We modify the argument used to derive the estimate (3.28).

To do this, we have only to estimate the term

= - Im Γ (h2, k(t)w)dt,
J —oo

where the notations k(t) ( = k^t)2) and <, > are used with the same meanings

as in subsection 3.4. Since Es(x) = O(|x|-(1+δ)), 2a < (1 + δ), Lemma 7.5

enables us to estimate T* in the same way as Tz in subsection 3.4. Thus,

we obtain, using (7.7), that

+ KM{\f\Ot_a + \Es(x)ullt.a + |κU-.}|κ|o,-.

for C3 independent of M. The other terms are also estimated in the same

way as in subsection 3.4 and (7.8) is proved.

Similarly, we can prove the following result corresponding to Theorem

3.2.

THEOREM 7.2. Assume that E(x) satisfies Assumption (A'). Let u{ e L$)

be an eίgenfunctίon of the operator L with eiganvalue λ, λ ^ 0. Then, there

exists a constant C such that \u\OtO ̂  C{\Es(x)u\.1>0 + |κ|-i,o}

Now, we shall modify the proof of Theorem 1.2 for the perturbation

E(x) satisfying Assumption

Modification of the proof of Theorem 1.2. We have only to show that

the limit function u of the subsequence {un}9 un = R(λ + i/cn)fn, converging

weakly in Lj£Lβ does not vanish. This follows from Theorem 7.1 at once.

Indeed, by Theorem 7.1, there exists a constant C independent of n large

enough such that \Es(x)un\.u.a + \un\_u_tt ^ C. Since \un\0>_v £ Cv, 1/2 < v

< a, by a priori estimate (1.11) and since \Es(x)un\0}0 ^ C by Es(x) =

O(|x|~(1+δ))> we see that {un} and {Es(x)un} form pre-compact sets in iί(_7ί,_α.

Therefore, it follows that

This implies that u does not vanish.

Similarly, the proof of Theorem 1.1 is modified by use of Theorem 7.2.

Appendix; derivation of equations (1.1) — (1.3)

According to Pai [4] (p. 36), the non-linear system of equations of
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magnetogasdynamics for an ideal plasma (an inviscid, non-heat-conducting

and infinitely electrically conducting plasma) is described as follows:

FH=0,

μo(dldt)H + F x (μ0H X v) = 0 ,

p{(dldt)v + (vftυ} + Fp + (μJS) X ( F χ i / ) = 0,

p = p(p, S) ,

where H is the magnetic vector field (3-dimension), p is the pressure, and

ι;, p and S are the velocity vector field (3-dimension), density and entropy

of the plasma. The first equation in the above system has the character

of an initial condition.

We consider a static solution with the density gradient for the above

system of equations. For a given constant pressure p0, we define po(x) and

S0(x) so that

(A.0) Po = P(po(x), S0(x)) .

Then, (H, v, p, p, S) = (Ho, 0, po(x), pQ, S0(x)), Ho being a constant magnetic

vector field, becomes a static solution to the above system.

To consider the perturbation from the static solution above, we set

H = HQ + h, (BQ = μ0H0), p == po(x) + p, p =po+P, and S = S0(x) + S.

(For notational convenience, we use the same notations p, p and S to

denote the perturbed quantities.) Omitting all terms of second order, we

obtain the linearized system of equations for (h, v, p,p, S);

(A.1) Γ A = 0,

(A.2) μldldt)h + V X (J50 X υ) = 0 ,

(A.3) po(x)(dldt)v + Fp + Bo X (F x h) = 0 ,

(A.4)

(A.5)

(A.6) (dldήp = (dpldp)0(dldt)p + (3p/3S)0(3/3ί)S ,

where (dp/dp)0 and (dpjdSX are the values of (d/d/φ and (3/3S)p at

respectively. Furthermore, using the relation (A.0), we have

(A.7) (dpldp)0FpQ(x) + (dpldS)0FS0(x) = 0 .
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We insert (A.4) and (A.5) into (A.6) and obtain, using (A.7), the following

relation:

(A.8) (dldt)p + (dpldp)opo(x)F v = 0 .

Thus, if we set a(x) = (Sp/fyVW*)"1* then (A.2), (A.3) and (A.8) become

the desired equations (1.1) ~ (1.3). Here c(x) = {dpldρ)\/ι and po(x) are called

the local speed of sound and the equilibrium density, respectively.

In particular, if the given magnetic vector field HQ = 0, then the

linearized equation of non-linear system is reduced to the well-known

acoustic equation (d/difp = c(x)2pQ(x)F-po(x)-ψp. The derivation of such

an acoustic equation in an inhomogeneous medium can be found in

Friedlander's book, "Sound Pulses", (pp. 3 ~ 4), Cambridge University

Press, 1958.
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