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Abstract. In this paper, we study the K-envelopes of the real interpolation
methods with function space parameters in the sense of Brudnyi and Kruglyak [Y. A.
Brudnyi and N. Ja. Kruglyak, Interpolation functors and interpolation spaces (North-
Holland, Amsterdam, Netherlands, 1991)]. We estimate the upper bounds of the K-
envelopes and the interpolation norms of bounded operators for the K�-methods in
terms of the fundamental function of the rearrangement invariant space related to the
function space parameter �. The results concerning the quasi-power parameters and
the growth/continuity envelopes in function spaces are obtained.

2010 Mathematics Subject Classification. Primary 46B70, 46M35; Secondary
46B25, 46E30.

The K-envelope of an intermediate space for a Banach couple, according to
Pustylnik, is the exact upper bound of K-functionals on the unit ball of the
space considered. This concept plays an important role in the interpolation theory,
such as embedding properties of interpolation spaces, the generalised Lorentz and
Marcinkiewicz spaces, weak-type interpolation and interpolation of operator ideals
(see [4, 10–12] for details). The K-envelopes of certain function spaces have a close
connection with the growth/continuity envelopes in functions. Recently, Haroske in [9]
studied this connection and found some estimates of the growth/continuity envelopes
in the framework of the classical real interpolation with the numerical parameter
θ ∈ (0, 1).

Our goal in this paper is to investigate the K-envelopes of the real interpolation
methods with function space parameters in the sense of Brudnyi and Kruglyak
[3]. In the first section, we give some preliminary information concerning the K�

interpolation methods and related topics. In Section 2, we study the K-envelopes and
interpolation operators for the K�-methods, and estimate the upper bounds in terms
of the fundamental function of the rearrangement invariant (r.i.) space K�(L̃1, L̃∞).
Section 3 concerns with the K-envelopes and some properties of the K�-methods, espe-
cially Lions–Peetre’s methods of constants and means, with quasi-power parameters.
In the final section, we apply these estimates on the growth/continuity envelopes in
function spaces, and carry over the results in [9] to the setting of K�-methods.

1. Preliminaries. Let X = (X0, X1) be a Banach couple with �X = X0 ∩ X1 and
�X = X0 + X1, and let X be an intermediate space for X . We denote by X0 the
regularisation of X for X , by X ′ the Banach space dual of X0, and we write X

′ =(
X ′

0, X ′
1

)
as the dual couple of X . The notation B (X, Y ) (resp., B

(
X, Y

)
) stands for the
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space of all bounded linear operators from Banach space X to Banach space Y (resp.,
from Banach couple X to Banach couple Y ). We simply write B (X) = B (X, X) and
B

(
X

) = B
(
X, X

)
. For T ∈ B

(
Xj, Yj

)
(j = 0, 1), we denote ‖T‖j = ‖T‖Xj,Yj (j = 0, 1).

For T ∈ B
(
X, Y

)
, we denote ‖T‖X,Y = ‖T‖0 ∨ ‖T‖1. Further information about the

interpolation theory can be found in [2, 3].
Let X be a Banach couple. For t > 0, the J- and K-functionals defined on �X and

�X , respectively, are given by

J(t, x) = J(t, x; X) = ‖x‖0 ∨ (t‖x‖1)

for x ∈ �X, and

K(t, x) = K(t, x; X) = inf{ ‖x0‖0 + t‖x1‖1 | x = x0 + x1, xj ∈ Xj (j = 0, 1) }

for x ∈ �X . Assume that X is an intermediate space for X . The K-envelope of X is the
function defined by

κ(t, X) = κ(t, X ; X) = sup{ K(t, x; X) | x ∈ X, ‖x‖X ≤ 1 } (1.1)

for t > 0.
Let � be a non-zero Banach function space over (R+, dt/t). We say that � is

K-non-trivial if 1 ∧ t ∈ �, and define

K�(X) = { x ∈ �X | ‖x‖K�
= ‖K(t, x)‖� < ∞} [3, (3.3.1)].

