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Abstract. In this paper, we introduce a notion of unistructural cluster algebras,
for which the set of cluster variables uniquely determines the clusters, as well as the
notion of weak unistructural cluster algebras, for which the set of cluster variables
determines the clusters, provided that the type of the cluster algebra is fixed. We
prove that, for cluster algebras of the Dynkin type, the two notions of unistructural
and weakly unistructural coincide, and that cluster algebras of rank 2 are always
unistructural. We then prove that a cluster algebra A is weakly unistructural if and
only if any automorphism of the ambient field, which restricts to a permutation of
cluster variables of A, is a cluster automorphism. We also investigate the Fomin–
Zelevinsky conjecture that two cluster variables are compatible if and only if one does
not appear in the denominator of the Laurent expansions of the other.

2010 Math Classification Numbers 13F60, 16G20.

1. Introduction. Fomin and Zelevinsky [12] introduced cluster algebras in 2002
which since then have been proved to be related to various areas of mathematics
such as Combinatorics, Representation Theory of Algebras, Mathematical Physics,
Teichmüller Theory and many others.

In [4], Assem et al. introduced the notion of cluster automorphism. Let A be a
cluster algebra. A cluster automorphism of A is a �-automorphism of the algebra A
mapping a cluster to a cluster and commuting with mutations. In [19], Saleh defines
another notion of automorphism of a cluster algebra: This is an automorphism of the
ambient field which restricts to a permutation of the set of cluster variables.

In the present paper, we investigate the following conjecture.

CONJECTURE 1.1. Let A be a cluster algebra. Then f : A → A is a cluster
automorphism if and only if f is an automorphism of the ambient field which restricts
to a permutation of the set of cluster variables.

One implication of this conjecture follows from the fact that cluster automorphisms
map each cluster to a cluster [5, Corollary 2.7], so in particular cluster automorphisms
permute the cluster variables.

https://doi.org/10.1017/S0017089514000214 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089514000214


706 IBRAHIM ASSEM ET AL.

The other implication led us to consider the following more general question. We
say that a cluster algebra is unistructural if the set of cluster variables determines the
cluster algebra structure, that is, there exists a unique decomposition of the set of
cluster variables into clusters. The following conjecture is natural.

CONJECTURE 1.2. Any cluster algebra is unistructural.

We also define a notion of weak unistructurality: A cluster algebra A is weakly
unistructural if its set of cluster variables does not coincide with the set of cluster
variables of a cluster algebra A′ of the same type as A, that is, with A and A′, both
containing seeds with the same quiver. Clearly, a unistructural cluster algebra is weakly
unistructural, so the statement that every cluster algebra is weakly unistructural would
follow from Conjecture 1.2.

CONJECTURE 1.3. The following three conditions are equivalent for a cluster
algebra A:

(1) A is weakly unistructural;
(2) A is unistructural;
(3) if f : A → A is an automorphism of the ambient field which restricts to

a permutation of the set of cluster variables of A, then f is a cluster
automorphism.

We show that this conjecture holds for cluster algebras of Dynkin type. We also
show the equivalence of items (1) and (3) of Conjecture 1.3 in general, namely we prove
the following theorem.

THEOREM 1.4. A cluster algebra A is weakly unistructural if and only if any
automorphism of the ambient field which restricts to a permutation of cluster variables
of A is a cluster automorphism.

In particular, we prove that cluster algebras of rank 2 are unistructural and so in
this case, a permutation of cluster variables induces a cluster automorphism.

Since the unistructurality Conjecture 1.2 deals with arranging cluster variables into
clusters, this led us to consider a related problem of compatibility of cluster variables.
Recall that two cluster variables are called compatible if there exists a cluster containing
both of them. Here we investigate Fomin and Zelevinsky’s Conjecture 7.4(2) [13], which
we restate as follows.

CONJECTURE 1.5. LetA be a cluster algebra and x, x′ be two cluster variables. Then
x and x′ are compatible if and only if, for any cluster x containing x, the expansion
L(x′, x) of x′ as Laurent polynomial in x (in reduced form) is of the form P(x)

m(x\{x}) ,
where P is a polynomial in the variables of x and m is a monomial in the variables of
x excluding x.

In the sequel, we shall simply say that L(x′, x) has no x in the denominator to
express that L(x′, x) is of the previous form.

This Conjecture 1.5 is proved for the case of cluster algebras arising from surfaces,
see [11, Theorem 8.6].

We prove the following theorem.

THEOREM 1.6. LetAQ be an acyclic cluster algebra and x, x′ are two cluster variables.
(a) If x is transjective, then x and x′ are compatible if and only if for any cluster x

containing x, the Laurent expansion L(x′, x) has no x in its denominator.
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(b) If x is regular and Q is Euclidean, then x and x′ are compatible if and only if,
for any cluster x′ containing x′, the Laurent expansion L(x, x′) has no x′ in its
denominator.

