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EUCLIDEAN NUMBERS AND NUMEROSITIES

VIERI BENCI AND LORENZO LUPERI BAGLINI

Abstract. Several different versions of the theory of numerosities have been introduced in the literature.
Here, we unify these approaches in a consistent frame through the notion of set of labels, relating
numerosities with the Kiesler field of Euclidean numbers. This approach allows us to easily introduce,
by means of numerosities, ordinals and their natural operations, as well as the Lebesgue measure as a
counting measure on the reals.

§1. Introduction. The techniques of nonstandard analysis allow us to construct
several different hyperreal fields which, for many practical purposes, are equivalent.
However, there is a unique hyperreal field which is isomorphic to the closed real
field having the cardinality of the first strongly inaccessible1 uncountable cardinal
number. Such a field has been introduced in [19] and we refer to it as to the Keisler
field.

Given a ring of sets R (closed for Cartesian product) and a non-Archimedean
field K, the numerosity is a function

num : R → K, (1)

which satisfies the following properties:
• Finite sets principle: If A is a finite set, then num (A) = |A| (|A| denotes the

cardinality of A).
• Euclid’s principle: If A ⊂ B , then num (A) < num (B).
• Sum principle: If A ∩ B = ∅, then num (A ∪ B) = num (A) + num (B).
• Product principle: num (A× B) = num (A) · num (B).
The notion of numerosity has been introduced in [1, 10] and developed in several

directions [3–5, 11, 12, 14, 16, 17, 21].2 Since its beginning, numerosity theory has
been strictly related to some hyperreal field, namely the field K in (1) must be
hyperreal.

The aim of this paper is to relate the theory of numerosity to the Keisler field
in such a way that most of the properties investigated in the previous papers are
preserved and unified in a consistent frame.
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EUCLIDEAN NUMBERS AND NUMEROSITIES 113

In particular, we want at least the following three properties to be satisfied:

• (Consistency with the theory of cardinal numbers) If A,B ⊂ A then

|A| < |B | ⇒ num (A) < num (B) ,

where |E| denotes the cardinality of E.
• (Consistency with the theory of ordinal numbers) If COrd is the set of the

Cantor ordinal numbers smaller than the first inaccessible uncountable cardinal
number and Num is the set of numerosities, then there is a map

Ψ : COrd → Num

such that
1. Ψ(�) = num

(
{Ψ(�) | � < �}),

2. Ψ (� ⊕ �) = Ψ (�) + Ψ (�).
3. Ψ (� ⊗ �) = Ψ (�) · Ψ (�).

where ⊕ and ⊗ denote the natural operations between ordinal numbers (see
Section 4.2).

• (Consistency with the Lebesgue measure) If E ⊂ R is a Lebesgue measurable
set, then

mL (E) = st
(

num (E)
num ([0, 1))

)
, (2)

where mL (E) denotes the Lebesgue measure of E and st(�) denotes the
standard part of �.

To this aim we build a field which, following [5], we will call the field of Euclidean
numbers. This field is isomorphic to the Keisler field and its construction presents
an extra structure that allows us to build a numerosity theory which satisfies, among
others, the above requests.

§2. The Euclidean numbers. In this section we introduce the field of Euclidean
numbers. As we are going to show, this is a hyperreal field constructed by means of
a minor modification of the usual superstructure construction, so as to implement
a development of the theory of numerosity with certain useful peculiarities (see
Remark 2.7).

2.1. Non-Archimedean fields. Here, we recall the basic definitions and some facts
regarding non-Archimedean fields. In the following, K will denote an ordered field.
We recall that such a field contains (a copy of) the rational numbers. Its elements
will be called numbers.

Definition 2.1. Let K be an ordered field. Let � ∈ K. We say that:

• � is infinitesimal if, for all positive n ∈ N, |�| < 1
n ;

• � is finite if there exists n ∈ N such that |�| < n; and
• � is infinite if, for all n ∈ N, |�| > n (equivalently, if � is not finite).

Definition 2.2. An ordered field K is called non-Archimedean if it contains an
infinitesimal � 
= 0.
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114 VIERI BENCI AND LORENZO LUPERI BAGLINI

Infinitesimal numbers can be used to formalize the notion of “infinitely close”:

Definition 2.3. We say that two numbers �, � ∈ K are infinitely close if � – � is
infinitesimal. In this case we write � ∼ � .

Clearly, the relation “∼” of infinite closeness is an equivalence relation.

Theorem 2.4. If K ⊃ R is an ordered field, then it is non-Archimedean and every
finite number � ∈ K is infinitely close to a unique real number r ∼ �, called the standard
part of �.

The standard part can be regarded as a function:

st : {x ∈ K | x is finite} → R. (3)

Moreover, with some abuse of notation, we can extend st to all K by setting

st (�) =
{

+∞, if � is a positive infinite number,
– ∞, if � is a negative infinite number.

2.2. Construction of the Euclidean numbers. Given any set E we let V(E) be the
superstructure on E, namely the family of sets which is inductively defined as follows:

V0(E) = E,

Vn+1(E) = Vn(E) ∪ ℘
(
Vn(E)),

V(E) =
∞⋃
n=0

Vn(E).

If an object x ∈ Vn+1(E) \ Vn(E) we say that its rank is n + 1, and we write
rank(x) = n + 1. With the usual identifications of pairs with Kuratowski pairs and
functions and relations with their graphs, we have that V(E) contains all the usual
mathematical objects that can be constructed from E. Moreover, notice that if E is
finite then also each finite level Vn(E) of the superstructure on E is finite.

Now we letA be a set of atoms whose cardinalityκ is the first strongly uncountable
inaccessible cardinal number, and we assume thatR ⊂ A. The mathematical universe
we will consider in this paper is

Λ = {E ∈ V(A) | E is an atom or a set such that |E| < κ} ,

where |E| denotes the cardinality of E.
We let L be the family of finite subsets of Λ:

L = ℘fin(Λ).

L, ordered by the inclusion relation ⊆, is a directed set; if E is any set, we call net
(with values in E) any function

ϕ : L → E.

From now on, we will denote by � a partial order relation over Λ that extends the
inclusion, namely such that ∀
, � ∈ L,


 ⊆ �⇒ 
 � �.
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We assume that also (L,�) is a directed set; for the moment we will not make
any other assumption on E. One of the main tasks of this paper is to define � in
such a way to get a numerosity theory which satisfies the requests described in the
introduction.

Let

F (L,R) =
{
ϕ ∈ RL | ∃A ∈ Λ ∀
 ∈ L ϕ (
 ∩ A) = ϕ (
)

}
3

be endowed with the natural operations

(ϕ + �) (
) = ϕ(
) + �(
),

(ϕ · �) (
) = ϕ(
) · �(
),

and the partial ordering

ϕ ≥ � ⇔ ∀
 ∈ L, ϕ(
) ≥ �(
).

The field of Euclidean numbers is defined as follows:4

Definition 2.5. The field of Euclidean numbers E ⊃ R is a field so that there
exists a surjective map

J : F (L,R) → E

with the following properties:

(i) Ring homomorphism: J is a ring homomorphism, namely for all ϕ,� ∈
F (L,R)
• J (ϕ + �) = J (ϕ) + J (�) and
• J (ϕ · �) = J (ϕ) · J (�).

(ii) Monotonicity: For all ϕ ∈ F (L,R), for all r ∈ R, if eventually ϕ(
) ≥ r
(namely there exists 
0 ∈ L such that ∀
 � 
0, ϕ(
) ≥ r), then

J (ϕ) ≥ r.
Let us show that such a field exists.5

Proof. Let U be a fine ultrafilter on L, namely a filter of sets such that

• Maximality: Q ∈ U ⇔ L\Q /∈ U .
• Fineness: ∀
 ∈ L, Q [
] ∈ U , where

Q [
] := {� ∈ L | � � 
}. (4)

The existence of U is a well-known and easy consequence of Zorn’s Lemma. We
use U to introduce an equivalence relation on nets, by letting for all �,ϕ ∈ F (B,R)

ϕ ≈U � ⇐⇒ ∃Q ∈ U ∀
 ∈ Q, ϕ (
) = � (
).

3The choice of this particular space is due to the fact that we want to end with the unique hyperreal
field whose cardinality is the first inaccessible, see [19].

4This construction can be seen as an extension of α-theory, see, e.g., [9].
5Readers with a basic knowledge of nonstandard analysis will recognize immediately that our

construction is a minor modification of the usual limit ultrapower construction.
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116 VIERI BENCI AND LORENZO LUPERI BAGLINI

We set

Ẽ := F (L,R) /≈U ,

and we denote by [ϕ]U the equivalence classes. Now we take an injective map

Φ : Ẽ → A

such that ∀r ∈ R,

Φ ([cr ]U ) = r,

where cr is the net identically equal to r. Finally we set

E = Φ
(
Ẽ
)
.

The operations on E can be easily defined by letting

Φ ([ϕ]U ) + Φ ([�]U ) = Φ ([ϕ + �]U ) ; Φ ([ϕ]U ) · Φ ([�]U ) = Φ ([ϕ · �]U ).

It is very well known (see, e.g., [19]) and simple to show that, thanks to U being
an ultrafilter, E endowed with the above operations is a field; moreover, it can be
made an ordered field by endowing it with the following ordering:

∀ϕ,� ∈ F (L,R), Φ ([ϕ]U ) ≥ Φ ([�]U ) :⇐⇒ ∃Q ∈ U , ∀
 ∈ Q ϕ (
) ≥ � (
). �

Remark 2.6. E is a hyperreal field whose cardinality is κ; such a field is unique
up to isomorphisms (see [19]); namely, changing � we get an isomorphic hyperreal
field. However, we will choose � in such a way to get interesting interactions with
other mathematical structures.