We say that � is J-non-trivial if∫ ∞

0
1 ∧ (1/t) |f (t)| dt

t
< ∞ for all f ∈ �,

and define J�(X) as the space of all x ∈ �X , which permits a canonical representation
x = ∫ ∞

0 u(t)dt/t for a strongly measurable function u : R+ → �X , with the norm

‖x‖J�
= inf

u
‖J(t, u(t))‖� < ∞ [3, (3.4.3)].

According to [3, Cor. 4.1.9], K� and J� are exact interpolation functors for all Banach
couples under the action of bounded (not necessarily linear) operators. More precisely,
if X and Y are Banach couples and if T : X → Y are bounded (not necessarily linear)
operators in the sense that T acting from �X to �Y such that there exists Mj > 0 for
any xj ∈ Xj (j = 0, 1),

T(x0 + x1) = y0 + y1

for some yj ∈ Yj with

‖yj‖Yj ≤ Mj‖xj‖Xj (j = 0, 1). (1.2)
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Thus,

‖Tx‖K�(Y ) ≤ (M0 ∨ M1)‖x‖K�(X)

for all x ∈ K�(X), and

‖Tx‖J�(Y ) ≤ (M0 ∨ M1)‖x‖J�(X)

for all x ∈ J�(X).
The function space � is said to be a quasi-power parameter space for real

interpolation if � is both K- and J-non-trivial such that the Calderón operator S
is bounded on �, where S is defined by

(Sf )(t) =
∫ ∞

0

(
1 ∧ t

v

)
f (v)

dv

v
.

In this case, the equivalence

J�(X) = K�(X) (1.3)

holds with the isomorphism constant depending on � [3, Corollary 3.5.15]. Let �′

be the Köthe dual of �. Then �′ is also a quasi-power parameter space for real
interpolation, and the duality

J�(X)′ = K�(X
′
) (1.4)

holds with the isomorphism constant depending on � [3, Theorem 3.7.2]. For a quasi-
concave function ϕ : R+ → R+, we write

ϕ̄(t) = sup
s>0

ϕ(st)
ϕ(s)

for t > 0, and

ϕ(t0, t1) = t0ϕ(t1/t0)

for t0, t1 > 0. Let us now define

αϕ = lim
t→0

ln ϕ̄(t)
ln t

and αϕ = lim
t→∞

ln ϕ̄(t)
ln t

as the lower and upper extension indices of ϕ. Function ϕ is said to be quasi-power if

0 < αϕ ≤ αϕ < 1.

Furthermore, let

Lp
ϕ =

{
f ∈ L0(R+, dt/t)

∣∣∣∣∣ ‖f ‖Lp
ϕ

=
(∫ ∞

0

∣∣∣∣ f (t)
ϕ(t)

∣∣∣∣p dt
t

)1/p
}

< ∞

for 1 ≤ p < ∞ with the usual modification for p = ∞. In particular, we denote Lp
θ = Lp

ϕ

if ϕ(t) = tθ for 0 ≤ θ ≤ 1, and L
p = (Lp

0, Lp
1). If ϕ is a quasi-power function and
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1 ≤ p < ∞, then the function space Lp
ϕ is a quasi-power parameter for real

interpolation. In case 0 < θ < 1 and 1 ≤ p < ∞, let

X θ,p = XLp
θ
.

Throughout this paper we write ϕ � ψ (or ψ � ϕ) if 0 ≤ ϕ(t) ≤ c ψ(t) for all t > 0
and for some constant c > 0, and write ϕ � ψ if ϕ � ψ and ψ � ϕ. The notations
⊆ and = between two Banach spaces stand for continuous inclusion and isomorphic
equivalence, respectively.

2. Upper bounds of K-envelopes and interpolated operators. From now on, we
assume that � is a K-non-trivial Banach function space over (R+, dt/t) such that the
Hardy operator P given by

(Pf )(t) =
∫ t

0
f (v)

dv

v

is bounded on �. We will estimate the upper bound of K-envelope given in (1.1) for
the interpolation space K�(X) in terms of fundamental functions of the r. i. function
spaces corresponding to the parameter space �. Observe that if � is a quasi-power
parameter for real interpolation, then the Hardy operator P is certainly bounded
on �.

