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A Dynamical Proof of Pisot’s Theorem

Jaroslaw Kwapisz

Abstract. 'We give a geometric proof of classical results that characterize Pisot numbers as algebraic
A > 1 for which there is x # 0 with \"x — 0 (mod 1) and identify such x as members of Z[A~!] -
Z[A]* where Z[A]* is the dual module of Z[\].

A real number A > 1 is called a Pisot number if and only if it is an algebraic
integer and all its Galois conjugates (other than \) are of modulus less than one: the
golden mean (1 + V/5) /2 is an example. Pisot’s 1938 thesis [4] and, independently,
Vijayaraghavan’s 1941 paper [7] contain the following beautiful characterization.

Theorem 1 (Pisot,Vijayaraghavan)  Suppose that X > 1 is an algebraic number (over
the field of rational numbers Q)). The following are equivalent

(i)  Ais a Pisot number;
(ii) There exists non-zero real x such that lim,_, ., A"x = 0 (mod 1), i.e.,

lim min{|\"x — k| : ke Z} =0

where 7 is the rational integers.

Moreover, any x satisfying (ii) belongs to Q.()\), the field extension of Q) by A.

The property (ii) is responsible for Pisot numbers turning up in a variety of contexts
seemingly unrelated to their definition. The reader may want to savor the ensuing
connections by reading [5, 2]. Our interest in Pisot’s theorem stems from its role in
the determination of spectrum for the translation flow on substitution tiling spaces,
as exhibited by [6] and further exploited in [1]. We shall not discuss that connection
here, and turn instead to our goal of supplying a proof of the theorem that offers
a direct geometrical insight — something that is missing from the considerations
of the classical proofs, as found in [3] or [5]. We shall also derive the following
characterization of the set

(1) Xy:={x€eR: lim A"x=0 (mod 1)}.

n—oo

In [3], this result is also attributed to Pisot and Vijayaraghavan.

Theorem 2 (Pisot,Vijayaraghavan)  Suppose A > 1 is Pisot. Let p’ be the derivative
of the monic irreducible polynomial of X over Z, and Z[\]* := p,l(/\)Z[)\]. Then x € X,
if and only if N"'x € Z[\]* for somen > 0, i.e.,

(2) Xy = JATZINT =2\ - 2N

n>0
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We note that Z[A]* is just an explicit form (as given by Euler) of the dual of the
module Z[A] typically defined as Z[\]* := {x € Q()) : trace(xy) € Z Vy € Z[\]}
and that Z[\]* is non-zero only if X is an algebraic integer (see [8, Prop. 3-7-12]).
That x € X, for x € Z[A]* is clear by the following standard argument (emulating
[5, Theorem 1]). Let A = Ay, A,, ..., Az be all the roots of p (the Galois conjugates
of A) and x = x1, . . ., x4 be the images of x under the natural isomorphisms Q(A) —
Q(A), x; € Q(A;). Then

d d
(3) 7.5 T, := trace(\"'x) = Z Ax; = Nx + Z Alxi,
i=1 i=2

and so |\"x — T,| — 0 due to the Pisot hypothesis: |\;| < 1fori=2,...,d.

From now on, consider a fixed algebraic number A > 1. Denote by p its monic
minimal polynomial, which is obviously irreducible. Let d := deg(p), and fixad x d
matrix A over ) with eigenvalue A. The companion matrix of p is one such A, and
any other is similar to it over Q). If A is an algebraic integer then A can be taken over
7. Conversely, if A preserves some lattice in L C R, AL C L, then ) is an algebraic
integer. Here by a lattice we understand a discrete rank d subgroup of R?, 7% being
the simplest example.

We shall frequently use the fact that A is irreducible over Q): if W is a non-zero
subspace of Q¢ and A(W) C W, then W = Q (as otherwise the characteristic poly-
nomial of A|y would divide p). Also, by irreducibility of p, A has simple eigenvalues
and is diagonalizable over C so that we have a splitting

RY = F° @ E ¢ E

where E°, E°, E* are the linear spans of the real eigenspaces corresponding to the
eigenvalues of modulus less, equal, and greater than 1, respectively. We shall see that,
forv € R9\ {0}, A"v — 0ifand onlyifv € E* lies at the very heart of Pisot’s theorem.
Below, (- | - ) is the standard scalar product in R?.

Lemmal If (A"vylko) — 0 (mod 1) for some vy € R?\ E* and ko € 74\ {0}, then
A leaves invariant some lattice in Q% i.e., \ is an algebraic integer.