The number J (ϕ) is called the Λ-limit of the net ϕ and will be denoted by

J (ϕ) = lim

↑Λ
ϕ(
).

The reason of this name and notation is that the operation

ϕ �→ lim

↑Λ
ϕ(
)

satisfies many of the properties of the usual Cauchy limit, but with the stronger
property of existing for every net. More exactly, it satisfies the following properties:

• Existence: Every net ϕ : L → R has a unique limit L ∈ E.
• Monotonicity: For all r ∈ R if eventually ϕ(
) ≥ r, then

lim

↑Λ
ϕ(
) ≥ r.

• Sum and product: For all ϕ,� : L → R

lim

↑Λ
ϕ(
) + lim


↑Λ
�(
) = lim


↑Λ

(
ϕ(
) + �(
)),

lim

↑Λ
ϕ(
) · lim


↑Λ
�(
) = lim


↑Λ

(
ϕ(
) · �(
)).
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Notice that, if lim
→Λ ϕ(
) denotes the usual Cauchy limit of ϕ, the relationship
between the Cauchy limit and the Λ-limit is

lim

→Λ
ϕ(
) = st

(
lim

↑Λ
ϕ(
)
)
.

Remark 2.7. The notion of Euclidean field defined by Definition 2.5 has been
used in several papers with “⊆” instead of “�” (e.g., [2, 7, 8]). Now, we will
explain the main technical reason for using a Euclidean field rather than a “generic”
hyperreal field. A set F ⊂ Λ∗ is called hyperfinite if

F = lim

↑Λ
F
 =

{
lim

↑Λ
ϕ(
) | ϕ(
) ∈ F


}
,

where the sets F
 ∈ Λ are finite. Hyperfinite sets play a crucial role in many
applications of nonstandard analysis. If we use a Euclidean field, we can associate
with every set E ∈ Λ a unique hyperfinite set E� defined as follows:

E� = lim

↑Λ
E ∩ 
 =

{
lim

↑Λ
ϕ(
) | ϕ(
) ∈ E ∩ 


}
.

The set E� satisfies the property6

E� ⊂ E� ⊂ E∗,

which is very useful in the applications. Moreover, using a Euclidean field we can
easily define the numerosity function over any set E ∈ Λ by setting (see Section 3)

num (E) := lim

↑Λ

|E ∩ 
|. (5)

In this paper, replacing “⊆” with a suitable “�,” the numerosity theory given by
Equation (5) is consistent with the main features of the numerosity theories present
in the literature (e.g., [1, 3–5, 10–12, 14, 16, 17, 21]).

2.3. Labelled sets. The notion of labelled set has been introduced in [1, 10] to
construct a numerosity theory for countable sets. Here we extend this notion to
adapt it to the study of numerosity theories for larger sets.

Definition 2.8. We call label set a family of sets B ⊂ L such that

(i) ∀s, t ∈ B, s ∩ t, s ∪ t ∈ B;
(ii) ∀s ∈ B, s ∩ L = ∅; and

(iii)
⋃

s∈B
V (s) = Λ.

Requirement (i) gives to B a lattice structure, whilst requirement (ii) entails that
the elements of a label are either atoms or infinite sets.

Having fixed the notion of “labels,” we can now introduce the notion of
“labelling”:

6Here, as usual, we have set

E� = {x∗ | x ∈ E}.
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Definition 2.9. Let B be a set of labels. We call B-labelling the map


 : Λ → B

defined as follows:


(a) =
⋂
�∈Ia

�,

where Ia = {� ∈ B | a ∈ V(�)}. For every a ∈ L we call 
(a) the label of a.

Roughly speaking, the label of an object a ∈ Λ is a finite set whose elements allow
us to define a by the fundamental finitistic set operations.

There are plenty of sets of labels: just set

Bmax = {t ∈ L | t ∩ L = ∅}. (6)

Obviously, Bmax is a label set; more importantly, every label set B is a subset of
Bmax.

Example 2.10. Let a = N. Then, using the Bmax-labelling,


 (N) = {N}.
Now we will describe some properties of a set of labels B and the corresponding

B-labelling:

Proposition 2.11. Let B be a set of labels, and let s ∈ B. Then
(i) V(s) is countable.
(ii) V(s) \ s consists only of finite sets.
(iii) For all s, t ∈ B, and for all m ∈ N, we have that

Vm(s) ⊆ Vm(t) ⇔ s ⊆ t.

(iv) For all s, t ∈ B,V(s ∩ t) = V(s) ∩ V(t).
(v) If a ∈ L and t ∈ B, then {a} ∈ V(t) ⇔ a ∈ V(t).

Proof. (i) s is finite, and hence by induction it trivially holds that Vn (s) is finite
for every n ∈ N. Therefore V (s) is countable.

(ii) As s is finite, by induction it is immediate to prove that Vn+1(s) \ s consists
only of finite sets, and hence the thesis follows straightforwardly.

(iii) The implication ⇐ is trivial. Let us prove the other implication. If Vm(s) ⊆
Vm(t) then, in particular, s ∈ Vm(t). Now, if s = {a1, ... , an}, all a1, ... , an are either
atoms or infinite sets, and hence by (i), a1, ... , an ∈ t.

(iv) The inclusion ⊆ is trivial. For the reverse inclusion, let � ∈ V(s) ∩ V(t). In
particular, � ∈ Vn(s) ∩ Vm(t) and so, if l = max{n,m}, we have that � ∈ Vl (s) ∩
Vl (t). We proceed by induction on l to show that Vl (s) ∩ Vl (t) ⊆ V(s ∩ t).

If l = 0, then � ∈ V0(s) ∩ V0(t) if and only if � = s = t, and the desired inclusion
trivially holds.

Now let us suppose the inclusion to hold for l ∈ N, and let � ∈ Vl+1(s) ∩ Vl+1(t).
If � ∈ Vl (s) ∩ Vl (t) we are done by inductive hypothesis; if not, there are A ∈
Vl (s), B ∈ Vl (t) such that � ∈ ℘(A) ∩ ℘(B). In particular, � ∈ ℘(A ∩ B). But A ∩
B ∈ Vl (s) ∩ Vl (t), so by induction A ∩ B ∈ V(s ∩ t), and hence � ∈ V(s ∩ t) as
desired.
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(v) The implication ⇐ is trivial. For the reverse implication, let

l = min{n ∈ N | a ∈ Vn(t)}.

In particular, we have that l ≥ 1. In fact, if l = 0 then {a} = t, and this cannot
happen as t ∩ L = ∅. Hence a ∈ Vl–1(t) and we are done. �

As we will see in Section 5, the freedom of choosing a particular set of labels
allows us to impose certain additional arithmetical properties on numerosities.

Proposition 2.12. Let B be a set of labels and let 
 be a B-labelling. The following
properties hold:

(i) ∀a, b ∈ Λ, a ⊆ b ⇒ 
(a) ⊆ 
(b);
(ii) ∀a ∈ Λ, 
(a) ⊇ 
({a}), and equality holds if a ∈ L;
(iii) ∀a, b ∈ Λ, a ∈ b ⇒ 
({a}) ⊆ 
(b);
(iv) ∀
 ∈ B, 
 ∈ V

(

(
));

(v) ∀s ∈ B, 
 (s) = s;
(vi) ∀s ∈ B,∀m ∈ N, 


(
Vm(s)) = s;

(vii) ∀a ∈ Λ,∀s ∈ B, 
 (a) ⊆ s ⇔ a ∈ V(s);
(viii)∀a, b ∈ Λ, 
 ({a, b}) = 
 (a) ∪ 
(b);
(ix) ∀a, b ∈ Λ, 
 ((a, b)) = 
(a) ∪ 
(b);
(x) ∀E ∈ Λ, ∀
 ∈ L, if we set

E
 := {x ∈ E | 
 (x) ⊆ 
 (
)} ,

then

E
 = E ∩ V(
 (
)); and

(xi) ∀E ∈ Λ, the set E
 is finite.

Proof. (i) If a ⊆ b, then trivially a ∈ V(t) whenever b ∈ V(t) and hence


(a) =
⋂

{V(t) | t ∈ B, a ∈ V(t)} ⊆
⋂

{V(t) | t ∈ B, b ∈ V(t)} = 
(b).

(ii) Trivially, for all t ∈ B, if a ∈ V(t) then also {a} ∈ V(t), and hence 
({a}) ⊆

({a}. The second claim follows from the fact that, by Proposition 2.11(v), a ∈
V(t) ⇔ {a} ∈ V(t).

(iii) If a ∈ b, then {a} ⊆ b and by (i) and (ii), we have that


(a) = 
({a}) ⊆ 
(b).

(iv) By definition, ∀� ∈ Ia, a ∈ V(�); hence

a ∈
⋂
�∈Ia

V(�) = V

⎛⎝⋂
�∈Ia

�

⎞⎠ = V
(

(a)).

(v) We have that s = V0(s) ∈ V(s); hence s ∈ Is and so 
(s) ⊆ s. Moreover, if
t ∈ Is, s ∈ V(t) and since s is a label, s ⊂ t and so

s ⊆
⋂
t∈Is

t = 
(s).
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(vi) If s ∈ B, then ∀t ∈ B, and by Proposition 2.11(iv) we have that

Vm(s) ∈ V(t) ⇔ s ⊆ t ⇔ s ∈ V(t).