For an r. i. function space X over the measure space (
,μ), we mean the Banach
function space of measurable real valued functions on (
,μ) which is an exact
interpolation space for the Banach couple (L1(
,μ), L∞(
,μ)). If f ∈ X , then we
denote by f ∗ the non-increasing rearrangement of f . Let us now consider the measure
space (R+, dt), and write L̃p = Lp(R+, dt) for 1 ≤ p ≤ ∞. The r. i. function space X
over (R+, dt) is characterised by its fundamental function

φX (t) = ‖χ(0,t)‖X (2.1)

and dilation function

σX (t) = sup
{ ‖f ( · /t)‖X

‖f ( · )‖X
| f ∈ X, f �= 0

}
. (2.2)

It is known that

φ̄X (t) ≤ σX (t) (2.3)

for all t > 0. The so-called Boyd indices of space X is defined by

αX = ασX
and ᾱX = ᾱσX . (2.4)

We refer to [1] for the background of r. i. function spaces.

LEMMA 2.1. Let �̃ = K�(L̃1, L̃∞) be the r. i. function space corresponding to �.
Then

‖tf ∗(t)‖� ≤ ‖f ‖�̃ ≤ ‖P‖�‖tf ∗(t)‖�

for all f ∈ �̃. In particular, if � is a quasi-power parameter space for real interpolation,
then 0 < α�̃ ≤ ᾱ�̃ < 1.
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Proof. For f ∈ �̃, by [3, Proposition 3.1.18], we have

K(t, f ; L̃1, L̃∞) =
∫ t

0
f ∗(v)dv.

Thus,

‖f ‖�̃ =
∥∥∥∥∫ t

0
f ∗(v)dv

∥∥∥∥
�

.

By the boundedness of the Hardy operator P on � and the inequality

tf ∗(t) ≤
∫ t

0
f ∗(v)dv,

we obtain

‖tf ∗(t)‖� ≤ ‖f ‖�̃ ≤ ‖P‖�‖tf ∗(t)‖�.

In particular, if � is a quasi-power parameter space for real interpolation, and if f ∈ �̃,
then by [1, Proposition III.5.2], we have∥∥∥∥∥

∫ ∞

0

(
1
t

∧ 1
s

)
f (v)dv

∥∥∥∥∥
�̃

≤
∥∥∥∥∥
∫ ∞

0

(
1 ∧ t

v

)
f ∗(v)dv

∥∥∥∥∥
�

≤ ‖S‖�‖tf ∗(t)‖� ≤ ‖S‖�‖f ‖�̃.

According to [1, Theorem III.5.15], 0 < α�̃ ≤ α�̃ < 1. �
In the rest of this section, we assume that φ is the fundamental function of �̃ given

in (2.1). According to [11], if X is an intermediate space for X , then

κ(t, X ; X) � 1 ∨ t.

In particular, if X0 ⊆ X1, then κ(t, X ; X) � t on (0, 1); and if X1 ⊆ X0, then κ(t, X ; X) �
1 on (1,∞). For the interpolation space K�(X), we have the following improved
estimate.

PROPOSITION 2.1. Let c� = ‖P‖�. Then

κ(t, K�(X); X) ≤ c� · t/φ(t).

Proof. For x ∈ K�(X) with x �= 0, let f (t) = K(t, x; X)/t. Then f ∈ �̃ and f ∗ = f .
Observe that

K(t, x; X) = tf (t) ≤
∫ t

0
f (v)dv =

∫ ∞

0
f (v)χ(0,t)(v)dv ≤ ‖f ‖�̃‖χ(0,t)‖�̃′ .

This, together with the following estimate

‖x‖K�(X) = ‖K(t, x; X)‖� = ‖tf ∗(t)‖� ≥ c−1
� ‖f ‖�̃

by Lemma 2.1, and the identity

‖χ(0,t)‖�̃′ = t/φ(t),
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implies that

κ(t, K�(X); X) ≤ c� · t/φ(t),

which completes the proof. �
An interpolation result of the K-envelopes is given as follows.

PROPOSITION 2.2. Let X0, X1 be intermediate spaces for Banach couple Y, and let
X = (X0, X1). Then

κ(t, K�(X); Y ) ≤ c� · κ(t, X0; Y )/φ(κ(t, X1; Y )/κ(t, X0; Y ))

for all t > 0.