Lemma2  Suppose that A has entries in 7 and ko € 77\ {0}. If (A"vplko) —
0 (mod 1) for vy € RY, then vy € Q% + E.

Proof of Theorem 1 Taking x = 1 in (3) shows that (i) implies (ii), so it is left
to show (i) from (ii). Pick w € R? to be an eigenvector of A corresponding to ),
Aw = Aw. Fixky € 7%\ {0}. Observe that (ky|w) # 0 by irreducibility of the
transpose A of A (since {q € Q¢ : (g|lw) = 0} is A invariant). Thus, in the linear
span ling(w) of w over IR, we can find v, so that x = (vy|ko). In this way,

(4) Nx = )\n<V0|k0> = <An1/0|k0>, Vo € lill;[{{(&)).

From x # 0, vy ¢ E° and so A must be an algebraic integer by Lemma 1. By Lemma 2,
Vo = qo + z for some z € E and g € Q4 and qo # 0 from vy ¢ E°. Consider,
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W = QN (E° @ling(w)). Irreducibility of A, AW C W and qo € W force W = Q“.
Thus E* & ling (w) = R? and \ is Pisot. |

We turn our attention to proving the lemmas now. The two proofs will partially
overlap and could be combined into a single more compact argument, but we shall
keep them separate because (in applications) A is often a priori known to be an alge-
braic integer. In that case, Pisot’s theorem can be viewed as a feature of the dynamics
of the endomorphism f: T¢ = T4, x (mod7%) — Ax(mod7?), induced by A on
the d-dimensional torus, T¢ := R4 / 79. Besides the toral endomorphism f, our main
tool will be the concept of duality of lattices. Recall that the dual of a lattice L is de-
finedas L* := {v € R?: (v|I) € ZVI € L}. One easily checks that (74)* = 7. For
any lattice L, after expressing it as L = BZ? for some nonsingular matrix B, we have
L* = (B7%)* = (BT)~'7¢ where B is the transpose of B. In particular, L* is also a
lattice.

Proofof Lemmal LetV := {v € R? : (A"v|ky) — 0(mod1)} and K := {k €
Q4 : (A"|k) — 0(mod1) Vv € V}. These are subgroups of R?, A(V) = V,
AT(K) = K,and vy € V, ky € K. Irreducibility of AT forces ling(K) = Q so that
we can find linearly independent k;,...,k; € K. Let I be the lattice generated by
kj’s, I'* be its dual, and x;: R4 /T* — C be the associated basis characters on the
torus RY /T"*, namely, Xj(x (modT)) := exp(2mi(kj|x)), x € R j=1,...,d.

The convergence (A"vylkj) — 0 (mod 1) translates to xj(A"vy (modT)) — 1,
which (by continuity of x; and compactness of R?/T*) is equivalent to

dist(A"vy (mod T'), Xj_l(l)) — 0.

Therefore, dist(A"vy (modI'),G) — 0 where G := ﬂjzl X]-fl(l) = {0(modI")},
which is to say that

(5) dist(A"vy, T'*) — 0.

Fix € > 0 so that, for x,y € AT U I, dist(x,y) < € forcesx = y. (This
is possible because AT*/T* is discrete in RY/T'*, as can be seen by picking a € N
so that aA has all integer entries and observing that AT'* C a~'T'*, which yields
AT*/T* C (a™1T*)/T*.)

From (5), there are u, € I'*, n € N, such that dist(A"vy, u,) — 0. Since,
dist (41, Auy) < dist(u,e, A" vg) +dist(AA™ v, Auy,), we have dist (14,11, Au,) — 0
and so, as soon as dist(u,,1,Au,) < €, it must be that u,,; = Au,. Therefore, for
someng € Nandalll > 0, we haveAlunU = Up,+1 € I'*. Now, from vy ¢ E°, A"vy /> 0
so that u,, # 0. But u,, € M := {v € T* : Alv € T*VI > 0}, which makes M a
nonzero subgroup of I'*. Clearly AM C M. By irreducibility of A, ling (M) = Q“ so
that M is a lattice. [ ]

Proof of Lemma2 Let f: TY — T be the toral endomorphism associated to A,

x: T¢ — C be the character associated to ko, x(x (modZ?)) := exp (2mi{x|ky)),
and set p := vy (modZ9). The hypothesis (A"v|ko) — 0(mod1) translates to

https://doi.org/10.4153/CMB-2006-010-9 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2006-010-9