Then

IVm(s) = {t ∈ B | Vm(s) ∈ V(t)} = {t ∈ B | s ⊆ t} (7)

= {t ∈ B | s ∈ V(t)} = Is;

hence the thesis follows by the definition of B-labeling.
(vii) (⇒) If 
 (a) ⊆ s, then, by (i), V (
 (a)) ⊆ V (s); therefore, by (iv), a ∈ V (s).
(⇐) If a ∈ V(s), then s ∈ Ia and so 
(a) ⊆ s.
(viii) For t ∈ I{a,b}, since {a, b} ∈ V(t), but {a, b} /∈ t, we have that a ∈ V(t) and

b ∈ V(t); then

I{a,b} = {t ∈ B | a ∈ V(t) and b ∈ V(t)}
= {t ∈ B | a ∈ V(t)} ∩ {t ∈ B | b ∈ V(t)} = Ia ∩ Ib.

Hence


({a, b}) =
⋂

t∈I{a,b}

t =
⋂

t∈Ia∩Ib

t = {x ∈ Λ | x ∈ t and t ∈ Ia ∩ Ib}

= {x ∈ Λ | (x ∈ t and t ∈ Ia) or (x ∈ t and t ∈ Ib)}
= {x ∈ Λ | (x ∈ t and t ∈ Ia)} ∪ {x ∈ Λ | (x ∈ t and t ∈ Ib)}

=

⎛⎝⋂
t∈Ia

t

⎞⎠ ∪

⎛⎝⋂
t∈Ib

t

⎞⎠ = 
(a) ∪ 
(b).

(ix) We have that


 ((a, b)) = 
 ({a, {a, b}}) = 
 (a) ∪ 
 ({a, b}) = 
 (b) 
 (a) ∪ 
 (a) ∪ 
 (b) = 
 (a) ∪ 
 (b).

(x) First set s = 
 (
). Let us first prove the inclusion ⊆. Let x ∈ E be such that

(x) ⊆ s. By the definition of labelling then x ∈ V(s), and the inclusion is proven.
For the reverse inclusion, let x ∈ E ∩ V(s). In particular, it must be 
(x) ⊆ s, and
we are done.

(xi) IfE ∈ Λ then E has a finite rank n, which means thatE ∩ V(s) = E ∩ Vn(s),
and the conclusion follows by (x) as, by construction, Vn(s) is finite. �

The notion of B-labelling allows us to equip L with a partial order structure �:

Definition 2.13. We set

L0 (B) := {Vm(t) | m ∈ N0, t ∈ B},

and for every 
, � ∈ L, we set


 � �⇔ 
 ⊆
⋂

{� ∈ L0 | � ⊆ �}.

Notice that, by definition


 � �⇔ I
 ⊆ I�,
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where I
 has been introduced in Definition 2.9, and that

L0 (L0 (B)) = L0 (B).

Clearly � induces a lattice structure on L0 (B), since


 ∨ � :=
⋂

{� ∈ L0 | 
 ∪ � ⊆ �} ,


 ∧ � :=
⋃

{� ∈ L0 | � ⊆ 
 ∩ �}.

Since 
 ⊆ �⇒ 
 � �, we can use the directed set (L0 (B) ,�) to define a field of
Euclidean numbers as in Definition 2.5. From now on, E will denote such a field.

Remark 2.14. Now the idea is to construct a suitable set of labels in such a
way that the relation � carries all the information needed for a “good” numerosity
theory. All this information depends on � and not on the choice of the ultrafilter
used in the construction of E.

§3. The general theory of numerosities. Different versions of the notion of
numerosity have already been studied in several previous papers [1, 3, 4, 10, 12,
14, 16, 17]; we refer also to the book [11] for a complete overview of the countable
case. In this paper, we want to show how the new definition of labels and of the
Euclidean field allows us to easily provide the most interesting features of the
theory of numerosities. In particular, we show how numerosities can be used to
simultaneously unify and generalize objects and results coming from different areas,
like (a version of) Lagrange’s Theorem for groups, the Peano–Jordan measure, and
the Lebesgue measure.

3.1. Definition and first properties.

Definition 3.1. Let E be a set in Λ. We call numerosity of E the Euclidean
number

num (E) := lim

↑Λ

|E ∩ 
|.

The set of numerosities will be denoted by Num.

The notion of numerosity allows us to “give a name” to some hyperreal number.
We set

α = num (N) ; � = num ([0, 1)). (8)

The numerosity of a set depends on the choice of the set of labels B, as well as on
the ultrafilter U on B chosen to construct E. However the properties which will be
listed below are independent of any choice.

Theorem 3.2. Let E,F be sets in Λ. Numerosities satisfy the following properties:

(i) Finite sets principle: If E is a finite set, then num (E) = |E|.
(ii) Euclid’s principle: If E ⊂ F , then num (E) < num (F ).

(iii) Labels principle: If

E
 = {x ∈ E | 
 (x) ⊆ 
 (
)} ,
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then, if 
 ∈ L0 (B), E
 = E ∩ 
 and hence

num (E) = lim

↑Λ

|E
|.

(iv) Comparison principle: If Φ : E → F is a bijection that preserves labels,
namely such that for all x ∈ E


(Φ (x)) = 
 (x),

then num (E) = num (F ).
(v) Sum principle: If E ∩ F = ∅, then num (E ∪ F ) = num (E) + num (F ).

(vi) Product principle: num (E × F ) = num (E) · num (F ).
(vii) Finite parts principle: num

(
℘fin (E)

)
= 2num(E).

(viii) Finite functions principle: Let E be nonempty, and

Ffin (X,E) :=
{
f : D → E | D ∈ ℘fin(X )

}
.

Then, if a ∈ E, we have

num
(
Ffin (X,E\ {a})

)
= num (E)num(X )

.

Proof. (i) If |E| = n <∞, then for every 
 ∈ L, we have |E ∩ 
| = n, and the
thesis then follows by taking the 
-limit.

(ii) If E ⊂ F , eventually |E ∩ 
| < |F ∩ 
|, so lim
↑Λ |E ∩ 
| < lim
↑Λ |E ∩ 
|.
(iii) Take 
 = Vm(s) withm ≥ rank(E) and s ∈ B. Then, by Proposition 2.12.(x)

E ∩ 
 = E ∩ Vm(s) = E ∩ V(s) = E
.

(iv) By hypothesis we have that for all 
 ∈ L|E
| = |F
|, and so by the labels
principle

num (E) = lim

↑Λ

|E ∩ 
| = lim

↑Λ

|F ∩ 
| = num (F ). (9)

(v) Just notice that |E ∪ F |
 = |E
| + |F
| for every 
 ∈ L; hence the thesis follows
by Definition 2.5(2) and by the labels principle.

(vi) Let 
 ∈ L. By property (ix) in Proposition 2.12, we have that (E × F )
 =
E
 × F
, and hence | (E × F )
 | = |E
 × F
| = |E
| · |F
|, and the thesis then follows
immediately, again by the labels principle.

(vii) Let 
 = Vm(s) ∈ L0 (m > rank(E)), and let a ∈ ℘fin (E) ∩ V(s). Then
by Proposition 2.12(x) we have that it must be a ∈ ℘fin (E
). Conversely, if
a ∈ ℘fin (E
) it is immediate to see that a ∈ ℘fin (E) ∩ V(s). Hence, by Proposition
2.12 we have ∣∣[℘fin (E)

]



∣∣ =
∣∣℘fin (E) ∩ V(s)

∣∣ =
∣∣℘fin (E
)

∣∣ = 2|E
|,

and so by the labels principle

num
(
℘fin (E)

)
= lim

↑Λ

2|E
| = 2num(E).

(viii) We set 
 = Vm(s) ∈ L0, m > rank(f). Let f ∈ Ffin (X,E\{a}) ∩ V(s),
and let D be the domain of f. By identifying functions with Kuratowski
pairs, and by our definition of labellings on pairs, it is immediate to see that
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f ∈ Ffin (X,E\{a}) ∩ V(s) if and only if D (f) ⊂ X ∩ V(s) = X
 and Im (f) ⊂
(E\{a}) ∩ V(s) = E
\{a}. Therefore

Ffin (X,E\{a}) ∩ V(s) = Ffin (X
,E
\{a}).

Notice that ∣∣Ffin (X
,E
\{a})
∣∣ = |F (X
,E
)|.

In fact, the association g ∈ Ffin (X
,E
\{a}) → g̃ ∈ F (X
,E
), with

g̃(x) =

{
g(x), if x ∈ X
,
a, otherwise,

is a bijection. Hence, again by the labels principle,

num
(
Ffin (X,E\{a})

)
= lim

↑Λ

∣∣Ffin (X,E\{a}) ∩ V(
)
∣∣ = lim


↑Λ
|F (X
,E
)|

= lim

↑Λ

|E
||X
| = num (E)num(X ). �

§4. Ordinal numbers and numerosities. In this section we will select a subset
of the numerosities which we will call ordinal numerosities (or simply ordinals).
This set, equipped with its natural order relation <, is isomorphic to the set of
ordinal numbers. In Section 4.2 we will show that this correspondence is deeper
than expected since it preserves also the natural operations between ordinals.

4.1. The ordinal numerosities. Let Num be the set of numerosities.

Definition 4.1. The set Ord ⊂ Num of ordinal numerosities is defined as follows:
� ∈ Ord if and only if

� = num (Ω�) ,

where

Ω� = {x ∈ Ord | x < �}.

It is easy to see by transfinite induction that this is a good definition. In fact, it is
immediate to check that

• 0 ∈ Ord and
• if � ∈ Ord, then � + 1 = num (Ω� ∪ {�}) ∈ Ord (and hence N ⊂ Ord).

Moreover, if �k = num (Ωk), k ∈ K, (|K | < κ) are ordinal numerosities, then

� := num

(⋃
k∈K

Ωk

)
∈ Ord.

In fact, this holds as
⋃
k∈K

Ωk = {x ∈ Ord | x < �}: the inclusion
⋃
k∈K

Ωk ⊆ {x ∈

Ord | x < �} holds trivially, as if x ∈
⋃
k∈K

Ωk then x ∈ Ord and x ∈ Ωk for some k,

and so x < �k < �; conversely, if x ∈ Ord is such that x < �, if x /∈
⋃
k∈K

Ωk we would
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have that Ωx ⊇
⋃
k∈K

Ωk , and so by taking numerosities we would get x ≥ �, which is

absurd.