Proof. Let X = K�(X), κX (t) = κ(t, X ; Y ), and κj(t) = κ(t, Xj; Y ) (j = 0, 1).
Assume that x ∈ X with ‖x‖X = 1. For an arbitrary ε > 0, there exists a decomposition
x = x0(s) + x1(s), for which xj(s) �= 0 (j = 0, 1), and

‖x0(s)‖X0 + s‖x1(s)‖X1 ≤ (1 + ε)K(s, x; X)

for all s > 0. Observe that for any t > 0

K(t, xj(s); Y )
‖xj(s)‖Xj

≤ κj(t) (j = 0, 1).

Thus,

K(t, xj(s); Y )
κj(t)

≤ ‖xj(s)‖Xj (j = 0, 1).

If we choose s = κ1(t)/κ0(t), then

K(t, x; Y ) ≤ K(t, x0(s); Y ) + K(t, x1(s); Y )

≤ κ0(t)
(

K(t, x0(s); Y )
κ0(t)

+ s
K(t, x1(s); Y )

κ1(t)

)
≤ κ0(t)(‖x0(s)‖X0 + s‖x1(s)‖X1 )

≤ (1 + ε)κ0(t)K(κ1(t)/κ0(t), x; X).

This implies that

κX (t) ≤ κ0(t)κ(κ1(t)/κ0(t), X ; X).

According to Proposition 2.1, we obtain

κ(t, K�(X); Y ) ≤ c� · κ(t, X0; Y )/φ(κ(t, X1; Y )/κ(t, X0; Y ))

for all t > 0. �
Let us define

ρ�(t) = tφ̄(1/t). (2.5)
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It is easy to see that

ρ�(st) ≤ ρ�(s)ρ�(t)

for all s, t > 0. If � is a quasi-power parameter space for real interpolation, then by
(2.3) and Lemma 2.1, ρ� is a quasi-power function. Observe that

sup
s>0

st/φ(st)
s/φ(s)

= t sup
s>0

φ(s)
φ(st)

= t sup
s>0

φ(s/t)
φ(s)

= tφ̄(1/t).

Thus,

κ̄(t, K�(X); Y ) ≤ c�ρ�(t) (2.6)

by Proposition 2.1. We can now estimate the interpolation norms of bounded operators
on K�(X) in terms of ρ�.

PROPOSITION 2.3. If T is a non-zero bounded operator from X to Y with Mj (j = 0, 1)
given in (1.2), then

‖T‖K�(X),K�(Y ) ≤ c�ρ�(M0, M1).

In particular, if T ∈ B(X, Y ), then

‖T‖K�(X),K�(Y ) ≤ c�ρ�(‖T‖0, ‖T‖1).

Proof. If x ∈ K�(X) with ‖x‖K�(X) = ‖K(t, x; X)‖� = 1, then for s, t > 0, we have

K(st, x; X) ≤ K(s, x; X)K(t, x; X)

≤ κ̄(s, K�(X); X)K(t, x; X) ≤ c�ρ�(s)K(t, x; X)

by (2.6). Let now s = M1/M0. For each x ∈ K�(X) such that x = x0 + x1 with xj ∈ Xj,
and Tx = y0 + y1, for which yj ∈ Yj with ‖yj‖Yj ≤ Mj‖xj‖Xj , we have

K(t, Tx; Y ) ≤ ‖y0‖Y0 + t‖y1‖Y1 ≤ M0(‖x0‖X0 + st‖x1‖X1 ).

This implies that

K(t, Tx; Y ) ≤ M0K(st, x; X) ≤ c�M0ρ�(s)K(t, x; X),

and hence

‖Tx‖K�(Y ) = ‖K(t, Tx; Y )‖� ≤ c�ρ�(M0, M1)‖x‖K�(X),

which completes the proof. �
REMARK. For t > 0, let τs be the compression operator given by

(τtf )(s) = f (st)

for f ∈ L0(R+, dt/t). We define the corresponding compression function by

τ�(t) = ‖τt‖K�(L̄∞).
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In particular, for 0 ≤ θ ≤ 1 and 1 ≤ p ≤ ∞, we have

τLp
θ
(t) = tθ .