Observe that the statement of Theorem 1.6 is not symmetric in x and x′. This led
us to the following conjecture which is weaker than Conjecture 1.5.

CONJECTURE 1.7. Let A be a cluster algebra and x, x′ be two cluster variables.
Assume that for any cluster x containing x, the Laurent expansion L(x′, x) has no x in
its denominator. Then for any cluster x′ containing x′, the Laurent expansion L(x, x′)
has no x′ in its denominator.

The paper is organised as follows. In Section 2, we recall some preliminary notions
and facts that will be useful for the proof of our results. Section 3 is devoted to part (a)
of Theorem 1.6, while part (b) is proven in Section 4. Finally, we discuss unistructurality
and automorphisms in Section 5.

2. Preliminaries.

2.1. Cluster algebras. Let Q be a finite connected quiver without loops or two-
cycles. We denote by n = |Q0| the number of points of Q, the points are denoted by
1, 2, . . . , n. Let x = {x1, . . . , xn} be a set of n variables, called a cluster, where we agree
that the variable xi corresponds to the point i of the quiver. The pair (x, Q) is called
a seed. The field F = �(x1, . . . , xn) of rational functions in x1, . . . , xn is called the
ambient field.

Let k be such that 1 ≤ k ≤ n. The seed mutation μk in direction k transforms (x, Q)
into μk(x, Q) = (x′, Q′) defined as follows:

First, Q′ is obtained from Q by applying the following operations:

• for any path i → k → j, a new arrow i → j is inserted;
• all arrows incident to k are reversed;
• all ensuing two cycles are deleted.

Next, x′ = (x \ {xk})
⋃{x′

k}, where x′
k ∈ F is defined by the so-called exchange

relation

x′
k =

∏
i→k xi + ∏

k→i xi

xk
,

where products are taken over arrows entering and leaving k respectively.
Iterating this procedure, we obtain a set {(xα, Qα)}α of seeds, where the xα are the

clusters and the Qα are the exchange quivers. The cluster algebra A = A(x, Q), with
initial seed (x, Q) is the �-subalgebra of F generated by the union X = ⋃

α xα of all
possible clusters obtained from x by successive mutations. Elements of X are called
cluster variables. Two cluster variables are called compatible if there exists a cluster
containing both.

One of the most remarkable results of the theory is the Laurent phenomenon
[12] which asserts that for any cluster algebra A and any seed (x, Q) of A, each
cluster variable x of A is a Laurent polynomial over � in the cluster variables from
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x = (x1, . . . , xn), that is, x can be written as

x = L(x, x) = p(x)
xd1

1 , . . . , xdn
n

as a reduced fraction, that is, p is not divisible by any of the xi. The vector d =
(d1, . . . , dn) is called the denominator vector of x, denoted by den(x).

A famous conjecture is the so-called positivity conjecture. It says that, for any
cluster algebra A, any cluster variable x and any seed (x, Q) of A, the numerator p(x)
of L(x, x) has coefficients which are non-negative integers. The positivity conjecture
has been proved in several important cases, most notably for cluster algebras arising
from surfaces [17] and for acyclic cluster algebras [14], that is, cluster algebras arising
from a quiver which can be transformed to an acyclic quiver using a sequence of
mutations, and finally in [15] for all cluster algebras arising from quivers.

2.2. The cluster category. Let Q be an acyclic quiver, and k be an algebraically
closed field. We denote by kQ the path algebra of Q, by mod kQ the category of
finitely generated kQ-modules and by D = Db(mod kQ) the bounded derived category
over mod kQ. The cluster category C = CQ is the orbit category of D under the action
of the automorphism τ−1[1], where τ is the Auslander–Reiten translation and [1]
is the shift in D, see [7]. Then C is a triangulated 2-Calabi–Yau category having
almost split triangles. The Auslander–Reiten quiver �(C) of C is the quotient of
�(D) under the action of the quiver automorphism induced by the functor τ−1[1].
Note that the indecomposable objects of C may be identified with indecomposable
kQ-modules or with indecomposable summands of kQ[1] = {Pi[1] | i ∈ Q0}, the shifts
of the indecomposable projective kQ-modules. Then �(C) always has a unique
component containing all objects of kQ[1]. This component is called transjective. If Q
is Dynkin, then �(C) reduces to the transjective component (and is finite). Otherwise
the transjective component is of the form �Q (see [5, VIII 1.1]) and there are infinitely
many other components called regular, which are either stable tubes (if Q is Euclidean)
or of type ��∞ (if Q is wild).

