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A Dynamical Proof of Pisot’s Theorem

Jaroslaw Kwapisz

Abstract. We give a geometric proof of classical results that characterize Pisot numbers as algebraic

λ > 1 for which there is x 6= 0 with λnx → 0 (mod 1) and identify such x as members of Z[λ−1] ·

Z[λ]∗ where Z[λ]∗ is the dual module of Z[λ].

A real number λ > 1 is called a Pisot number if and only if it is an algebraic
integer and all its Galois conjugates (other than λ) are of modulus less than one: the

golden mean (1 +
√

5)/2 is an example. Pisot’s 1938 thesis [4] and, independently,
Vijayaraghavan’s 1941 paper [7] contain the following beautiful characterization.

Theorem 1 (Pisot,Vijayaraghavan) Suppose that λ > 1 is an algebraic number (over

the field of rational numbers Q). The following are equivalent

(i) λ is a Pisot number;

(ii) There exists non-zero real x such that limn→∞ λnx = 0 (mod 1), i.e.,

lim
n→∞

min{|λnx − k| : k ∈ Z} = 0

where Z is the rational integers.

Moreover, any x satisfying (ii) belongs to Q(λ), the field extension of Q by λ.

The property (ii) is responsible for Pisot numbers turning up in a variety of contexts
seemingly unrelated to their definition. The reader may want to savor the ensuing
connections by reading [5, 2]. Our interest in Pisot’s theorem stems from its role in

the determination of spectrum for the translation flow on substitution tiling spaces,
as exhibited by [6] and further exploited in [1]. We shall not discuss that connection
here, and turn instead to our goal of supplying a proof of the theorem that offers
a direct geometrical insight — something that is missing from the considerations

of the classical proofs, as found in [3] or [5]. We shall also derive the following
characterization of the set

(1) Xλ := {x ∈ R : lim
n→∞

λnx = 0 (mod 1)}.

In [3], this result is also attributed to Pisot and Vijayaraghavan.

Theorem 2 (Pisot,Vijayaraghavan) Suppose λ > 1 is Pisot. Let p ′ be the derivative

of the monic irreducible polynomial of λ over Z, and Z[λ]∗ := 1
p ′(λ)

Z[λ]. Then x ∈ Xλ

if and only if λnx ∈ Z[λ]∗ for some n ≥ 0, i.e.,

(2) Xλ =

⋃

n≥0

λ−n
Z[λ]∗ = Z[λ−1] · Z[λ]∗.
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We note that Z[λ]∗ is just an explicit form (as given by Euler) of the dual of the
module Z[λ] typically defined as Z[λ]∗ := {x ∈ Q(λ) : trace(xy) ∈ Z ∀y ∈ Z[λ]}
and that Z[λ]∗ is non-zero only if λ is an algebraic integer (see [8, Prop. 3-7-12]).
That x ∈ Xλ for x ∈ Z[λ]∗ is clear by the following standard argument (emulating
[5, Theorem 1]). Let λ = λ1, λ2, . . . , λd be all the roots of p (the Galois conjugates
of λ) and x = x1, . . . , xd be the images of x under the natural isomorphisms Q(λ) →
Q(λi), xi ∈ Q(λi). Then

(3) Z ∋ Tn := trace(λnx) =

d
∑

i=1

λn
i xi = λnx +

d
∑

i=2

λn
i xi ,

and so |λnx − Tn| → 0 due to the Pisot hypothesis: |λi| < 1 for i = 2, . . . , d.
From now on, consider a fixed algebraic number λ > 1. Denote by p its monic

minimal polynomial, which is obviously irreducible. Let d := deg(p), and fix a d × d

matrix A over Q with eigenvalue λ. The companion matrix of p is one such A, and

any other is similar to it over Q . If λ is an algebraic integer then A can be taken over
Z. Conversely, if A preserves some lattice in L ⊂ Rd, AL ⊂ L, then λ is an algebraic
integer. Here by a lattice we understand a discrete rank d subgroup of Rd, Zd being
the simplest example.