It is easy to see that

τ�(t) � tσ�̃(1/t),

and hence

ρ�(t) � τ�(t) (2.7)

by (2.2) and Proposition 2.1. Moreover, if ρ� in Proposition 2.3 is replaced by τ�, then
we can show direct that

‖T‖K�(X),K�(Y ) � τ�(M0, M1).

The discrete version of τ� and the similar norm estimate for interpolated operators are
formulated in [5].

3. On quasi-power parameter spaces. If X is an intermediate space for X , we
define the dual function of the K-envelope of X as

ι(t, X ; X) = inf{ J(t, x; X) | x ∈ �X, ‖x‖X = 1 } = t

κ(t, X ′; X
′
)
.

It is known that if X is an interpolation space for X , then

κ(t, X ; X) ≤ ι(t, X ; X).

In case X = K�(X) with a quasi-power parameter space � for real interpolation, we
can improve this inequality in terms of the fundamental function φ of K�(L̃1, L̃∞).

PROPOSITION 3.1. If � is a quasi-power parameter space for real interpolation, then
for any Banach couple X, we have

κ(t, K�(X); X) � t/φ(t) � ι(t, K�(X); X).

Proof. The inequality

κ(t, K�(X); X) � t/φ(t)

is given by Proposition 2.1. On the other hand, we have

ι(t, K�(X); X) = t

κ(t, K�(X)′; X
′
)

� t

κ(t, K�′(X
′
); X

′
)

by the equivalence in (1.3) and the duality in (1.4). If we apply Proposition 2.1 on
κ(t, K�′(X

′
); X

′
), then we obtain

κ(t, K�′(X
′
); X) � t

t/φ(t)
= φ(t),
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and hence

t/φ(t) � ι(t, K�(X); X),

which completes the proof. �
Let � and � be two quasi-power parameter spaces for real interpolation. It is easy

to see that if K�(X) ⊆ K�(X), then

κ(t, K�(X), X) � κ(t, K�(X), X).

On the other hand, by combining Proposition 3.1 with [10, Theorem 3], we obtain the
following.

PROPOSITION 3.2. If � and � are two quasi-power parameter spaces for real
interpolation, for which ∫ ∞

0

κ(t, K�(X), X)

κ(t, K�(X), X)

dt
t

< ∞,

then

K�(X) ⊆ K�(X).

Let ρ : R+ → R+ be a quasi-power function with ρ(1) = 1, and let 1 ≤ p0, p1 ≤
∞. We define Kρ,p0,p1 and Jρ,p0,p1 to be Lions–Peetre’s interpolation methods of
constants and means associated with the function parameter ρ, respectively. More
precisely, the space Kρ,p0,p1 (X) consists of all those x ∈ �X such that there exist
strongly measurable functions xj : R+ → Xj (j = 0, 1) satisfying x = x0(t) + x1(t) and
tj‖xj(t)‖j/ρ(t) ∈ Lpj (R+, dt/t) (j = 0, 1) with the norm

‖x‖Kρ,p0 ,p1
= inf{‖‖x0(t)‖0/ρ(t)‖Lp0 (dt/t) + ‖t‖x1(t)‖1/ρ(t)‖Lp1 (dt/t)};

and the space Jρ,p0,p1 (X) consists of all those x ∈ �X such that there exists a strongly
measurable function u : R+ → �X satisfying x = ∫ ∞

0 u(t) dt/t and tj‖u(t)‖j/ρ(t) ∈
Lpj (R+, dt/t) (j = 0, 1) with the norm

‖x‖Jρ,p0 ,p1
= inf{max

j=0,1
‖tj‖u(t)‖j/ρ(t)‖Lpj (dt/t)}.

In [6], the author described these interpolation methods in terms of the Brudnyi–
Krugljak methods associated with the quasi-power parameters. Now we define
ϕ : R+ −→ R+ by

ϕ−1(t) = t1/p0ρ(t−1/q), (3.1)

where 1/q = 1/p0 − 1/p1. Observe that ϕ is a Young function satisfying both �2 and ∇2

conditions. Let � be the weighted Orlicz space of all measurable functions f : R+ −→ R
such that ∫ ∞

0
ϕ(t−q/p0 |f (t)|)tq dt/t < ∞,
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which is equipped with the Luxemberg norm. If p0 �= p1, then

K�(X) = Kρ,p0,p1 (X) = Jρ,p0,p1 (X) = J�(X).