Let n = |Q0|. A (basic) tilting object T in CQ is an object of the form T = ⊕n
i=1Ti,

where Ti are indecomposable non-isomorphic objects of C such that HomC(Ti, Tj[1]) =
0 for all i, j. In particular, we have HomC(Ti, Ti[1]) = 0 for all i, that is, each Ti is a
rigid object of C. With each tilting object T is associated a map

XT
? : C0 → �[x±1

1 , . . . , x±1
n ]

called the cluster character. This map induces a bijection between the indecomposable
rigid objects of C and the cluster variables in the cluster algebra A(x, Q). This bijection
also induces a bijection between the tilting objects in C and the clusters of A(x, Q) (see
[10, 18]).

An algebra B is called cluster-tilted of type Q if there exists a tilting object T
in CQ such that B = EndCQ T . Let (add(τT)) be the ideal of C = CQ consisting of
those morphisms factoring through objects of add(τT). Then the functor HomC(T,−)
induces an equivalence C/(add(τT)) 	 mod B (see [9]). For any i ∈ Q0, we denote by
Si the simple B-module corresponding to i. We denote by 〈−,−〉 the bilinear form on
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mod B defined by

〈M, N〉 = dim HomB(M, N) − dim Ext1
B(M, N)

for any B-modules M and N. Further, we write

〈M, N〉a = 〈M, N〉 − 〈N, M〉,

that is, 〈−,−〉a is the anti-symmetrised form of 〈−,−〉. Let e ∈ �Q0 and GreM denote
the set of submodules of M having dimension-vector equal to e. This set is a projective
variety, called the Grassmannian of submodules of M of dimension vector e. We denote
by χ (GreM) its Euler–Poincaré characteristic (with respect to the singular cohomology
if k is the field of complex numbers, and to the étale cohomology if k is arbitrary).
Then the cluster character XT

? is the unique map such that:
(a) XT

Ti [1] = xi for any i ∈ Q0;
(b) if M is indecomposable and not isomorphic to any Ti[1], then

XT
M =

∑
e∈�Q0

χ (Gre(HomC(T, M)))
∏
i∈Q0

x〈Si,e〉a−〈Si,HomC (T,M)〉
i ;

(c) for any two objects M, N in C,

XT
M⊕N = XT

MXT
N .

A cluster variable x in A(x, Q) is called transjective (or regular) if x = XT
M with M

an indecomposable rigid transjective (or regular respectively) object of C.
It is shown in [8] that if T has only transjective direct summands and x = XT

M is
any cluster variable, then

den(x) = dim HomC(T, M).

Moreover, if Q is Euclidean, and no indecomposable regular direct summand of T is
of quasi-length r − 1 lying in a tube of rank r, then this equality holds for all cluster
variables.

3. The transjective case.

3.1. The motivating example and Conjecture 1.5. In [3], it was asked when
indecomposable rigid modules over cluster-tilted algebras are uniquely determined
by their composition factors. This is related to problem 7.6 of [13]. The main result of
[3] says that if B is a cluster-tilted algebra and M, N are indecomposable transjective
modules (in particular, are rigid), then M ∼= N if and only if dim M = dim N. This is
not true if M, N are not transjective. Indeed, let B be the cluster-tilted algebra of type
�̃1,2 given by the quiver

2
α

������������

1
β ��
δ

�� 3

γ

������������
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bound by αβ = βγ = γα = 0. Then �(mod B) contains a tube of rank 2 containing
the projective–injective module P2 = I2 corresponding to point 2 of the quiver:

2
1
3
2

���
��

��
��

�

�
�
�
�
�
�

2
1
3
2

�
�
�
�
�
�

2
1
3

���
��

��
��

�

1
3
2

����������

���
��

��
��

�

1
3

����������
2
1 1
3 3

2

����������
1
3

where we identify along the dotted lines and

2
1
3
2

lies on the mouth. Then
2
1
3

and
1
3
2

are

non-isomorphic indecomposable rigid B-modules with the same dimension vector. Let
T2 be the object in the cluster category corresponding to the projective B-module P2,
then the corresponding cluster variable is

2x1x3 + x2
3 + x2 + x2

1

x1x2x3
.

In particular, its denominator vector is (1, 1, 1), while its dimension vector is (1, 2, 1).
Note, however, that in this example the ith component of the denominator vector is
non-zero and also the ith component of the dimension vector is non-zero. This led
us to consider conjecture 7.4(2) of [13], which we have restated as Conjecture 1.5, see
Introduction.

One implication of the conjecture is easy.

LEMMA 3.1. Let A be a cluster algebra and x, x′ be two cluster variables. If x, x′ are
compatible then, for any cluster x containing x, L(x′, x) has no x in the denominator.