We shall frequently use the fact that A is irreducible over Q : if W is a non-zero
subspace of Qd and A(W ) ⊂ W , then W = Qd (as otherwise the characteristic poly-
nomial of A|W would divide p). Also, by irreducibility of p, A has simple eigenvalues
and is diagonalizable over C so that we have a splitting

R
d

= Es ⊕ Ec ⊕ Eu

where Es, Ec, Eu are the linear spans of the real eigenspaces corresponding to the
eigenvalues of modulus less, equal, and greater than 1, respectively. We shall see that,
for v ∈ Rd\{0}, Anv → 0 if and only if v ∈ Es lies at the very heart of Pisot’s theorem.
Below, 〈 · | · 〉 is the standard scalar product in Rd.

Lemma 1 If 〈Anv0|k0〉 → 0 (mod 1) for some v0 ∈ Rd \ Es and k0 ∈ Zd \ {0}, then

A leaves invariant some lattice in Qd, i.e., λ is an algebraic integer.

Lemma 2 Suppose that A has entries in Z and k0 ∈ Zd \ {0}. If 〈Anv0|k0〉 →
0 (mod 1) for v0 ∈ Rd, then v0 ∈ Qd + Es.

Proof of Theorem 1 Taking x = 1 in (3) shows that (i) implies (ii), so it is left
to show (i) from (ii). Pick ω ∈ Rd to be an eigenvector of A corresponding to λ,
Aω = λω. Fix k0 ∈ Zd \ {0}. Observe that 〈k0|ω〉 6= 0 by irreducibility of the

transpose AT of A (since {q ∈ Qd : 〈q|ω〉 = 0} is AT invariant). Thus, in the linear
span linR(ω) of ω over R, we can find v0 so that x = 〈v0|k0〉. In this way,

(4) λnx = λn〈v0|k0〉 = 〈Anv0|k0〉, v0 ∈ linR(ω).

From x 6= 0, v0 /∈ Es and so λ must be an algebraic integer by Lemma 1. By Lemma 2,
v0 = q0 + z for some z ∈ Es and q0 ∈ Qd; and q0 6= 0 from v0 /∈ Es. Consider,
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W := Qd ∩ (Es ⊕ linR(ω)). Irreducibility of A, AW ⊂ W and q0 ∈ W force W = Qd.
Thus Es ⊕ linR(ω) = Rd and λ is Pisot.

We turn our attention to proving the lemmas now. The two proofs will partially
overlap and could be combined into a single more compact argument, but we shall
keep them separate because (in applications) λ is often a priori known to be an alge-

braic integer. In that case, Pisot’s theorem can be viewed as a feature of the dynamics
of the endomorphism f : Td → Td, x (mod Zd) 7→ Ax (mod Zd), induced by A on
the d-dimensional torus, Td := Rd/Zd. Besides the toral endomorphism f , our main
tool will be the concept of duality of lattices. Recall that the dual of a lattice L is de-

fined as L∗ := {v ∈ Rd : 〈v | l〉 ∈ Z ∀l ∈ L}. One easily checks that (Zd)∗ = Zd. For
any lattice L, after expressing it as L = BZd for some nonsingular matrix B, we have
L∗

= (BZd)∗ = (BT)−1Zd where BT is the transpose of B. In particular, L∗ is also a
lattice.

Proof of Lemma 1 Let V := {v ∈ Rd : 〈Anv|k0〉 → 0 (mod 1)} and K := {k ∈
Qd : 〈Anv|k〉 → 0 (mod 1) ∀v ∈ V}. These are subgroups of Rd, A(V ) = V ,
AT(K) = K, and v0 ∈ V , k0 ∈ K. Irreducibility of AT forces linQ (K) = Qd so that

we can find linearly independent k1, . . . , kd ∈ K. Let Γ be the lattice generated by
k j ’s, Γ

∗ be its dual, and χ j : Rd/Γ
∗ → C be the associated basis characters on the

torus Rd/Γ
∗, namely, χ j(x (mod Γ)) := exp(2πi〈k j |x〉), x ∈ Rd, j = 1, . . . , d.