By [7, Proposition 2.2], if T ∈ B(X, Y ), then

‖T‖K�(X),K�(Y�) ≤ cρ̄(‖T‖0, ‖T‖1), (3.2)

where c is a positive constant depending on ρ, p0, p1.

LEMMA 3.1. Let ρ and � be as given above, and let ρ� be as given in (2.5). Then

ρ� � ρ̄.

Proof. On the one hand, by (2.7) and (3.2), we have

ρ�(t) � ‖τt‖K�(L∞
) � ρ̄(‖τt‖L∞

0
, ‖τt‖L∞

1
) = ρ̄(1, t) = ρ̄(t)

for all t > 0. On the other hand, let L̃ϕ = Lϕ(R+, dt) be the Orlicz space corresponding
to the function ϕ given in (3.1). Then L̃ϕ is an r.i. space over (R, dt) with the fundamental
function 1/ϕ−1(1/t). Moreover,

L̃ϕ = Kρ,p0,p1 (L̃p0 , L̃p1 )

by [7, (2.2)]. We now have κLpj (t) = t1/p′
j (j = 0, 1), and κL̃ϕ (t) = tϕ−1(1/t) by [10,

Example 1]. By Proposition 2.2 and (2.6), we obtain

tϕ−1(1/t) � ρ�(t1/p′
0 , t1/p′

1 ) = t1−1/p0ρ�(t1/q),

and hence

ρ(t) = tq/p0ϕ−1(t−q) � ρ�(t).

Consequently, ρ̄(t) � ρ�(t). �
We can now apply Proposition 2.2 on the interpolation space Kρ,p0,p1 (X) and

obtain the following.

PROPOSITION 3.3. Let X0, X1 be intermediate spaces for Banach couple Y, and let
X = (X0, X1). Then

κ(t, Kρ,p0,p1 (X); Y ) � ρ̄(κ(t, X0; Y ), κ(t, X1; Y )).

In particular,

κ(t, Kρ,p0,p1 (X); X) � ρ̄(t).

4. Connection with growth and continuity envelope functions. The idea of growth
and continuity envelopes in function spaces comes from the classical Sobolev
embedding theorems. Let X be a Banach fumction space over Rn equipped with the
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Lebesgue measure. The growth envelope function EX
G : R+ → R+ ∪ {0} ∪ {∞} of X is

defined by

EX
G (t) = sup{ f ∗(t) | ‖f ‖X ≤ 1 } (4.1)

for t > 0. By [8, Proposition 3.4], X ⊆ L∞(Rn) with the Lebesgue measure on Rn iff
EX

G is bounded.
Our first result is an extension of [9, Remark 3.4].

PROPOSITION 4.1. Assume that X0 and X1 are intermediate spaces for the Banach
couple (L1(Rn), L∞(Rn)) such that Xj � L∞(Rn) (j = 0, 1). Let X = (X0, X1), and let
X = K�(X). Then

EX
G (t) ≤ c

t

∫ t

0
ρ�(EX0

G (v), EX1
G (v))dv for t > 0,

where c is a positive constant depending on �.

Proof. We denote

L∞
ρ�

=
{

f ∈ L0(R+, dt/t)

∣∣∣∣∣ ‖f ‖L∞
ρ�

= sup
t>0

∣∣∣∣ f (t)
ρ�(t)

∣∣∣∣ < ∞
}

.

Let λj = sup{ s > 0 | EXj

G (s) > 0 } (j = 0, 1), and assume t < λ0 ∧ λ1. By Proposition 2.1
and by a similar argument as in the proof of [2, Theorem 3.9.1], we have X = K�(X) ⊆
KL∞

ρ�
(X). Thus, there exists a positive constant c depending on � such that

K(s, f ; X) ≤ cρ�(s)

for all s > 0 and for all f ∈ X with ‖f ‖X ≤ 1. Given ε > 0, there is a decomposition
f = f0(s) + f1(s) with

‖f0(s)‖X0 + s‖f1(s)‖X1 ≤ c(1 + ε)ρ�(s)

for s > 0. In particular, we have

‖f0(s)‖X0 ≤ c(1 + ε)ρ�(s) and ‖f1(s)‖X1 ≤ c(1 + ε)ρ�(s)/s.

