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COMPACTNESS AND STRONG SEPARATION
DAVID E. COOK

Two point sets H and K are said to be strongly separated if there exist two
mutually exclusive domains Dy and Dg containing H and K respectively
such that either Dy and Dx are mutually exclusive or Dy - Dx is A - K.
R. L. Moore has shown [2, Theorem 153, Chapter I] that if .S is a normal
Moore space and H and K are two mutually separated point sets then H and K
are strongly separated. In this paper it is shown that if S is a Moore space,
(1) H and K are two mutually separated point sets and (2) the closure of the
set of all boundary points of H which do not belong to K is compact, then
H and K are strongly separated. It is further shown that the above proposition
does not remain true in every separable space satisfying Moore’s Axioms 0-6
if condition (2) of its hypothesis is replaced by either (a) H and K are con-
ditionally compact, there exists a domain containing H whose closure does
not intersect K, and there exists a domain containing K whose closure does
not intersect H or (b) H is a conditionally compact domain, A does not
intersect K, and K is conditionally compact. It is also shown that if .S is con-
nected, M separates H from K in .S and the boundary of M is compact then
some closed subset of M separates H from K.

A Moore space is one satisfying Axiom 0 and the first three parts of Axiom 1
of [2]. It is assumed throughout that .S is a Moore space. The terms compact
and conditionally compact are as in [3] and other definitions and notation
are as in [2].

THEOREM 1. Suppose H and K are two mutually separated point sets such that
H is compact. Then H and K are strongly separated.

Proof. Suppose H and K are mutually exclusive. Then the conclusion follows
from [2, Theorem 16, Chapter I].

Suppose H and K are not mutually exclusive. Then H - K is compact.
With the aid of [2, Theorem 155, Chapter I] it can be shown that there exists
a sequence D1, Ds, D3, ... of domains such that (1) for each », D, contains
D,i1, (2) H- K is the common part of all of the domains of this sequence,
(3) every domain that contains H - K contains some domain of this sequence,
(4) S — D, contains a point of H and a point of K, and (5) there exists a
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sequence P, Ps, Py, ... of points such that for each #, P, is a point of
H - (Dn - Zjn-i»l)-

Let H; denote (H + D;) — D; and, for each positive integer #, let H,,1
denote H - (D, — D,;1). For each n, P, belongs to H,,;, H, and K are
mutually exclusive and closed, H, is compact, and H,,. lies in D, ;. Therefore
there exists a sequence Ey, Es, E;, ... such that for each #n, E, is a domain
containing H,, E, does not intersect K, and E,,, is a subset of D,. Let E
denote H - K + Y E,. E contains no point of K.

Suppose there is a limit point Q of E that does not belong to E. There exists
a sequence Qs, Qs, Qs, . . . of distinct points of £ converging to Q. Since for
each positive integer #, Q is not a limit point of E, and since Q is not a limit
point of H - K, there exists an increasing sequence ni, 75, 13, . . . of integers
and a subsequence Q., Q./, Q4/, ... of the sequence Qi, Qs, Qs, . .. such that
ny > 2 and for each j, Q/ is a point of E,;. Dy, _s, Dyy,_2, Dy;_2, - . . is a sequence
of domains such that H - K is their common part, each of them contains the
next one and for each j, Q; is a point of (D,,;—») — (A - K). It follows from
[2, Theorem 151, Chapter I] that Qi' 4+ Q" + Qs + ... has a limit point
belonging to H - K. Since Q is the only limit point of this point set, Q belongs
to H - K. This involves a contradiction. Hence E is closed. Therefore S — E
is a domain Dx containing K.

There exists a sequence Fi, Fy, F3, ... such that for each %, F, is a domain
containing H, and F, is a subset of E,. Let Dy denote 3_ F,. Dy contains H.

Suppose Dy and Dk have some point P in common. For some positive
integer 7, P is a point of F; and for each positive integer n, P is a point of
S — (E, + H-K). Thus P is not a point of - K but P belongs to S — E,.
This involves a contradiction. Therefore Dy and Dg are two mutually exclu-
sive domains containing H and K respectively.

Suppose X is a point of H - K, then X belongs neither to H nor to K but
is a limit point of both of them. Dy contains H and Dg contains K, thus X
is a limit point of both Dy and Dg. Therefore Dy - Dy contains H - K.