The convergence 〈Anv0|k j〉 → 0 (mod 1) translates to χ j(Anv0 (mod Γ)) → 1,

which (by continuity of χ j and compactness of Rd/Γ
∗) is equivalent to

dist(Anv0 (mod Γ), χ−1
j (1)) → 0.

Therefore, dist(Anv0 (modΓ), G) → 0 where G :=
⋂d

j=1 χ−1
j (1) = {0 (modΓ)},

which is to say that

(5) dist(Anv0, Γ
∗) → 0.

Fix ǫ > 0 so that, for x, y ∈ AΓ
∗ ∪ Γ

∗, dist(x, y) < ǫ forces x = y. (This
is possible because AΓ

∗/Γ
∗ is discrete in Rd/Γ

∗, as can be seen by picking a ∈ N

so that aA has all integer entries and observing that AΓ
∗ ⊂ a−1

Γ
∗, which yields

AΓ
∗/Γ

∗ ⊂ (a−1
Γ
∗)/Γ

∗.)
From (5), there are un ∈ Γ

∗, n ∈ N, such that dist(Anv0, un) → 0. Since,
dist(un+1, Aun) ≤ dist(un+1, An+1v0)+dist(AAnv0, Aun), we have dist(un+1, Aun) → 0
and so, as soon as dist(un+1, Aun) < ǫ, it must be that un+1 = Aun. Therefore, for

some n0 ∈ N and all l ≥ 0, we have Alun0
= un0+l ∈ Γ

∗. Now, from v0 /∈ Es, Anv0 6→ 0
so that un0

6= 0. But un0
∈ M := {v ∈ Γ

∗ : Alv ∈ Γ
∗ ∀l ≥ 0}, which makes M a

nonzero subgroup of Γ
∗. Clearly AM ⊂ M. By irreducibility of A, linQ (M) = Qd so

that M is a lattice.

Proof of Lemma 2 Let f : Td → Td be the toral endomorphism associated to A,
χ : Td → C be the character associated to k0, χ(x (mod Zd)) := exp (2πi〈x|k0〉),
and set p := v0 (modZd). The hypothesis 〈Anv0|k0〉 → 0 (mod1) translates to
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χ( f n(p)) → 1, which is equivalent to dist( f n(p), G) → 0 where G := χ−1(1).
We claim that, in fact,

(6) dist( f n(p), G∞) → 0, G∞ :=
⋂

n≥0

f −n(G).

Indeed, otherwise f nk (p) → w /∈ f −l(G) for some w, l ≥ 0, and nk → ∞, and so
f nk+l(p) → f l(w) /∈ G contradicting dist( f n(p), G) → 0.

To identify G∞ as a finite subgroup of Td, consider its lift to Rd,

Γ := G∞ + Z
d := {x ∈ R

d : x (mod Z
d) ∈ G∞}.

Denote by Lk0
the smallest sublattice of Zd containing (AT)nk0 for all n ≥ 0. Its

dual, L∗
k0

, is a lattice in Qd. For v ∈ Rd, we have v ∈ Γ if and only if 〈Anv|k0〉 =

〈v|(AT)nk0〉 ∈ Z for all n ≥ 0 iff v ∈ L∗
k0

. Thus G∞ = Γ/Zd where

(7) Γ = L∗
k0
⊂ Q

d.

Let qn ∈ G∞ realize the distance in (6) so that dist( f n(p), qn) → 0 and thus also
dist( f (qn), qn+1) → 0. Since G∞ is discrete, there is n0 ∈ N such that

(8) qn+1 = f (qn), n ≥ n0.