Definition 4.2. If �k, k ∈ K, (|K | < κ) are ordinals, we set

sup
k∈K
�k = num

(⋃
k∈K

Ω�k

)
,

where �k = num
(
Ω�k
)
.

Then � = supk∈K �k is the least element in Ord equal or greater than every �k,
namely � ∈ Ord and

∀k ∈ K, � ≥ �k, (10)

∀k ∈ K, ∀� ≥ �k ⇒ � ≥ �. (11)

However � is not the least element in Num greater or equal to every �k. In fact, as
we have seen, if supk∈K �k is not a maximum, there are numerosities � ∈ E, greater
than every �k and smaller than �, e.g.,

(
supk∈K �k

)
– 1.

Our construction of the ordinal numbers is similar to the construction of Von
Neumann. However, whilst a Von Neumann ordinal � is the set of all the Von
Neumann ordinals contained in �, in our construction an ordinal � is the numerosity
of the set of ordinals smaller than �. Hence, here, an ordinal number, as any other
numerosity, is an atom.

Obviously, not all numerosities are ordinals: for example, num (N) is not an
ordinal. In fact, if α = num (N) were an ordinal then:

α = num( {x ∈ Ord | x < num (N)}) = num(N0)

= num(N ∪ {0}) = α + 1.

In a similar way, one can prove that no infinite numerosity smaller than num (N) is
an ordinal. However, α + 1 is an ordinal:

α + 1 = num (N0) = num ({x ∈ Ord | x < α}).

Actually α + 1 is the smallest infinite ordinal. From now on, we will call it �.
As we expect, Ord is a well-ordered set; in fact ifE ⊂ Ord, the minimum is given by

min E = sup {x ∈ Ord | ∀a ∈ E, x ≤ a}.

4.2. Sums and products of ordinals. In this section we will show that the set of
ordinal numerosities is closed under sums and products, and we will show that there
is a relationship between sums and products of ordinal numerosities and the natural
operations between Cantor ordinals.

First, we start by showing that the operations between numerosities are consistent
with the order structure over the ordinals.

Theorem 4.3. For all ordinal numbers �, � ∈ Ord we have that
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num(Ω�) + num(Ω�) = num(Ω�+�),

num(Ω�) · num(Ω�) = num(Ω��).

In particular, � + � ∈ Ord and �� ∈ Ord.

Proof. First let us prove that

num(Ω�+�) = num(Ω�) + num(Ω�)

acting by induction on �. If � = 0, then this relation is obvious. If � = � + 1, then

num(Ω�+�) = num(Ω�+�+1) = num(Ω�+� ∪ {� + � + 1})

= num(Ω�+�) + num({� + � + 1}) = num(Ω�) + num(Ω�) + 1

= num(Ω�) + num(Ω� ∪ {� + 1}) = num(Ω�) + num(Ω�).

If � = supk∈K �k(where �k = num (Ωk)) is a limit ordinal, then

num(Ω�+�) = sup
k∈K

num(Ω�+�k ) = sup
k∈K

[
num(Ω�) + num(Ω�k )

]
.

Since � + �k = num(Ω�) + num(Ω�k ) is an ordinal number, � satisfies (10) and (11)
and hence

∀k ∈ K, � + � ≥ � + �k,

∀k ∈ K, ∀� ∈ Ord � + � ≥ � + �k ⇒ � + � ≥ � + �.

Then,

sup
k∈K

(� + �k) = � + sup
k∈K
�k,

and so

num(Ω�+�) = � + sup
k∈K
�k = num(Ω�) + sup

k∈K

[
num(Ω�k

]
= num(Ω�) + num(Ω�).

Similarly we act with the product. If � = 0, then this relation is obvious. If � = � + 1,
then

num(Ω��) = num(Ω�(�+1)) = num(Ω��+�) = num(Ω��) + num(Ω�)

= num(Ω�) · num(Ω�) + num(Ω�) = num(Ω�)
[
num(Ω�) + 1

]
= num(Ω�) · num(Ω�).

If � = supk∈K �k(where �k = num (Ωk)) is a limit ordinal, then

num(Ω��) = sup
k∈K

num(Ω��k ) = sup
k∈K

[
num(Ω�) · num(Ω�k )

]
.

Since � satisfies (10) and (11),

∀k ∈ K, �� ≥ ��k,

∀k ∈ K, ∀� ∈ Ord �� ≥ ��k ⇒ �� ≥ ��.
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Then

sup
k∈K

(��k) = � · sup
k∈K
�k ;

hence

num(Ω��) = � · sup
k∈K
�k = num(Ω�) · num(Ω�). �

4.3. Numerosities and Cantor ordinals. The relation with the Cantor definition of
ordinal is the following: if � ∈ Ord,Ω� is a well-ordered set and hence ot(Ω�) (the
order type of Ω�) is a Cantor ordinal. From now on, to avoid confusion, we will
denote the Cantor ordinals by �̄ and their set by COrd. Whilst a Cantor ordinal is an
equivalence class of well-ordered sets, in our definition an ordinal is the numerosity
of a suitable well-ordered set; in particular, if we let� be the smallest infinite ordinal,
then � = num (N0) and �̄ = ot(N0).

Now, let us consider the map

Φ : Ord → COrd : Φ (�) = ot(Ω�) := �̄, (12)

which identifies the “numerosity ordinals” with the “Cantor ordinals.” So, by
construction Φ is an isomorphism between the ordered sets (Ord, <) and (COrd, <).

In general, the map does not preserve the operations +, ·, as + and · are
commutative on Num ⊂ N∗ but not on COrd. However, the situation is more
interesting if we consider the natural operations ⊕,⊗ between ordinals. We recall
that each ordinal �̄ has a unique normal form

�̄ =
m∑
n=0

�̄jnan,

where an ∈ N and n1 < n2 ⇒ jn1 > jn2 .
By using the normal form, the natural ordinal operations can be defined as follows:

given

�̄ =
m∑
n=0

�̄jnan and �̄ =
m∑
n=0

�̄jnbn, (13)

we let

�̄ ⊕ �̄ =
m∑
n=0

�̄jn (an + bn) and �̄⊗�̄ =
m⊕
n,h=0

anbh�̄
jn⊕jh , (14)

where an + bn and albm are the usual operations on natural numbers.
In order to compare the operations between numerosities and the natural ordinal

operations, we extend a notion used for the Cantor ordinals to the numerosities.

Definition 4.4. An ordinal � > 0 is called irreducible if

�, �, � < � ⇒ �� + � < �.

If � is irreducible then

�, � ∈ Ω� ⇒ � + � < � and �� < �;

we need to prove that � + � and �� ∈ Ω� .
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We denote by �j , j ∈ Ord the sequence of irreducible ordinals, namely

• �0 = �,
• �j = min

{
x ∈ Ord | ∀m ∈ N0, ∀k < j, x > �mk

}
.

Proposition 4.5. If � ∈ Ord, we have that

� < �j+1 ⇔ � =
m∑
k=0

bk�
k
j

with bk ∈ Ω�j .

Proof. This proof is based only on the order structure of Ord and hence it could
be considered well known. However we will report it for completeness and for the
sake of the reader.

(⇐) Trivial.
(⇒) If � < �j+1, we take

n = max
{
m ∈ N0 | �mj ≤ �

}
.

Such an m exists by the definition of �j+1. Then we set

bm = sup
{
x ∈ Ω�j | x�

m
j ≤ �

}
and

yj,m = � – bm�mj .

Then,

∀z ∈ Ω�j , yj,m ≤ z. (15)

Now, by induction over k = m – 1, ... , 0, we set

bk = sup

{
x ∈ Ω�j |

m∑
l=k+1

bl�
l
j + x�kj ≤ �

}
and

yj,k = � –
m∑
l=k

bl �
l
j ,

so we have that

∀z ∈ Ω�j , yj,m ≤ z. (16)

Now we claim that

� –
m∑
k=0

bk�
k
j = 0. (17)

In order to prove this we argue by induction over j ∈ Ord ∪ {– 1} by proving that

yjk = 0. (18)
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If j =– 1, � ∈ Ω�0 = N0, then ∀n ∈ N0, y00 ≤ 0 and hence y00 = 0. If (18) holds
∀� ∈ Ω�j , then by (15) and (16), equality (18) holds also for � ∈ Ω�j+1 . �

Corollary 4.6. If �, � ∈ Ord, then � + � ∈ Ord and �� ∈ Ord.

Proof. By Proposition 4.5,

� =
n∑
k=0

ak�
k
j , � =

n∑
k=0

bk�
k
j ,

for some j ∈ Ord and hence

� + � =
n∑
k=0

(ak + bk) �kj ; �� =
n∑

h,k=0

(ahbk) �h+k
j . �

Now we describe the sequence of the irreducible ordinal numerosities: we set

• �0 = �̄,
• �j̄ = sup

{
�n
k̄
| n ∈ N, k̄ < j̄

}
.

So we have that

�0 = �,

�1 = ��,

�2 = ��
�
,

...

�j+1 = ��j ,

...

�� = ε0,

...

and so on. Since the definition of �j depends only on the order structure of (Ord, <),
then

Φ (�j) = �̄j .