Proof. Let x be a cluster containing x. Because x and x′ are compatible, there exists
a sequence of mutations (not involving μx) such that x is mutated to a new cluster x′

containing x and x′ simultaneously. Expanding x′ in terms of the original cluster x, we
get L(x′, x) of the required form. �

3.2. Proof of Theorem 1.6(a). We start with an easy technical lemma.
Throughout, we assume that A = A(x, Q) is an acyclic cluster algebra and denote
by C = CQ the associated cluster category.

LEMMA 3.2. Let x, x′ be two cluster variables in A, and T be a tilting object in C
such that XT

Ti [1] = x. If M′ ∈ C is such that XT
M′ = x′, then x and x′ are compatible if and

only if HomC(Ti, M′) = 0.
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Proof. Indeed, x and x′ are compatible if and only if the corresponding objects
Ti[1] and M′ are compatible, that is, HomC(Ti[1], M′[1]) = 0. But this is equivalent to
HomC(Ti, M′) = 0. �

We are now able to state and prove the following theorem.

THEOREM 3.3. Let A be a cluster algebra, and x, x′ be two cluster variables with x
transjective. Then x and x′ are compatible if and only if, for any cluster x containing x,
the Laurent expansion L(x′, x) has no x in the denominator.

Proof. Because of Lemma 3.1, we only need to prove the sufficiency. Assume to the
contrary that x, x′ are not compatible, and let x be a transjective cluster containing x.
Such a cluster always exists, take for instance a slice in the cluster category containing
the object corresponding to x, see [1]. Let T ∈ C be the tilting object corresponding to
x. Then T is transjective and there exists an indecomposable summand Ti of T such
that XT

Ti [1] = x. Let also M′ be the object in C such that XT
M′ = x′. Then, because of [8]

(see Section 2 above), we have den(x′) = dim HomC(T, M′). On the other hand, because
of the previous lemma, the incompatibility of x and x′ implies that HomC(Ti, M′) 
= 0.
This shows that

L(x′, x) = P(x)
xd m(x \ {x}) ,

with d > 0. The proof is now complete. �
The main application of this theorem is to cluster automorphisms (see Section 5).

For the time being, we obtain an obvious corollary asserting the truth of the previous
conjecture in two particular cases.

COROLLARY 3.4. Let A be a cluster algebra of the Dynkin type, or of rank 2, then
two cluster variables x and x′ are compatible if and only if, for any cluster x containing
x, the Laurent expansion L(x′, x) has no x in the denominator.

Proof. Indeed, in these cases, all cluster variables are transjective. �

3.3. Remark. The statement of the theorem above is clearly not symmetric: It says
that if one of the variables is transjective, then compatibility means that the Laurent
expansion of the other does not have the first in the denominator.

4. The tame case.

4.1. Preliminaries on the cluster category. As in Section 3, we let A be a cluster
algebra of type Q, and we denote by C the associated cluster category. Throughout this
section, we assume that Q is a Euclidean quiver.

Assume that T1 is an indecomposable rigid object of quasi-length r − 1 lying
in a tube T of �(C) of rank r. We denote by T1 �� T2 �� · · · �� Tr−1 the
sectional path from T1 to the mouth of T and assume that T is a tilting object having
all the Ti (with 1 ≤ i ≤ r − 1) as summands. Such an object exists because the Ti are
clearly compatible in C.

Consider the set 	 of all indecomposables in T lying on a path of irreducible
morphisms from T1 to τ 2T1 of length equal to 2r − 4. Observe that, for any

https://doi.org/10.1017/S0017089514000214 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089514000214


712 IBRAHIM ASSEM ET AL.

M ∈ 	, we have HomC(M, τ 2T1) 
= 0. Actually, if M is a rigid object in T such that
HomC(T1, M) 
= 0, then M belongs to 	 (and even to the ‘upper half’ of 	). Note that
in [6], the authors define the notion of a wing WτT1 attached to T1. This is related to 	

as follows: If X is a rigid object in T , then X ∈ 	 if and only if X /∈ WτT1 .

LEMMA 4.1. 	 contains no direct summand of τT.

Proof. Indeed, if τTi ∈ 	 for some i such that 1 ≤ i < r, then there is a morphism
from T1 to τTi, and thus Ext1

C(T1, Ti) 
= 0, a contradiction. �

Let U1 denote the unique direct predecessor of T1 of quasi-length r. Then we have
the following picture.

�
�
�
�
�
�
� Tr−1

			
		

		

�
�
�
�
�
�
�

·







 ·

· ·
			

		
	

τT1

			
		

	

�
�
�
�
�
�
� T1










			
		

		
	 τ 2T1

			
			

τT1

�
�
�
�
�
�
�

U1








· ·








τU1









·
			

		
		

·

·










where we identify along the vertical dashed lines and Tr−1 lies on the mouth of T .