Moreover, if we pick ǫ > 0 small enough and n1 > n0 large enough, then for every

n ≥ n1 we can write f n(p) = qn + xn + yn + zn for some unique xn ∈ Es, yn ∈ Ec ,
zn ∈ Eu, each of norm less than ǫ. From (8), we have xn+1 = Axn, yn+1 = Ayn,
zn+1 = Axn for n ≥ n1. What is more, dist( f n(p), qn) → 0 forces yn → 0 and
zn → 0, which is only possible if yn1

= 0 and zn1
= 0. Thus f n1 (p) = qn1

+ xn1
,

i.e., An1 v0 = w + xn1
for some w ∈ Γ (with qn1

= w (mod Zd)). To summarize,
v0 ∈ A−n1Γ + Es

= A−n1 L∗
k0

+ Es ⊂ Qd + Es.

Remark 1 (Addendum to Lemma 2) Under the hypotheses of Lemma 2,

(9) {v ∈ R
d : 〈Anv|k0〉 → 0 (mod 1)} =

⋃

n≥0

A−nL∗
k0

+ Es

where Lk0
is the smallest lattice in Zd containing (AT)nk0 for all n ≥ 0.

Proof of Remark 1 The “⊂” inclusion is demonstrated in the proof of Lemma 2. To
see “⊃”, it suffices to note that, if v ∈ L∗

k0
+ Es, then v = w + x where w (mod Zd) ∈

G∞ and x ∈ Es. Thus 〈Anv|k0〉 becomes exponentially close to 〈Anw|k0〉 ∈ Z as
n → ∞.

Proof of Theorem 2 The plan is to explicitly compute the objects invloved in the
preceding arguments for A that is the companion matrix of the polynomial p of λ,

p(x) = xd + ad−1xd−1 + · · · + a0, ai ∈ Z.

https://doi.org/10.4153/CMB-2006-010-9 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2006-010-9


112 J. Kwapisz

The eigenvectors ω and ω∗ with Aω = λω, ATω∗
= λω∗ can be found as

ω∗ :=
1

p ′(λ)
· (a1 + a2λ + · · · + λd−1, . . . , ad−1 + λ, 1),

ω := (1, λ, λ2, . . . , λd−1).

These are normalized so that 〈ω|ω∗〉 = 1, which ensures that the projection onto
linR(ω) along Es

= (ω∗)⊥ is given by pru(y) = 〈y|ω∗〉ω, y ∈ Rd. Note that the

components of ω∗ generate 1
p ′(λ)

Z[λ], {〈u|ω∗〉| u ∈ Zd} =
1

p ′(λ)
Z[λ].

Denote by e1, . . . , ed the standard basis in Rd, and set k0 := e1. Since ei =

(AT)i−1(e1) for i = 1, . . . , d, we have Lk0
= Zd. Hence, L∗

k0
= Zd.

If, as in (4) in the proof of Theorem 1, we write x = 〈v0|k0〉 for v0 ∈ linR(ω),
then λnx → 0 (mod 1) if and only if 〈Anv0|k0〉 → 0 (mod 1) if and only if An1 v0 ∈
L∗

k0
+ Es

= Zd + Es for some n1 ≥ 0, where the last equivalence hinges on Remark 1.
Thus x ∈ Xλ are of the form

(10) x = λ−n1〈An1 v0|k0〉 = λ−n1〈pru(u)|k0〉 = λ−n1〈u|ω∗〉〈ω|k0〉 = λ−n1〈u|ω∗〉·1

where u ∈ Zd and n1 ≥ 0. That is, Xλ =
⋃

n1≥0 λ−n1 1
p ′(λ)

Z[λ], as desired.

Readers accustomed to a more traditional framework will no doubt notice that, in
our setting, the scalar product 〈 · | · 〉 on Rd ×Rd serves as the completion of the trace

form on Q(λ) × Q(λ), the two being related by 〈x|y〉 = trace
(

〈x|ω∗〉 · 〈ω|y〉
)

for

x, y ∈ Qd. This explains our remark about the nature of Z[λ]∗ from the beginning
of this note.
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