It is well known and easy to check that any ordinal number �̄ ∈ COrd,�̄ < �̄j+1,
can be written as follows:

�̄ =
m⊕
n=0

ān ⊗ �̄nj , ān < �̄j ,

and the natural operations ⊕,⊗ take the following form:(
m⊕
n=0

ān ⊗ �̄nj

)
⊕
(
m⊕
n=0

b̄n ⊗ �̄nj

)
=

m⊕
n=0

(
ān ⊕ b̄n

)
⊗ �̄nj ,

�̄⊗�̄ =
m⊕
n,h=0

(
ān ⊗ b̄h

)
⊗ �̄n+h

j .
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Theorem 4.7. The map (12) is an isomorphism between the semirings (Ord,+, ·)
and (COrd,⊕,⊗), namely

Φ (� + �) = �̄ ⊕ �̄,
Φ (��) = �̄ ⊗ �̄.

Proof. Let � =
∑m
k=0 bk�

k
j be an ordinal numerosity. Then

m∑
n=0

b̄n ⊗ �̄nj = ot

({
m⊕
n=0

ān ⊗ �̄nj ∈ COrd |
m⊕
n=0

ān ⊗ �̄nj <
m⊕
n=0

b̄n ⊗ �̄nj

})

= ot

({
m∑
n=0

an�
n
j ∈ Ord |

m∑
n=0

an�
n
j <

m∑
n=0

bn�
n
j

})
= ot (Ω�) = �̄,

namely

Φ (�) = Φ

(
m∑
n=0

bn�
n
j

)
=

m⊕
n=0

b̄n ⊗ �̄nj = �̄.

Hence Φ is an isomorphism. �

Remark 4.8. Theorems 4.7 and 4.3 provide a new interpretation for the natural
operations ⊕and ⊗ namely

�̄ ⊕ � = ot(Ω�+�) and �̄ ⊗ �̄ = ot(Ω��).

This fact is somewhat surprising since the operations + and · between numerosities
have been introduced in a natural way for the numerosity theory and, a priori, they
should not have any relation with the natural operations between ordinal numbers.

Notice, however, that not all operations are the same between numerosity ordinals
and Cantor ordinals: for example, let ε̄0 = �̄�̄ be the Cantor ordinal that corresponds
to the numerosity ordinal �� . If we use the ordinal exponentiation, we have that

�̄ε̄0 = ε̄0,

whilst on the contrary, if we use the Euclidean exponentiation, we get that

�ε0 > ��.

In particular the equation

�̄x = ε̄0

in the world of Cantor ordinals has the solution x = ε̄0 while the equation

�x = ε0

in the world of Euclidean numbers has the solution � = log� ε0.� is a well-defined
Euclidean number, but it is not an ordinal number since

� < ε0 = num

(⋃
k<�

Ω�k

)
.
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However it is easy to prove that the ordinal exponentiation agrees with the Euclidean
exponentiation for numbers in Ω�� .

§5. Numerosities of some denumerable sets. There are many different ways of
defining a label set according to Definition 2.8. Different label sets might give
different algebraical properties to the numerosity; moreover, in some cases particular
choices of the label sets may lead to other concepts (e.g., Lebesgue measure for the
reals). In this and the next sections, we want to show several examples of these facts.

5.1. The general strategy. Theorem 3.2 describes the fundamental properties of
numerosities, which are satisfied for all choices of the label set B (and of the
ultrafilter U). However, certain additional properties are satisfied only for some
choices of B: in fact, they depend on the ultrafilter U over ℘fin (B), whose existence
depends on Zorn’s lemma which cannot be explicit and hence it is impossible to
prove or disprove some of them. However, if we choose a suitable label set B (and,
consequently we restrict the choice of U), it is possible to show that some properties,
as the ones mentioned in the Introduction, are satisfied independently of U . The goal
of Section 5 is to show how a suitable choice of B allows the numerosity function
to satisfy interesting properties in many specific cases.

The smaller the set B is, the more properties are satisfied by the numerosity
function. So the idea is to begin with a set Bmax = {t ∈ L | t ∩ L = ∅} and to
construct smaller label setsBmax ⊃ B1 ⊃ B2 ⊃ ··· which provide a richer and richer
structure to the theory. In this paper we are interested in the numerosity of some
specific subsets ofN0,Z,Q,R and so we will construct sets of labelsBmax ⊃ B (N0) ⊃
B (Z) ⊃ B (Q). Depending on the desired properties, other label sets could be added
to the list. Each set of labels allows us to enrich the theory with new theorems; all
these theorems are independent of the ultrafilter employed in the sense that every
ultrafilter which satisfies the fineness property7 does the job.8

The construction which we will present in the next sections is based on the
following definition:

Definition 5.1. If D ⊂ Bmax is a directed set (with respect to ⊆), we define

D = G ({s ∈ Bmax | ∃t ∈ D, s � t}) ,

where G(F ) denotes the smallest lattice containing F.

Notice that, by definition, if D ⊂ Bmax is a directed set then

D = D.

Lemma 5.2. For every D ⊂ Bmax, D is a label set.

Proof. Let us check that D satisfies the properties of Definition 2.8.
Property 2.8(i) holds as D is a lattice by definition.
Property 2.8(ii) holds as D ⊆ Bmax.

7The fineness property has been introduced in the proof of the existence of the field of Euclidean
numbers.

8Of course a smaller set of labels reduces the choice of the ultrafilter. More precisely if B1 ⊃ B2, an
ultrafilter constructed over B2 makes B1 to be a qualified set.
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Property 2.8(iii) holds as ∀a ∈ Λ,∃s ∈ Bmax, a ∈ V (s) and hence, if you take
any t ∈ D,a ∈ V (s ∪ t); on the other hand s ∪ t ∈D and so

⋃
s∈D

V (s) = Λ.

The numerosity of a set depends on the set of labels B and an ultrafilter U
consistent with B. As in this section we will discuss also coherence properties
between different label sets, we will use the notation numU

B
to denote the numerosity

function obtained using labels in B and the ultrafilter U and similarly we denote by

B(x) the label relative to B (see Definition 2.9). This notation will be used only
when there is danger of confusion, as multiple sets of labels are used at once. We will
keep to the simpler notation num whenever there is no danger of such confusion.

By definition, the D-labelling of a ∈ Λ is given by



D

(a) =
⋂

{s ∈ D | a ∈ V (s)} =
⋂

{s ∈ Bmax | a ∈ V (s) and ∃t ∈ D, s ⊇ t};

in particular, we have that

s ∈ D ⇒ 

D

(s) = s. (19)

Proposition 5.3. If D1 ⊂ D2 then D1 ⊂ D2; hence for all ultrafilter U consistent
with D1, for every set A in Λ

numU
D1

(A) = numU
D2

(A).

Proof. The inclusion D1 ⊂ D2 holds trivially from Definition 5.1. The
consistency is immediate as if U contains D1 and D1 ⊂ D2 then necessarily U
contains D2. �

Lemma 5.4. If 
 ∈ D, then 
 can be split as follows:


 = s ∪ t,

where s ∈ D and t is such that

∀� ∈ D, t ∩ � = ∅.

Proof. Given 
 ∈ D, we set

s :=
⋃

{u ∈ D | u ⊂ 
}

and

t := 
\s.

Then s ∈ D, asD is a lattice and the union defining s is finite, and∀� ∈ D, t ∩ � = ∅.
In fact, if we set u = t ∩ � then, as s ⊇ �, we have

∅ = s ∩ t ⊇ � ∩ t = u;

hence u = ∅. �
Remark 5.5. We can look at the splitting given by Lemma 5.4 thinking of B as

a vector space over Z2; in this case we can write

B = D⊕D⊥,

and the splitting 
 = s ∪ t implies that

s ∈ D and t ∈ D⊥.
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5.2. Numerosity of the natural numbers. In what follows, we set N := {1, 2, 3, ... }
and N0 := N ∪ {0}, and we let α denote the numerosity of N. We will consider
numbers in N0, as well as more generally in R, as atoms. Our goal is to find a label
set B(N0) ⊂ Bmax so that we can prove some properties of α and to describe the
numerosity of some subsets of N0 by functions of α.

We define D (N0) as follows:


 ∈ D(N0) ⇔ ∃m ∈ N such that 
 =
{
0, ... , m!m! } ,

and we set

B(N0) := D(N0).

which, by Lemma 5.2, is a label set. By Definition, we have that for every n ∈ N0,


(n) = {0, ... , f(n)} ,

where

f(n) := min
{
m!m! | m ∈ N, m!m! ≥ n

}
.

The main reason for such a peculiar labelling is to ensure the following algebraical
properties for α:

Proposition 5.6. Let n ∈ N. Then

(i) num({nm | m ∈ N}) = α
n .

(ii) num({mn | m ∈ N}) = α
1
n .

Proof. (i) For i = 0, ... , n – 1 let

Ai = {m ∈ N0 | m ≡ imod n}.

Then for every 
 � {0, 1, ... , n!n! }, with 
 ∈ B (N0), for every 0 ≤ i, j < n we have

|Ai ∩ 
| = |Aj ∩ 
|,

as 
 ∩ N = {0, 1, ... , f(m)} for some m ≥ n, and n divides f(m) for every such m.
In particular, this shows that num (Ai) = num (Aj) for every 0 ≤ i, j < n; hence

α = num (N0) =
n–1∑
i=0

num (Ai) = n · num (A0).

(ii) Let 
 � {1, ... , n!n! }, with 
 ∈ B (N0). As noticed in (i) above, it must be

 ∩ N = {1, ... , m!m! } for some m ≥ n. If a = m!

m!
n , we can rewrite {1, ... , m!m! }

as {1, ... , an}. Hence | {mn | m ∈ N} ∩ 
| = a = |N ∩ 
| 1
n . The thesis is reached by

taking the Λ-limit on the above equality. �

Remark 5.7. Of course, the choice of D (N0) is not intrinsic, and has been
done so to make it possible to have the properties listed in Proposition 5.6. Some
additional motivations for this choice of D (N0) can be found in [11]; different
motivations have led the authors of [5] to make the following different choice:


 ∈ D1(N0) ⇔ ∃m ∈ N such that 
 = {0, ... , 2m – 1}.
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This can be seen as a feature of this approach: different algebraic properties of the
numerosity can be rather easily obtained by changing the label set.