LEMMA 4.2. With the notation above, we have
(a) dim HomC(T1, M) = 2 for every M ∈ 	.
(b) dim HomC(U1, M) = 2 if M ∈ 	 does not lie on the sectional path from the

mouth to τU1.
(c) dim HomC(U1, M) = 1 if M ∈ 	 lies on the sectional path from the mouth to

τU1.

Proof. Recall that, for all X, Y ∈ T ,

HomC(X, Y ) = HomD(X, Y ) ⊕ HomD(τX [−1], Y )
= HomkQ(X, Y ) ⊕ Ext1

kQ(τX, Y ).

Now, because T is standard in mod kQ, for M ∈ 	, we have

dim HomkQ(T1, M) = 1,

while dim Ext1
kQ(τT1, M) = dim HomkQ(M, τ 2T1) = 1, where we have applied the

Auslander–Reiten formula. Similarly, for M ∈ 	, we have

dim HomkQ(U1, M) = 1,
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while dim Ext1
kQ(τU1, M) = dim HomkQ(M, τ 2U1) is equal to 1 or 0 according to the

cases considered in (b) or (c) respectively. Here we use essentially that T1 and U1 are
of quasi-length r − 1 and r respectively. �

4.2. Passing to cluster-tilted algebras. Now, let B = EndC T be the cluster-tilted
algebra corresponding to the tilting object T in C considered in Section 4.1. Then
P1 = HomC(T, T1) is projective, and there is a sectional path of projective modules of
length r − 1 from P1 to the mouth of the tube. On the other hand, I1 = HomC(T, τ 2T1)
is the injective module corresponding to P1 (see [2, Lemma 5]).

Let 
 = {HomC(T, M) | M ∈ 	}. Observe that, because of Lemma 4.1, for every
M ∈ 	, the B-module HomC(T, M) is indecomposable. Let R1 = HomC(T, U1). Then
R1 is equal to the radical of the indecomposable projective B-module P1 because the
unique direct successor P2 = HomC(T, T2) of P1 of smaller quasi-length is projective.

LEMMA 4.3. With the above notation, for every N ∈ 
, we have

(a) dim HomB(P1, N) = 2.

(b) dim HomB(R1, N) = 1.

Proof. We recall from Section 2 that mod B ∼= C/addτT . Let M ∈ C be such that
HomC(T, M) = N. We first observe that since T is a tilting object in C, no morphism
from T1 to M factors through addτT . Therefore, Lemma 4.1 implies (a).

In order to prove (b), we recall that, according to Lemma 4.1, a basis of
the vector space HomC(U1, M) consists of at most two morphisms, one of them
constituting a basis of HomkQ(U1, M) and the other (if non-zero) constituting a basis
of Ext1

kQ(τU1, M). Now note that if g is a basis vector in HomkQ(U1, M), then it clearly
does not factor through add τT and so HomC(T, g) : R1 → N is non-zero. Thus, in
order to prove (b), it suffices to show that if Ext1

kQ(τU1, M) 
= 0, then a basis vector ξ

of this vector space factors through τT .
We construct a morphism f from τT to M. Indeed, the sectional path in T

from the mouth to M and the sectional path from τT1 to the mouth intersect in an
indecomposable summand τTi of τT . Let f denote the composition of the morphisms
lying on the sectional path from τTi to M. Then f 
= 0 (see [5, Corollary IX 2.2]).

Now, observe that we have a non-split short exact sequence in mod kQ

ζ : 0 �� τTi �� E �� τU1 �� 0

with E indecomposable. Because Ext1
kQ(τU1, M) is one dimensional, there exists a

scalar λ ∈ k such that ξ = ζ (λf ), that is, we have a commutative diagram with exact
rows

ζ : 0 �� τTi ��

λf

��

E ��

��

τU1 ��

=
��

0

ξ : 0 �� M �� E ⊕ F �� τU1 �� 0.
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Indeed, the middle term of ξ is of this form as seen in the picture below.
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The fact that ξ = ζ (λf ) shows that ξ factors through τT in C. This completes the
proof. �

COROLLARY 4.4. With the above notation, letting S1 = top P1, we have 〈S1, N〉 = 1
for all N ∈ 
.