If we choose s = EX1
G (t)/EX0

G (t), then we obtain by (4.1)

(fj)∗(t) ≤ c(1 + ε)ρ�(s)s−jEXj

G (t) ≤ c(1 + ε)ρ�

(
EX0

G (t), EX0
G (t)

)
(j = 0, 1) for t > 0. By using the sub-additivity of the function

f ∗∗(t) = 1
t

∫ t

0
f ∗(v)dv

given in [1, Theorem II.3.4], and the inequality f ∗(t) ≤ f ∗∗(t), we obtain the result. �
Let φX be the fundamental function of X . Then by [8, Proposition 3.21],

EX
G (t) = 1

φX (t)
(4.2)
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for t > 0. Furthermore, the r.i. space X is an exact interpolation space for the Banach
couple Y = (L1(Rn), L∞(Rn)). Observe that, for any f ∈ �Y ,

K(t, f ; Y ) =
∫ t

0
f ∗(v)dv for t > 0. (4.3)

By [10, Example 1], (4.2) and (4.3), we have

EX
G (t) = κ(t, X ; Y )

t
(4.4)

for t > 0. Next result is an application of Proposition 2.2 and generalises [9, Proposition
3.1].

PROPOSITION 4.2. Let X be a Banach couple of rearrangement invariant spaces over
Rn, and let X = K�(X). Then

EX
G (t) � ρ�

(
EX0

G (t), EX1
G (t)

)
for t > 0.

Let C(Rn) be Banach space of all complex-valued bounded uniformly continuous
functions over Rn, equipped with the sup-norm. For f ∈ C(Rn) and for t > 0, the
modulus of continuity ω(f, t) is given by

ω(f, t) = sup
|h|≤t

sup
x∈Rn

|f (x + h) − f (x)|.

Let Lip1(Rn) be the classical Lipschitz space of all functions f ∈ C(Rn) satisfying

sup
0<t<1

ω(f, t)
t

< ∞,

equipped with the norm

‖f ‖Lip1
(Rn)

= ‖f ‖C(Rn) + sup
0<t<1

ω(f, t)
t

.

If X ⊆ C(Rn) is a Banach function space over Rn, then the continuity envelope function
EX

C : R+ → R+ ∪ {0} ∪ {∞} of X is defined by

EX
C (t) = sup

{
ω(f, t)

t

∣∣∣∣ ‖f ‖X ≤ 1
}

(4.5)

for t > 0. By [8, Proposition 5.3], X ⊆ Lip1(Rn) iff EX
C is bounded. Recall that, for any

f ∈ C(Rn),

K(t, f ; C(Rn), Lip1(Rn)) � ω(f, t) for t > 0.

Thus, if X is an intermediate space for the Banach couple

Y = (C(Rn), Lip1(Rn)),
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then

EX
C (t) � κ(t, X ; Y )

t
for t > 0.

The counterpart of [9, Proposition 3.5] in our situation is formulated as follows.

PROPOSITION 4.3. Assume that X0 and X1 are intermediate spaces for the Banach
couple

(
C(Rn), Lip1(Rn)

)
such that Xj � Lip1(Rn) (j = 0, 1). Let X = (X0, X1), and let

X = K�(X). Then

EX
C (t) � ρ�

(
EX0

C (t), EX1
C (t)

)
for t > 0.