5.3. Numerosity of the integers. We proceed as in the case of the natural numbers.
We define D(Z) as follows:


 ∈ D (Z) ⇔ ∃m ∈ N such that 
 =
{
– m!m! , ... , m!m! }.

Clearly D (Z) ⊂ B(N0) and hence, by Lemma 5.2,

B(Z) := B (N0) ∩D(Z)

is a label set. Using this label basis for every z ∈ Z,


(z) ∩ Z = {– n(z), ... , n(z)},

where

n(z) := min
{
m!m! | m ∈ N, m!m! ≥ |z|

}
.

Moreover, asB(Z) ⊆ B(N), by Proposition 5.3 the numerosities constructed with
B(Z) are coherent with those constructed with B(N).

With this choice of D (Z), num (Z) = 2α + 1 and we have that

num (Z<0) = num (Z>0) = α; (20)

this equality agrees with the intuition that the positive numbers are as many as the
negative numbers.

Just as an example of a possible application, let us prove the following result for
subgroups of Z, which reminds us of Lagrange’s Theorem for finite groups:

Theorem 5.8. Let S := mZ be a subgroup of (Z,+). Then

num (Z)
num (S)

∼ m = num (Zm). (21)

Proof. By definition, S = {mn | n ∈ Z}. We write S = S+ ∪ S– ∪ {0}, where

S+ = {a ∈ S | a > 0}, S– = {a ∈ S | a < 0}.

By Proposition 5.6 we know that num (S+) = α
m , and it is trivial to show that

num (S–) = num (S+). Hence num (S) = num (S+) + num (S–) + 1 = 2 αm + 1. As
num (Z) = 2α + 1, we have

num (Z)
num (S)

=
2α + 1
2α
m + 1

=
2α + 1

1
m (2α +m)

∼ m,

as α is infinite. �

Remark 5.9. Let us notice that, with our labelling, in the above proposition we
do not have the equality

num (Z)
num(S)

= m, (22)
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because not all lateral classes [k] in the quotient have the same numerosity:

num ([k]) =
2α
m

if k 
= 0; num ([0]) =
2α
m

+ 1.

If we want the equality in (21), then we can replace D (Z) with D1 (Z) defined as
follows:


 ∈ D1 (Z) ⇔ ∃m ∈ N such that 
 =
{
– m!m! +1, ... , m!m! }.

In this case, we get (22), but num (Z) = 2α and the equality (20) is violated.

5.4. Numerosity of the rationals. The labelling of Z given in Section 5.3 can be
extended in several ways to the rationals. A natural one is obtained by setting

D (Q) :=
{
Hn | ∃m ∈ N, n = m!m! } ,

where

Hn :=
{a
n

| a ∈ Z, – n2 < a < n2
}
.

By Lemma 5.2,

B(Q) := D(Q)

is a label set.
As B (Q) ⊂ B(Z), by Proposition 5.3 the numerosities constructed with B(Q)

are coherent with those constructed with B(Z). Using the label basis B(Q) we have
that, for every q ∈ Q,


(q) ∩Q = Hn(q),

where

n(q) := min
{
m!m! | m ∈ N, m!m! ≥ |q|

}
.

This labelling has been chosen in order to have the following results:

Proposition 5.10. Using the labelling B(Q), the following properties hold:

(i) For all n ∈ N0, num (Q ∩ [n, n + 1)) = α.
(ii) For all p, q ∈ R with p < q, num(Q∩[p,q))

num(Q∩[0,1)) ∼ (p – q).
(iii) num (Q) = 2α2 + 1.

Proof. (i) Take Hm ∈ BQ with m larger than n + 1. Then | (Q ∩ [n, n + 1)) ∩
Hm| = m, and hence eventually | (Q ∩ [n, n + 1)) ∩Hm| = |N ∩Hm|, and the thesis
follows by taking the Λ-limit.

(ii) Take Hm ∈ BQ with m larger than |p|, |q|. Then (Q ∩ [p, q)) = (p – q)m if
p ∈ Hm and (Q ∩ [p, q)) = (p – q)m – 1 if p /∈ Hm. By taking the Λ-limit we have
that either num (Q ∩ [p, q)) = (p – q)α – 1 or num (Q ∩ [p, q)) = (p – q)α, and the
thesis follows as, by (i), num (Q ∩ [0, 1)) = α.

(iii) Let us first compute num (Q>0). Let 
 = Hn ∈ BQ. Then |Hn ∩Q>0| = n2,
and hence if ϕ is the enumeration of Q>0 and � is the enumeration of N, we have
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that ϕ(
) = �(
)2, so

num (Q>0) = lim

↑Λ
ϕ(
) = lim


↑Λ
�2(
) =

(
lim

↑Λ
�(
)
)2

= α2.

Therefore, as each Hn is symmetrical with respect to 0, we also have that
num (Q<0) = α2, and so

num (Q) = num (Q<0) + num (Q>0) + 1 = 2α2 + 1. �

As an example of a possible application, let us prove the following result:

Theorem 5.11. Let mPJ denote the Peano–Jordan measure of an mPJ -measurable
set E. Then

mPJ (E) = st
(

num (E ∩Q)
num ([0, 1) ∩Q)

)
= st
(

1
α

· num (E ∩Q)

)
. (23)

Proof. If E is an interval then the result follows from Proposition 5.10. We can
extend this result to a plurinterval E =

⋃
Ei by the Sum Principle (see Theorem

3.2(v)). In general, if E is mPJ -measurable, ∀ε ∈ R>0 there are two plurintervals A
and B such that

A ⊆ E ⊆ B,

|mPJ (B) – mPJ (E)| < ε and |mPJ (E) – mPJ (A)| < ε. (24)

By the Euclid Principle (see Theorem 3.2(ii)), we have that

num (A ∩Q) ⊆ num (E ∩Q) ⊆ num (E ∩Q) ,

then

mPJ (A) ≤ st
(

1
α

· num (E ∩Q)

)
≤ mPJ (B).

The conclusion follows by the inequality above, Equation (24), and the arbitrariness
of ε. �

§6. Numerosities of non-denumerable sets.

6.1. A suitable labelling. Let R̂N ,N ∈ N, R̂N ⊂ A, be a family of sets such that

R̂0 = R,

R̂N ⊂ R̂N+1,

and each R̂N+1 is isomorphic to RN . This awkward distinction between R̂N and RN

is useful since, in this context, it is easier to deal with atoms and the points of RN

are N-ples. Moreover, we need to assume that the isomorphism

Ψ : RN → R̂N
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preserves also the labels, namely, if (x1, ... , xN ) ∈ RN , then


 [Ψ (x1, ... , xN )] = max {
 (x1), ... , 
 (xN )}. (25)

If A ∈ ℘
(
R̂N
)

for some N, we denote by mL (A) its N-dimensional Lebesgue

measure. We introduce on ℘ (A) the following order relation: givenA,B ∈ ℘ (A),

• if A,B are Lebesgue measurable subsets of R̂N for some N ∈ N, we let

A � B ⇔ mL(A) ≤ mL (B);

• otherwise, we let A � B ⇔ |A| ≤ |B |.
If A � B and B � A, we will write A ≡ B.

We define D (A) as follows: 
 ∈ D (A) if and only if


 = Ξ ∪ A,

where

• Ξ is a finite set,
• A ∈ ℘fin (℘ (A)) ,
• for all A,B ∈ A, the following property holds:

A � B ⇒ |A ∩ Ξ| < |B ∩ Ξ|. (26)

The definition of� andD (A) is rather peculiar; it has been done in such a way that
the numerosity theory that will be constructed later will respect cardinalities, in the
sense that larger sets in the sense of cardinality theory will get larger numerosities,
and it will also respect the Lebesgue measure, in a sense that we make precise in
Section 7.

Lemma 6.1. If A1, ... , Am ⊂ A and F ⊂ A is a finite set, there exists Ξ ∈ ℘fin (A)
such that F ⊆ Ξ and

Ξ ∪ {A1, ... , Am} ∈ D (A). (27)

Proof. Let A1, ... , Am ⊂ A and F ⊂ A be given. We order the Aj ’s so that

j < k ⇒ Aj � Ak,

in such a way that those sets of cardinality c are ordered starting with the non-
Lebesgue measurable ones first. We construct a sequence of labels


k = Ξk ∪ {A1, ... , Ak} , k ≤ m,

such that 
k ∈ D (A), 
k ⊂ 
k+1, and Ξk ⊇ F .
We do it by induction. If k = 1, we just set


1 = F ∪ {A1} ,

so that 
1 ∈ D (A) has the desired property by construction.
If m > 2, assume we built 
k = Ξk ∪ {A1, ... , Ak} for k < m. Take Ak+1. We

consider three cases.
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Case 1: Ak+1 is finite.

In this case, for all i ≤ kAi is finite. We just set Ξk+1 = Ξk ∪ A1 ∪ ··· ∪ Ak+1,
so that |Ai ∩ Ξk+1| = |Ai | for all i ≤ k + 1, which shows that 
k+1 = Ξk+1 ∪
{A1, ... , Ak+1} satisfies Condition (26), and hence 
k ∈ D (A).

Case 2: |Ak+1| is not a Lebesgue measurable subset of R̂N for some N or Ak+1 is
Lebesgue measurable but mL (Ak+1) = 0.