Proof. Recall that 〈S1, N〉 = dim HomB(S1, N) − dim Ext1
B(S1, N). Now, applying

the functor HomB(−, N) to the short exact sequence

0 �� R1 �� P1
�� S1 �� 0

in mod B yields an exact sequence

0 �� HomB(S1, N) �� HomB(P1, N) �� HomB(R1, N) �� Ext1
B(S1, N) �� 0

from which we deduce 〈S1, N〉 = dim HomB(P1, N) − dim HomB(R1, N), and the
latter equals 1 because of the lemma. �

4.3. Proof of Theorem 1.6(b). We are now in a position to prove the second part
of our Theorem 1.6.

THEOREM 4.5. Let A be a cluster algebra of Euclidean type and x, x′ be two cluster
variables with x′ regular. Then x and x′ are compatible if and only if, for any cluster x
containing x, the Laurent expansion L(x′, x) has no x in its denominator.

Proof. Because of Lemma 3.1, we only need to prove the sufficiency. Assume that
x, x′ are not compatible, with x′ regular. Because of Theorem 3.3, we may assume
that x is regular as well. Since there are no extensions between different tubes, we
may assume that they correspond to objects in the cluster category lying in the same
tube T . We denote by r the rank of T . Let T1 and M be such that XT

T1[1] = x and
XT

M = x′. If the quasi-length of T1 is at most r − 2, then because of [8], we have
den x′ = dim HomC(T, M). Applying the same argument as in the proof of Theorem
3.3 yields the conclusion.

Thus, assume that the quasi-length of T1 is r − 1. We may assume that the
objects lying on the sectional path from T1 to the mouth are summands of the tilting
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object T . Lemma 3.2 implies that HomC(T1, M) 
= 0, and since M is an exceptional
object in T , we have M ∈ 	. We now recall that

XT
M =

∑
e∈��0

χ (Gre(HomC(T, M))
∏
i∈Q0

x〈Si,e〉a−〈Si,HomC (T,M)〉
i .

The summand corresponding to the vector e = 0 is
∏
i∈Q0

x−〈Si,HomC (T,M)〉
i .

Because of Corollary 4.4, we have

〈S1, HomC(T, M)〉 = 1.

In other words, the Laurent monomial
∏
i∈Q0

x−〈Si,HomC (T,M)〉
i

contains the variable x(= x1) in its denominator. Because of the positivity theorem (see
[15]), this Laurent monomial is not cancelled by other summands. Therefore, we have

XT
M = p(x)

xd m(x \ {x})
with d > 0. This completes the proof. �

5. Unistructurality and automorphisms.

5.1. We now define the notion of unistructurality.
Let A = A(x, Q) be a cluster algebra with initial seed (x, Q). This initial seed and

the mutation process yield a family (xα)α∈�0 of clusters, where �0 is the set of vertices of
the corresponding exchange graph �. Let X = ∪α∈�0 xα be the set of cluster variables.

We say that A is unistructural if, for any subset x′ of X and quiver Q′ such that the
pair (x′, Q′) generates by mutation the same set X of cluster variables, the exchange
graphs and the set of clusters of A and A(x′, Q′) are the same. More precisely, if (x′, Q′)
generates by mutation a family of clusters (x′

β)β∈�′
0
, where �′

0 is the set of vertices of
the corresponding exchange graph �′, then the equality X = ∪β∈�′

0
x′

β of the set of
cluster variables implies that � = �′ and there exists a permutation σ of �0 such that
xα = x′

σ (α) for any α.
We also say that a cluster algebra A = A(x, Q) is weakly unistructural if its set of

cluster variables cannot be obtained as a set generated by mutations starting with a
seed (x′, Q′), where Q′ is mutation equivalent to Q but x′ is not a cluster of A. In other
words, the above definition of unistructural cluster algebra reduces to that of weakly
unistructural if instead of allowing Q′ to be an arbitrary quiver we restrict it to be a
quiver mutation equivalent to Q.

Note that under the hypothesis that X = ∪β∈�′
0
x′

β , the ranks of A and A(x′, Q′)
are necessarily the same: Indeed, this rank is the cardinality of a transcendence basis
of the (common) ambient field.
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As stated in the Introduction, we conjecture that every cluster algebra is
unistructural. In this section, we prove that weak unistructurality can be expressed
by means of cluster automorphisms. To this end, we start by recalling the following
definition.

DEFINITION 1. [4] Let A be a cluster algebra and f : A → A be an automorphism
of �-algebras. Then f is a cluster automorphism if there exists a seed (x, Q) in A such
that the following conditions are satisfied.

(1) f (x) is a cluster, and
(2) f is compatible with mutations, that is, for every cluster variable x ∈ x, we have

f μx = μf (x)f.

We refer to [4] for further properties of cluster automorphisms. Note however, that
a cluster automorphism can be alternatively defined as an automorphism of �-algebras
which maps every cluster to a cluster. In particular, it maps cluster variables to cluster
variables, thus permuting the set of all cluster variables. We are interested here in the
converse implication, and we prove that it holds true if and only if the given cluster
algebra is weakly unistructural (Theorem 1.4 from the Introduction).

