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1

Let K be a bounded open convex set in euclidean #-space R, symmetric
in the origin 0. Further let L be a discrete point set in R, containing 0 and
at least # linearly independent points of R,. Put m,; = inf #, extended over
all positive real numbers %, for which #, K contains ¢ linearly independent
points of L, ¢ =1,2,---, m,

Denote by P a parallelopiped in R, centred at 0. For each positive
integer N denote by L(NP) the number of points of L contained in NP,
Put

d(L, P) = lim inf (V(NP)/L(NP)), N — o0,

where V(N P) denotes the Jordan content of NP and
d(L) =infd(L, P)

extended over all nondegenerate parallelopipeds P. It is assumed here that
L is such that d(L) is finite and positive. In particular if L is a lattice then
d(L) is the determinant of L and in this case Minkowski’s second inequality
in the geometry of numbers asserts that

1) mymy -+ m,V(K) < 2 d(L).

The object here is to show that (1) remains true if the restriction of L to a
lattice is replaced by the weaker condition

(A) if XeL and Y € L then either X—Y or Y—X is in L. Examples of
such sets are obtained by taking a lattice 4, a positive integer # and a fixed
point X of R, such that the sets

A, A+X, A42X, -, A+mX

are pairwise disjoint. With L as the union of these m--1 sets it is evident
that L satisfies (4) and that (L) = d(A)/(m-+1). In particular with m = 1,
L becomes the familiar double lattice relating homogeneous and inhomo-
geneous problems in the geometry of numbers and (1) becomes a trans-
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ference theorem. M. Bleicher has pointed out in correspondence that there
are sets L other than those given here with property 4.

Minkowski’s original proof of (1) for lattices has been simplified by Weyl
[3] and Cassels [4], and a quite different proof has been given by Daven-
port [1]. Further simplifications of both lines of proof are given in Bambah,
Woods and Zassenhaus [5]. It is the version by Bambah of Davenports proof
that is used here to obtain the generalisation stated above and it is interest-
ing to note that the Minkowski method of proof appears to break down for
this wider class of sets.

2. Proof of the generalisation

THEOREM 1. Suppose that S is a bounded set in R,,. Let y(X) be its char-
acteristic function. Suppose further that

— :o"'f:ox(X)dxl"‘dxn

exists and I > d(L). Then the sets S+A, A € L overlap so that there exists
points X, Y in S such that X—Y e L.

Proor. By way of contradiction assume that the sets S+4, A eL do
not overlap. Let P denote the cube given by

max (jz,l, -+, a,]) < 1.

Since S is bounded there exists a positive integer & such that S is contained
in 2P. For a fixed positive integer N consider the set Z of points A4 of L
that lie in the cube N P. Define

F(X) =3 z(X—4).

AeZ

By hypothesis the sets S+4 do not overlap, hence F(X) <1 for all X.
Further F(X) = 0if X is not in the cube (N-+%)P. Therefore

(2N +2k)™ = f - F(X)dxl

f f (X —A)d, - - - da,
AeZ

=3 [T rxyan, -,
AGZ

= L(NP)I.
Thus
I < (V(NP)/L(NP))((2N+2k)/2N)").
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Let N tend to infinity; this implies that
I < d(L, P) and therefore also I < d(L),

the contradiction that proves the theorem.

LemMa 1. If T is a nonsingular transformation of R, into itself then
4(T(L)) = ||IT|I4(L).

ProOF. Let P be a parallelopiped centred at 0. For a fixed positive
integer N the number of points of T(L) in NP is the same as the number of
points of L in NT-1(P). Hence

d(T(L), P) = lim inf [V (NP)/L(NT-(P))]
= ||| lim inf [V(NT-*(P))/L(NT-*(P))]
= ||T{|d(L, T-1(P)).
Thus d(T (L)) =infp ||T||d(L, T-1(P)) = ||T||d(L), which proves the lemma.
LEMMA 2. Let ny, ny, - - -, n, be n positive real numbers such that
=0, S =0,
There exist sets K,, K,, - - -, K, such that
() K,= %an’
(i) K,Cin,K for i =1,2,---,n,
(i) If X, YeK,fori>1and x,=vy,, -+, x, =1y, then there exist points
X',Y in K, | such that XY = X'—-Y’,
(iv) If x.(X) s the characteristic function of K, then

V=" (" pu(X)day - - - da,
()Y (K) if i=1

exists a i { (n,./n,._l)"'i+lVi—1 if > 1.

A proof of this lemma is given in [5].
THEOREM 2. If L has property (A) then (1) holds.

Proor. Since L is discrete and contains # linearly independent points
of R,, it follows that there exist # linearly independent points F,, F,, * - -,
F, of L such that F, lies on the boundary of m,K for eachi =1,2,---, n.
From lemma 1 it follows that (1) is an invariant inequality under nonsingu-
lar linear transformations of R,, so without loss of generality it may be as-
sumed that the coordinate system is such that F; has coordinates of the form
(fi, far = fiy 0,+-+,0) for each 7 =1, 2, - -+, n. Now if %m,-K contains
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two points X = (%, -, z,) and Y = (y;, -, ¥,) such that X—-Y is
in L then, by the convexity and symmetry of K, X—Y is in m,K and so
cannot be linearly independent of F,,--:, F,,; hence z, =y, --,
z, = ¥,. Apply lemma 2 with n, = m, for 1 =1, 2,---, n to obtain the
sets K,, - - -, K,. Assume by way of contradiction that (1) is false so that

my - -m,V(K) > 2°d(L).
Then
Va=my- - m,(3)"V(K)>d(L)

and by theorem 1 there exist points X, Y in K, such that 0 #X—-Y e L.
Since K,, C $m,K this implies that z, = y,,, and by property (1) of the sets
K,, K,_, contains points XV, Y® such that

XY = Xw_yw,

Since K, ; C4m, K this implies that 2!); = ¢!V, 2! = &1 and there
exist points X Y@ in K, _, with

XY = X®_y®,

Repeating this argument a number of times we obtain points X*, Y*
in 2m, K such that X—Y = X*-Y* But X*—Y*eL implies that
X*=Y* and X—Y =0, which is a contradiction. This proves the theorem.

3. A comment on Minkowski's method

Minkowski’s method relies upon the fact that the measure of any meas-
urable subset of R, in the quotient space of R, modulo a lattice of dimension
=< n is monotone, that is to say, if C << C’ then the measure of C does not
exceed the measure of C’ in the quotient space. Such a measure can be ge-
neralised to sets L other than lattices as follows. Let C be a measurable sub-
set of R,. If C is bounded there exist at most a finite number of points
Zy, -+, Z, other than 0 such that C+Z, intersects C. Denote by M, the
measure of the set of points X of C such that C lies in exactly ¢ of the sets
C+Z,, -, C4Z, and define

M(C) = My +iM,4+3My+ - - - 1M,

Now if M (C) is monotone so that C C C’" implies M (C) < M(C’) for bound-
ed measurable sets C, C’ then it is possible to show that (1) holds provided
d(L) is replaced by the upper bound of M(C) taken over all measurable
bounded sets C. However the author has been unable to find any interest-
ing sets L other than lattices that have this property.
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