We let I = {i ≤ k | |Ai | < |Ak+1|} and S =
⋃
i∈I Ai . As S is a finite union of sets

with a cardinality smaller than that of Ak+1, |S| < |Ak+1|. Therefore, we can take
a1, ... , as+1 ∈ Ak+1 \ S and we set Ξk+1 = Ξk ∪ {a1, ... , as+1}. Then 
k+1 = Ξk+1 ∪
{A1, ... , Ak+1} satisfies Condition (26): in fact, for i < j ≤ k + 1 with Ai � Aj :

• if both i, j ∈ I , we just observe that |Ai ∩ Ξk+1| = |Ai ∩ Ξk | < |Aj ∩ Ξk | =
|Aj ∩ Ξk+1| by inductive hypothesis;

• if i ∈ I, j /∈ I , and j 
= k + 1, just observe that |Ai ∩ Ξk+1| = |Ai ∩ Ξk | <
|Aj ∩ Ξk | ≤ |Aj ∩ Ξk+1| by inductive hypothesis and construction;

• if i ∈ I, j = k + 1 then |Ai ∩ Ξk+1| = |Ai ∩ Ξk | ≤ s < |Ak+1 ∩ Ξk+1| by con-
struction; and

• the case i /∈ I cannot happen, as in this case |Ai | = |Ak+1| so Ai ≡ Ak+1.
Therefore 
k+1 ∈ D (A).

Case 3: |Ak+1| is a Lebesgue measurable subset of R̂N for some N with
mL (Ak+1) > 0.

Let

I = {i ≤ k | Ai is not Lebesgue measurable or it has null Lebesgue measure}.
Let i = (max I ) + 1. For all j = i, ... , k + 1, Aj is Lebesgue measurable,
mL(Aj) > 0, and (if i ≤ k) mL(Aj) ≤ mL(Aj+1).

Set

S =
⋃
j<i

Aj and s = |Ξk ∩ S|.

For i ≤ j1, j2 ≤ k + 1 we set Aj1 ∼ Aj2 if and only if mL
(
Aj1ΔAj2

)
= 0. For

i ≤ j ≤ k + 1 we set

Ij = {b | i ≤ b ≤ k + 1 and Ab ∼ Aj}
and9

Ãj =

⎛⎝⋂
t∈Ij

At

⎞⎠ \ S.

For i ≤ j ≤ k + 1 we let

rj =
∣∣(Aj \ (Ãj ∪ S)) ∩ Ξk

∣∣
and r = maxi≤j≤k+1 rj .

9The reason why we introduce the sets Ãj is that, to build Ξk+1, we need to take the right amount of
points from each Aj ; when the Aj are distinct, this is simple to do, but when they are not we have to be
sure to take the right amount of points from their intersection. The Ãj ’s help in doing that.
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Observe thatmL
(
Ãj
)

= mL (Aj), and hence Ã1 � Ã2 � ··· � Ãk+1. In this chain,
some of the sets Ãj are repeated (this happens for all indices j1, j2 with j1 ∼ j2).
We let H ⊆ {i, ... , k + 1} be a minimal set of indices (with respect to inclusion) so
that for all i ≤ j ≤ k + 1 there is h ∈ H with Ãj = Ãh .

For all G ⊆ H we let

BG =
⋂
i∈G
Ãi .

Let

X = {BG | G ⊆ H} \ {∅},
and let

Y = {BG ∈ X | BG is minimal with respect to inclusion}.
Let Y = {BG1 , ... , BGl }. Notice that the sets in Y are nonempty, disjoint, and that,
for all j = i, ... , k + 1 there exists Lj ⊆ {1, ... , l} such that⋃

t∈Lj

BGt = Ãj .

Now let α ∈ R>1 be such that

1. For all i ≤ j1, j2 ≤ k + 1, if mL
(
Ãj1
)

– mL
(
Ãj2
)
> 0 then

α
(
�
(
Ãj1
)

– mL
(
Ãj2
))
> l + s + r + 1. (28)

2. For all10 j ≤ l

αmL

(
BGj

)
> m(l + s + r) > l + s. (29)

For all j = 1, ... , l let Cj be a subset of BGj with

|Cj | = cj = �α�mL (Bj) . (30)

We let

Ξk+1 = Ξk ∪
l⋃
j=1

Cj.

Claim. For all i ≤ j ≤ k + 1

αmL
(
Ãj
)

– l ≤ |Aj ∩ Ξk+1| ≤ αmL
(
Ãj
)

+ r + s.

First, let us show that the claim entails that 
k+1 = Ξk+1 ∪ {A1, ... , Ak+1} ∈
D (A). In fact, let 1 ≤ j1 < j2 ≤ k + 1 with Aj1 � Aj2 .

• If j1 < i and j2 < k + 1, then simply |Aj1 ∩ Ξk+1| = |Aj1 ∩ Ξk | < |Aj2 ∩
Ξk | ≤ |Aj2 ∩ Ξk+1| by inductive hypothesis.

10For this proof, the inequality αmL
(
BGj

)
> l + s would suffice; however, we include here also the

other inequality as it will be needed for an important remark at the end of this section.
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• If j1 < i and j2 = k + 1, then |Aj1 ∩ Ξk+1| = |Aj1 ∩ Ξk | ≤ s whilst |Ak+1 ∩
Ξk | ≥ αmL

(
Aj
)

– l > s by Condition (30).
• If j1 ≥ i then the hypothesis Aj1 � Aj2 entails that mL

(
Aj1
)
< mL

(
Aj2
)
. So

|Aj2 ∩ Ξk+1| – |Aj1 ∩ Ξk+1| ≥ αmL
(
Ãj2
)

– l – αmL
(
Ãj2
)

– r – s > 0

by Condition (28) and the fact that mL
(
Ãj
)

= mL
(
Aj
)

for all i ≤ j ≤ k + 1.

It remains to prove the claim. Let i ≤ j ≤ k + 1. Then

|Aj ∩ Ξk+1| = |Aj ∩ S ∩ Ξk+1| +
∣∣(Aj \ (S ∪ Ãj

))
∩ Ξk+1

∣∣+ |Ãj ∩ Ξk+1|

= |Aj ∩ S ∩ Ξk+1| + rj +

∣∣∣∣∣∣
⋃
t∈Lj

BGt ∩ Ξk+1

∣∣∣∣∣∣
= |Aj ∩ S ∩ Ξk+1| + rj +

∑
t∈Lj

ct ,

and we conclude as, by construction, 0 ≤ |Aj ∩ S ∩ Ξk+1| ≤ s , 0 ≤ rj ≤ r and
αmL

(
Ãj
)

– l ≤
∑
t∈Lj ct ≤ αmL

(
Ãj
)

by Condition (30). �

Lemma 6.2. We have that (D (A). ⊆) is a directed set.

Proof. For i = 1, 2 let


i = Ξi ∪
{
Ai1, ... , A

i
li

}
∈ D0 (A).

We set

F = Ξ1 ∪ Ξ2;

then, by Lemma 6.1, we can add points to F and get a set Ξ ⊃ Ξ1 ∪ Ξ2 so that
Condition (26) is satisfied. �

Using Lemma 5.2, we define the label set

B(A) := D (A). (31)

A key observation for what follows is that, by Condition (29), if A,B are two
Lebesgue measurable sets with a positive measure in R̂N withmL(A) = mL(B) then

st

(
num(A)
num(B)

)
= 1. (32)

In fact, given A,B let 
 = Ξ ∪ {A,B} be given as in Lemma 6.1. By the claim we
showed in the proof of Lemma 6.1, we have that (in the notations of the proof of
Lemma 6.1, with an index 
 to denote the dependence from the construction)

α
mL (A) – l
 ≤ |A ∩ Ξ
| ≤ α
mL (A) + r
 + s
,

α
mL (B) – l
 ≤ |B ∩ Ξ
| ≤ α
mL (B) + r
 + s
.

Hence, as mL(A) = mL(B),

α
mL (A) – l

α
mL (B) + r
 + s


≤ |A ∩ Ξ
|
|B ∩ Ξ
|

≤ α
mL (A) + r
 + s

α
mL (B) – l


,
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and we conclude as, by Condition (29),

α
mL (A) ≥ m
(l
 + s
 + r
) – l
;

hence lim
↑Λ α
mL (A) is infinitely larger than lim
↑Λ l
 + s
 + r
, as lim
↑Λm
 is
infinite. So

lim

↑Λ

α
mL (A) – l

α
mL (A) + r
 + s


= lim

↑Λ

α
mL (A) – l

α
mL(A)

· lim

↑Λ

α
mL (A)
α
mL (A) + r
 + s


∼ 1,

and similar for lim
↑Λ
α
mL(A)+r
+s

α
mL(A)–l


.

6.2. Cardinal numbers and numerosities. A property that is natural to expect,
when one has a numerosity theory for all sets in Λ, is that it must be coherent with
cardinalities, namely it must satisfy the following property:

Cantor property: If A,B ⊂ Λ\A then

|A| < |B | ⇒ num (A) < num (B). (33)

Using the labelling B(A) defined by (31), the following result holds:

Theorem 6.3. If A,B ⊂ A then

|A| < |B | ⇒ num (A) < num (B).

Proof. Given two sets A,B ⊂ A with |A| < |B |, we take a label 
 ⊇ 
0 := Ξ ∪
{A,B} ∈ B(A). Then, by (26)

|A ∩ 
| = |A ∩ Ξ| < |B ∩ Ξ| = |B ∩ 
|.
The conclusion follows taking the Λ-limit. �

By Theorem 3.2, it follows that the numerosity function is well defined for every
set belonging to the family

K =
{
E ∈ V (F ) | F ∈ ℘fin (A)

}
,

since D(A) provides a label to the elements of K. In particular, by the Comparison
Principle (Theorem 3.2(iv)) and (25), we have that for every set E ⊂ RN ,

num (E) = num [Ψ (E)] .