A Dynamical Proof of Pisot’s Theorem 111

x(f*(p)) — 1, which is equivalent to dist(f"(p),G) — 0 where G := x~!(1).
We claim that, in fact,

6) dist(f"(p), Goo) = 0, Goo := ) F"(G).

n>0

Indeed, otherwise f"(p) — w ¢ f~/(G) for some w, I > 0, and n; — 00, and so
' (p) — fl(w) ¢ G contradicting dist(f"(p), G) — 0.
To identify G as a finite subgroup of T4, consider its lift to R?,

[ =G + 7% := {x e R : x (mod 79) € Goo}-

Denote by L, the smallest sublattice of 79 containing (AT)"ky for all n > 0. Its
dual, L} , is a lattice in Q% Forv € RY, we have v € T if and only if (A"v|ky) =
(v|[(AT)"ko) € Zforalln > 0iff v € L; . Thus Go, = I'/Z* where

(7) r=1r; caQ”.

Let g, € G realize the distance in (6) so that dist(f"(p), g,) — 0 and thus also
dist(£(gu), gn+1) — 0. Since G, is discrete, there is 1y € N such that

(8) dnir = f(qn), n=>ny.

Moreover, if we pick € > 0 small enough and n; > ny large enough, then for every
n > n; we can write f"(p) = g, + x, + ¥, + z, for some unique x,, € E’, y, € ES,
z, € E¥, each of norm less than e. From (8), we have x,11 = AXy, Y1 = AVns
Zys1 = Ax, for n > n;. What is more, dist(f"(p),q,) — 0 forces y, — 0 and
z, — 0, which is only possible if y,, = 0 and z,, = 0. Thus f"(p) = qu, + Xu,>
ie, A"vy = w+ x,, for some w € I' (with g,, = w(modZ4)). To summarize,
wEeATMD+E =AT""L; +F CQ!+E. [ |

Remark 1 (Addendum to Lemma 2)  Under the hypotheses of Lemma 2,

(9) {veR?: (A"[k) — 0 (mod )} = | JA™ "L}, +F

n>0
where Ly, is the smallest lattice in 74 containing (AT)"k, for alln > 0.

Proof of Remark 1 The “C” inclusion is demonstrated in the proof of Lemma 2. To
see “D7 it suffices to note that, if v € L;;O + E5, then v = w + x where w (mod 7¢) €
Gs and x € E°. Thus (A"v|k) becomes exponentially close to (A"w|ky) € 7 as
n — oQ. |

Proof of Theorem 2 The plan is to explicitly compute the objects invloved in the
preceding arguments for A that is the companion matrix of the polynomial p of A,

1

plx) = x4+ ad,lxd* +---+ag, a €.

https://doi.org/10.4153/CMB-2006-010-9 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2006-010-9

112 J. Kwapisz
The eigenvectors w and w* with Aw = Aw, ATw* = Aw* can be found as

*

1 i
w* = 0 ap+a X+ + AT a1,

wi= (1L, N, A,

These are normalized so that {(w|w*) = 1, which ensures that the projection onto
ling(w) along E° = (w*)* is given by pr*(y) = (y|w*)w, y € R Note that the

components of w* generate ﬁZ[)\], {{ulw*) | ue 7%} = J[ﬁZ[)\].

Denote by ey, ..., e; the standard basis in RY, and set kg := e;. Since ¢ =
(AT)i=Ye,) fori = 1,...,d, we have Ly, = 7. Hence, Ly = 74,

If, as in (4) in the proof of Theorem 1, we write x = (vlko) for vy € ling(w),
then \"x — 0 (mod 1) if and only if (A"v]ky) — 0(mod 1) if and only if A"y, €
L;O + E5 = 79 + E* for some 1, > 0, where the last equivalence hinges on Remark 1.
Thus x € X), are of the form

(10) x = A" (A" wplko) = A" (pr*(w)|ko) = A" (u|w™ ) (w]ko) = A7 (u|w™) -1

where u € 74 and n; > 0. That is, X, = Un1>0 ATm Z[\], as desired. |

1
')

Readers accustomed to a more traditional framework will no doubt notice that, in
our setting, the scalar product (- | -) on R? x R? serves as the completion of the trace
form on Q(X) x Q(A), the two being related by (x|y) = trace( (x|w*) - (wl|y)) for
x,y € Q% This explains our remark about the nature of Z[A]* from the beginning
of this note.
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