Proof of Theorem 1.4. Let A = A(x, Q) be a cluster algebra for which Conjecture
1.1 holds. Suppose there exists a seed (y, Q) which generates by mutation an algebra
A′ = A(y, Q) whose set of cluster variables coincides with that of A. Suppose also that
y is not a cluster of A (that is, suppose A is not weakly unistructural). Let f : A → A
be the unique automorphism of �-algebras such that f (xi) = yi with xi ∈ x and yi ∈ y
are the cluster variables corresponding to the same point i of Q.

Since the seeds (x, Q) and (y, Q) have the same quiver, and f induces a
homomorphism of the ambient field, the variables obtained by successive mutations of
the seed (y, Q) are exactly the images under f of the cluster variables obtained by the
corresponding mutations of the seed (x, Q). Since the two seeds generate by mutation
the same set of cluster variables, we conclude that f maps the set of cluster variables of
A (and of A′) to itself. By our hypothesis, this implies that f is a cluster automorphism.
Thus, it maps clusters to clusters and therefore y is a cluster of A. Therefore, A = A′

as cluster algebras.
Conversely, let A be a weakly unistructural cluster algebra, and let f : A → A

be an automorphism of the ambient field permuting the set of cluster variables. Let
x = (x1, . . . , xn) and (x, Q) be a seed of the cluster algebraA. Consider a cluster algebra
A1 generated by the initial seed (f (x), Q), where the variable f (xi) is associated with
the same point i ∈ Q0 as variable xi in seed (x, Q).

Since the two seeds have the same quiver Q, and f is a homomorphism of the
field, the variables obtained by successive mutations of the seed (f (x), Q) are exactly
the images under f of the cluster variables obtained by the corresponding mutations
of the seed (x, Q).

Therefore, since f is an automorphism permuting the cluster variables of A, the
sets of cluster variables of A and A1 coincide and A = A1 as �-algebras. Because A is
weakly unistructural, its set of cluster variables cannot be obtained by mutation from
the seed (f (x), Q) with f (x) not being a cluster of A. Thus, f (x) is a cluster of A. By
Corollary 2.7 of [4], f is a cluster automorphism. �

LEMMA 5.1. Let A be a cluster algebra of Dynkin type, then A is unistructural if and
only if A is weakly unistructural.
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Proof. Observe that the rank n of A is determined by the set of cluster variables.
This is the transcendence degree of the ambient field. The number of cluster variables
is n(n + 3)/2 in the case �n, it is n2 in the case �n and is equal to 42, 70 or 128 in the
cases �6, �7 or �8 respectively. Therefore, the number of cluster variables determines
the type.

Thus, if A1 is another cluster algebra which has the same set of cluster variables
as A, then A and A1 are of the same type. In particular, if A is weakly unistructural,
then A is unistructural. The other implication is obvious.

�
COROLLARY 5.2. The statement of Conjecture 1.3 holds for cluster algebras of Dynkin

type.

Proof. This follows directly from the lemma and Theorem 1.4. �
We end the paper by proving that cluster algebras of rank 2 are unistructural.

THEOREM 5.3. Let A be a cluster algebra of rank 2. Then A is unistructural.

Proof. Let us fix a cluster structure on A. Let ((x1, x2), Q) be the initial seed, where
Q denotes the quiver Q = 1

r→ 2 with r ≥ 0 the number of arrows from 1 to 2.

Let first r = 0. In this case the algebra A contains four clusters (x1, x2),
(

2
x1

, x2

)
,(

2
x1

, 2
x2

)
and

(
x1,

2
x2

)
. Suppose there is a second cluster structure with the same set of

cluster variables and consider its cluster containing x1. The only possible combination

of two cluster variables of A which is not a cluster of A is
(

x1,
2
x1

)
, but this set cannot

be a cluster since it is not a transcendence basis of the ambient field of fractions in two
variables x1, x2.

Let now r ≥ 1. Using the expansion formula of [16], we see that the only cluster
variables that do not have both x1 and x2 in the denominator are x1, x2,

xr
1+1
x2

,
xr

2+1
x1

.

Moreover, there are exactly two clusters containing x1, namely (x1, x2) and
(

x1,
xr

1+1
x2

)
.