Now, we want to extend the notion of numerosity to any set A in Λ in such a way
that the Cantor property (33) is satisfied. The simplest way to realize this task is to
consider the family of infinite sets

S := Λ\ (L ∪ A)

and to assign a label to each of them. We can take an injective map

Φ : S → A

and set


(A) = 
(Φ (A)).

Then, every set in Λ\A has a label in B(A). By the Comparison Principle
(Theorem 3.2(iv)), we get our desired final result:
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Theorem 6.4. If A,B ∈ Λ\A, then

|A| < |B | ⇒ num (A) < num (B).

§7. Numerosity and measures.

7.1. The general theory. Given a numerosity theory and a set E ∈ Λ, we put

��(E) = st
(
num (E)
�

)
,

where � ∈ N∗. �� is called numerosity measure. As we will see, an interesting case
occurs if you take � = num ([0, 1))dwith d ∈ R≥0. In this case we will say that �� is
the canonical d -dimensional numerosity measure.

Theorem 7.1. The numerosity measure �� satisfies the following properties:

(i) It is finitely additive: for all sets A,B

�� (A ∪ B) = �� (A) + �� (B) – �� (A ∩ B).

(ii) It is superadditive, namely given a denumerable partition {An}n∈N of a set
A ⊂ R, then

�� (A) ≥
∞∑
n=0

�� (An).

Proof. (i) This is a trivial consequence of the additivity of the numerosity.
(ii) By Theorem 3.2, we have that for all N ∈ N,

num (A) ≥ num

(
N⋃
n=0

An

)
=

N∑
n=0

num (An);

hence

st

(
num (A)
�

)
≥ st
(
N∑
n=0

num (An)
�

)
=

N∑
n=0

st

(
num (An)
�

)
;

therefore,

�� (A) ≥
N∑
n=0

�� (An).

The conclusion follows taking the Cauchy limit in the above inequality for
N → ∞. �

7.2. Numerosity of the subsets of R. In this section, we will show that �� agrees
with the Lebesgue measure, namely, if E is a Lebesgue measurable set, then

mL (E) = �� (E) = st
(
num (E)
�

)
, (34)

where

� := num ([0, 1)). (35)
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First, let us show that this holds for intervals:

Theorem 7.2. The numerosity measure �� is translation invariant on Lebesgue
measurable sets for any � ∈ N∗. In particular, if � = � then for any ε = a

b ∈ [0, 1) we
have that ��

(
[0, ab )

)
= a
b .

Proof. Let r ∈ R, E ⊆ R be Lebesgue measurable. By Property 31, asE ≡ r + E
(in the sense of the ordering �), we have that num(E)

num(E+r) ∼ 1. Hence ��(E) =

st
(
num(E)
�

)
= st
(
num(E+r)
num(E)

num(E)
�

)
= st
(
num(E+r)

�

)
= ��(E + r).

As for the second, we just have to observe that [0, 1) = [0, 1
b ) ∪ [ 1

b ,
2
b ) ··· ∪ [ b–1

b , 1),
so by finite additivity and translation invariance we get ��

(
[0, 1
b )
)

= 1
b , and the

thesis follows as, similarly, [0, ab ) = [0, 1
b ) ∪ [ 1

b ,
2
b ) ··· ∪ [ a–1

b , 1). �

Moreover, we have the following property:

Proposition 7.3. The numerosity measure �� is subadditive on the �-algebra of
Lebesgue measurable sets.

Proof. Let E ∈ ℘(R); wlog, we assume E ∈ ℘ (R≥0), as the result for a generic
E will then follow easily by splitting E = E+ ∪ E–. Let

E =
⋃
j∈N

Ej

be a partition of E, with all Ej ’s Lebesgue measurable. Let ε = a
b ∈ [0, 1); for N

large enough we have

mL (E) ≤ mL

⎛⎝ N⋃
j=1

Ej

⎞⎠+ ε.

Now E ∩ [– 1, – 1 + ε] = ∅, so

mL (E) ≤ mL

⎛⎝ N⋃
j=1

Ej ∪ [– 1, – 1 + ε]

⎞⎠.
By Property 27 of our labelling, we have

num (E) ≤ num

⎛⎝ N⋃
j=1

Ej ∪ [– 1, – 1 + ε]

⎞⎠.
By Theorem 7.2

num

⎛⎝ N⋃
j=1

Ej ∪ [– 1, – 1 + ε]

⎞⎠
=

N∑
j=1

num (Ej) + num ([– 1, – 1 + ε]) ∼
N∑
j=1

num (Ej) + ε� ;

https://doi.org/10.1017/jsl.2022.17 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2022.17


EUCLIDEAN NUMBERS AND NUMEROSITIES 143

hence

�� (E) ≤
N∑
j=1

�� (Ej) + ε ≤
∞∑
j=1

�� (Ej) + ε.

The arbitrariness of ε gives the desired inequality

�� (E) ≤
∞∑
j=1

�� (Ej). �

We can now prove our desired final result:

Theorem 7.4. ��(E) = �L(E) for all Lebesgue measurable sets E ⊆ R.

Proof. By Theorems 7.1 and 7.2 and by Proposition 7.3 we have that �� ,
restricted to Lebesgue measurable sets, has the empty set property, it is countably
additive (as it is both subadditive and superadditive), it is invariant under
translation, and it is normalized. Hence it must coincide with the Lebesgue
measure. �

The results of this section could be generalized to prove that, for any measurable
set A ⊂ RN ,

mL(A) = st
(
num (A)
�N

)
.

Similarly, modifying the ordering � to handle Hausdorff measures instead of
Lebesgue’s, one could consider the “fractal measure” of any fractal set A ⊂ RN ,
defined as follows:

md (A) = st
(
num (A)
�d

)
, d ∈ [0, N ] .

We are not going to study this fractal measure in detail here but, analogously to
what has been done here with the Lebesgue measure, it would not be too difficult to
check that md (A) is equal to the normalized Hausdorff measure Hd .

7.3. Numerosity and nonstandard measures. It is well known that the Lebesgue
measure can be realized using a counting procedure based on hyperfinite sets: this is,
e.g., at the core of the construction of Loeb measures, which is the most known and
used of such constructions. Loeb measures were introduced in mid-70s, see [20]; see
also [22] for an overview of Loeb methods and applications, and [23] for an overview
of other applications of nonstandard analysis in measure theory. To confront Loeb
construction with our approach, here we shortly recall Loeb construction following
Goldblatt’s presentation (see [18, Section 16.8]).

Let N be an infinite hypernatural number, and let S = { kN |– N 2 ≤ k ≤ N 2, k
hyperinteger}. Let ℘I (S) be the set of internal subsets of S, and for everyA ∈ ℘I (S)
let

m(A) := st
( |A|
N

)
,

where |A| denotes the internal cardinality of A. Then m : ℘I (S) → [0,+∞] is a
finitely additive measure on ℘I (S). The Loeb measure is obtained by means of the
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usual Carathéodory extension procedure applied to m (we will denote also the Loeb
measure by m). What Loeb proved is that the Lebesgue measure can be seen as a
restriction of m, in the sense that for every Lebesgue measurable set X the Lebesgue
measure mL(X ) is equal to the Loeb measure of the so-called pre-shadow st–1(X )
of X, namely

mL(X ) = st
(
m
(
st–1 (X )

))
,

where st–1(X ) = {� ∈ S | st(�) ∈ X}.
The similarity between our approach is that we have that, actually, �� is obtained

as the standard part of a quotient similar to Loeb’s. In fact, �� (A) = st
(

|A∗∩Γ|
|[0,1)∗∩Γ|

)
,

where:

1. | · | denotes the internal cardinality of a set and
2. Γ is the hyperfinite set obtained by taking lim
↑Λ 
 ∩ R.

However, in our approach the use of Carathéodory extension procedure, as well
as of pre-shadows, is substituted with the choice of a particular labelling set, which
can be equivalently seen as a particular choice of the hyperfinite set used in the
quotient. A similar result in a general nonstandard setting was first obtained by
Bernstein and Wattenberg (see [13]; see also [15, Section 2] for a comparison of
Bernstein–Wattenberg’s result and Loeb measures), who in fact proved that there
exists hyperfinite subsetsS ⊆ [0, 1]∗ such that for all Lebesgue measurableA ⊆ [0, 1]

mL(A) = st
( |A∗ ∩ S|

|S|

)
.

As we said before, Theorem 7.4 provides a new proof of the above result by taking

S = lim

↑Λ

(
 ∩ R).

Finally, the problem of the relationship between numerosities and Lebesgue
measure in general has been addressed in [3, 4]. In these papers, the authors
introduced the notion of “elementary numerosity” (see [3, Definition 1.1]), that
we recall:

Definition. An elementary numerosity on a set Ω is a function n : ℘ (Ω) →
[0,+∞) defined on all subsets of Ω, taking values in the non-negative part of an
ordered field F ⊇ R, and such that the following two conditions are satisfied:

1. n(x) = 1 for every point x ∈ Ω and
2. n(A ∪ B) = n(A) + n(B) whenever A and B are disjoint.

The main connection between the “elementary numerosity” and Lebesgue
measure is given by the following result, which is one of the instances of Theorem
3.1 in [4]:

Theorem. There exists an elementary numerosity n : ℘ (R) → [0,+∞)F such that

mL(X ) = st
(

n(X )
n([0,1))

)
for every Lebesgue measurable set X.

Once again, Theorem 7.4 provides another proof of the above result, as num,
when restricted to ℘ (R) is, in fact, an elementary numerosity on R.
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The interest of Theorem 7.4 lies on the fact that it is based on a numerosity theory
which satisfies many other additional properties.
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UNIVERSITÀ DEGLI STUDI DI PISA

VIA F. BUONARROTI 1/C, 56127 PISA, ITALY
E-mail: vieri.benci@unipi.it

DIPARTIMENTO DI MATEMATICA
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