We conclude this section by a result concerning the behaviour of the growth
envelope functions for the Orlicz–Besov and Orlicz–Triebel–Lizorkin spaces when
t → ∞. Let T (Rn) be the Schwartz class of test functions on Rn with the dual space
T ′(Rn). Given f ∈ T ′(Rn), we denote by Ff and F−1f the Fourier transform and the
inverse Fourier transform of f , respectively. Suppose that {ψν}ν is a smooth dyadic
resolution of unity. Let s ∈ R, 1 ≤ r ≤ ∞ and ϕ be a Young function satisfying both
�2 and ∇2 conditions, and let Lϕ = Lϕ(Rn). The Orlicz–Besov space Bs

ϕ,r = Bs
ϕ,r(R

n)
consists of all f ∈ T ′(Rn) such that

‖f ‖Bs
ϕ,r

=
( ∞∑

ν=0

(
2νs

∥∥F−1ψνFf
∥∥

Lϕ

)r
)1/r

< ∞,

and the Orlicz–Triebel–Lizorkin space Fs
ϕ,r = Fs

ϕ,r(R
n) consists of all f ∈ T ′(Rn) such

that

‖f ‖Fs
ϕ,r

=
∥∥∥∥( ∞∑

ν=0

2νs
∣∣F−1ψνFf ( · )

∣∣r
)1/r

∥∥∥∥
Lϕ

< ∞,

with the usual modification if r = ∞ in both cases. In case ϕp(t) = tp with 1 < p < ∞,
we denote Bs

p,r = Bs
ϕp,r and Fs

p,r = Fs
ϕp,r.

PROPOSITION 4.4. If s > 0, then

ϕ̄−1(1/t) � EBs
ϕ,r

G (t) � ϕ−1(1/t)

and

ϕ̄−1(1/t) � EFs
ϕ,r

G (t) � ϕ−1(1/t)

when t → ∞.

Proof. Let

p
ϕ

= inf
t>0

tϕ′(t)
ϕ(t)

and p̄ϕ = sup
t>0

tϕ′(t)
ϕ(t)

.

Then 1 < p
ϕ

≤ p̄ϕ < ∞. If we choose p0 and p1 satisfying

1 < p0 < p
ϕ

≤ p̄ϕ < p1 < ∞,
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and define ρ : R+ → R+ by

ρ(t) = tq/p0ϕ−1(t−q),

then by [7, Proposition 3.1], we have

Bs
ϕ,r = Kρ,p0,p1

(
Bs

p0,r, Bs
p1,r

)
. (4.6)

and

Fs
ϕ,r = Kρ,p0,p1

(
Fs

p0,r, Fs
p1,r

)
. (4.7)

It is enough to show the estimates for EBs
ϕ,r

G . According to the proof of [8,
Theorem 10.19], we have

Bs
pj,r ⊆ Lpj (Rn) (j = 0, 1).

This, together with [7, (2.2)] and (4.6), implies that Bs
ϕ,r ⊆ Lϕ , and hence

EBs
ϕ,r

G (t) � ELϕ

G (t) = ϕ−1(1/t)

as t → ∞. Conversely, if f ∈ Bs
pj,r and 0 < R ≤ 1, then by [8, (10.22)], we have

‖f (R·)‖Bs
pj ,r

� R−n/pj ‖f ‖Bs
pj ,r

(j = 0, 1),

and hence by (4.6) again,

‖f (R·)‖Bs
ϕ,r

� ρ̄
(‖f (R·)‖Bs

p0,r
, ‖f (R·)‖Bs

p1,r

)
� ρ̄

(
R−n/p0‖f ‖Bs

p0 ,r
, R−n/p1‖f ‖Bs

p1 ,r

)
� ϕ̄−1(R−n)ρ̄

(‖f ‖Bs
p0 ,r

, ‖f ‖Bs
p1 ,r

)
.

Choose the compactly supported C∞-function f in Rn as given in [8, Example 2.6],
and set

fR(x) = ϕ̄−1(R−n)f (Rx)

for x ∈ Rn. Then

‖f ‖Bs
ϕ,r

� ρ̄
(
‖f ‖Bs

p0,r
, ‖f ‖Bs

p1 ,r

)
< ∞

by the above estimates, and f ∗
R(t) � ϕ̄−1(Rn) for t � R−n with 0 < R ≤ 1. Therefore,

EBs
ϕ,r

G (t) ≥ sup
0<R<1

f ∗
R(t) � ϕ̄(1/t)

for large t > 1, as stated in the end of the proof of [8, Theorem 10.19]. By using (4.7),

the estimate for EFs
ϕ,r

G (t) can be obtained in a similar way. �
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