Suppose there is another cluster structure of rank 2 on A with the same set of variables.
Then there exists a cluster (x1, y) with

y = L(y, (x1, x2)) = P(x1, x2)
xd1

1 xd2
2

such that d1 > 0 and P is a polynomial in �[x1, x2], which is not divisible by x1.
Mutating this cluster in direction y produces the following cluster

(
x1,

xm
1 + 1

P(x1, x2)
xd1

1 xd2
2

)
,

where m is the number of arrows in the quiver of the cluster (x1, y) in the second cluster
structure. The Laurent phenomenon implies that

P(x1, x2) = Q(x1, x2)M(x1, x2),

where M is a monomial and Q is a divisor of xm
1 + 1 in �[x1, x2]. Moreover, x1 does not

divide M because it does not divide P. We consider two cases. If M = 1 then P = Q
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and so our cluster is (
x1,

xm
1 + 1

P(x1, x2)
xd1

1 xd2
2

)
= (x1, P′(x1, x2)),

where P′ is a polynomial in �[x1, x2]. Because of our description of cluster variables,
it follows that P′ = x2. If M 
= 1 then, because x1 does not divide M, M = xe2

2 with
e2 ≥ 1. Thus, the denominator of the cluster variable xm

1 +1
P(x1,x2) x

d1
1 xd2

2 is equal to x−d2+e2
2 .

Again, because of our description of cluster variables, this cluster variable is equal to
xr

1+1
x2

. This implies that d1 = 0, a contradiction. �
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Addendum: Note added in proof

ADDENDUM TO ‘CLUSTER AUTOMORPHISMS AND
COMPATIBILITY OF CLUSTER VARIABLES’

IBRAHIM ASSEM, RALF SCHIFFLER AND VASILISA SHRAMCHENKO

We prove that Conjectures 1.1 and 1.2 hold true for cluster algebras of Dynkin
type. For definitions and notations, we refer to [ASS2].

THEOREM 0.1. Let A be a cluster algebra of Dynkin type, then A is unistructural.

Proof. Assume that A is given two cluster structures X = ∪αxα = ∪βx′
β , where

xα and x′
β are clusters in their respective structures. Denote the two cluster structures

by S and S′, respectively. Let x = {x1, x2, . . . , xn} be the initial cluster of S. We claim
that x is also a cluster in S′. If not, then there exist two initial variables xi, xj which
are not compatible in S′: indeed, this can be seen by using the well-known bijections
between clusters and tilting objects in the associated cluster category, and between
cluster variables and rigid indecomposable objects. Because of the positivity theorem,
each of xi and xj is a positive element in A (in both structures), hence so is their product
xixj. Cerulli-Irelli showed that the cluster monomials form an atomic basis for A, see
[C] Th.1.1, which implies that every positive element is a linear combination of cluster
monomials with non-negative coefficients.

Therefore, the product xixj in the structure S′ can be written as a positive linear
combination of cluster monomials: xixj = ∑

λM′M′. Each of the cluster monomials
M′ is a product of S′-compatible cluster variables and each of these cluster variables
can be written as a positive Laurent polynomial in x1, . . . , xn, because the latter is
a cluster of S and both structures have the same set of cluster variables. Thus, the
cluster monomial M′ can also be written as a positive Laurent polynomial L(M′) in
{x1, . . . , xn}.

Replacing each M′ by L(M′) in the sum
∑

λM′M′, we get

xixj =
∑

λM′L(M′)

and because of positivity there is no cancellation of terms in the right-hand side.
Therefore, the sum

∑
λM′M′ has only one term M′ = xixj and λM′ = 1. But this

means that xi and xj are S′-compatible, a contradiction. This proves that {x1, . . . , xn}
is a cluster in the structure S′.

In order to complete the proof, it suffices to show that the quiver Q′ of the cluster
{x1, . . . , xn} in the structure S′ is equal or opposite to the quiver Q of the same cluster
in the structure S. The mutations μi and μ′

i in the direction i applied to the cluster
{x1, . . . , xn} in both structures S and S′ will produce a variable whose denominator is
xi. Namely,

μi(xi) =

∏
i→j in Q

xj + ∏
i←j in Q

xj

xi
and μ′

i(xi) =

∏
i→j in Q′

xj + ∏
i←j in Q′

xj

xi
.

Since both cluster structures have the same cluster variables and since in the Dynkin
case the denominators determine the cluster variables, it follows that μi(xi) = μ′

i(xi)
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and therefore either∏
i→j in Q

xj =
∏

i→j in Q′
xj and

∏
i←j in Q

xj =
∏

i←j in Q′
xj

or ∏
i→j in Q

xj =
∏

i←j in Q′
xj and

∏
i←j in Q

xj =
∏

i→j in Q′
xj.

Since i is arbitrary and Q is connected, this implies that Q = Q′ or Q = Q′op. �
COROLLARY 0.2. Conjecture 1.1 holds true for cluster algebras of Dynkin type.

Proof. This follows from the previous theorem and Theorem 1.4. �
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