Suppose some point ¥ of Dy - Dx does not belong to A - K. Since Dy and
Dg are mutually exclusive domains, ¥ is a limit point of each of them but
belongs to neither of them. Suppose Y is a limit point of F, for some positive
integer n. I, is a subset of E, and E, is a domain containing ¥ but containing
no point of Dg. This involves a contradiction, thus ¥ is not a limit point of
F, for any positive integer #. There exists an increasing sequence 7y, ns, %3, . . .
of positive integers and a sequence Y, Yy, Vs, ... of distinct points of Dy
converging to ¥ such that #; > 2 and for each positive integer j, ¥ is a point
of F,;. Dyy—s, Dyy_s, Dys_s, . . . is a sequence of domains such that A - K is
their common part, each of them contains the next one and for each positive
integer j, ¥, is a point of (D,;_,) — (H - K). 1t follows from [2, Theorem 151,
Chapter I] that the pointset ¥; 4+ Y, + ¥; + ... has a limit point in H - K.
Since Y is the only limit point of this point set, ¥ belongs to H - K. Therefore
H-Kis Dy - Dg.
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THEOREM 2. Suppose H and K are two mutually separated point sets such that
if M denotes the set of all boundary points of H that do not belong to K, M is
compact. Then H and K are strongly separated.

Proof. There are two cases to be considered.

Case 1. Suppose H is a subset of M. Since M is compact, H is compact,
and the conclusion of this theorem follows from Theorem 1.

Case 2. Suppose H is not a subset of M. Every boundary point of H is a
point of M + K. Since no point of H is a point of K, there is a point of H
which is not a boundary point of H. Let D denote the domain (H + M) — M.
Since M and K are two mutually separated point sets and M is compact, it
follows from Theorem 1 that there exist two mutually exclusive domains
D, and Dy’ containing M and K respectively such that either D,, and Dy’
are mutually exclusive or Dy, - Dy’ is M - K.

Let Dg denote (Dg’ + H) — H. Dy and Dg are two domains containing
M and K respectively such that either D, and Dg are mutually exclusive or
D, - Dy is M - K. Let Dy denote the domain D + D,,.

Suppose Dy contains some point P of Dg. P does not belong to D since D
is a subset of H and Dx = Dy’ — H - Dg'. P does not belong to D, since
D, and Dy’ are mutually exclusive. Therefore, Dy does not intersect Dx.

There are two subcases to be considered.

Case 2A. Suppose that H and K are mutually exclusive. M and K are
mutually exclusive since M is a subset of H. Thus D, and Dg’ are mutually
exclusive and therefore D, does not intersect Dx. Suppose some point P
belongs to D and Dg. Since D and Dg are mutually exclusive domains, P is
a boundary point of each of them. Since D is a subset of H and no point of
Dy is a point of H, P is a boundary point of H and since H and K are mutually
exclusive, P is not a point of K. Therefore P is a point of M. But M is a subset
of D, This involves a contradiction. Therefore D and Dy are mutually
exclusive and since Dy = D + Dy, it follows that Dy and D are mutually
exclusive.

Case 2B. Suppose H intersects K and P is a point of H - K. Since D is
(H+ M) — M, Dy contains M and D + M contains H, it follows that
Dy contains H and therefore P is in Dy. K is a subset of Dy’ - (S — H),
therefore D contains K and P is in Dg. Hence H - K is a subset of Dy + Dg.

Suppose some point Q of Dy - Dx does not belong to H - K. Dy is D + Dy,.
Dy is the closure of (Dx’ — H - Dg'). Di’ contains Dg and Q is in Dy - Dg'.
Therefore Q belongs to either D - Dy’ or D, - Dx’. Suppose Q is a point of
D -Dy'. H contains D, thus Q belongs to H. D contains no point of Dg,
thus Q is a limit point of D. If Q is not a limit point of K, Q is a point of M
and therefore Q is in either H - K or D, Suppose Q is in D, - Dg. Then Q
belongs to D, - Dy’ and hence to M - K. M is a subset of H, therefore Q
isin H- K.
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H-K contains Dy - Dy and is a subset of it, thus A - K is Dy - Dg. Therefore
either Dy and D are mutually exclusive or H - K is Dy - Dg.

THEOREM 3. If H and K are two mutually separated point sets and one of
them has a compact boundary then H and K are strongly separated.

Proof. Suppose H has a compact boundary 8. Suppose 8 is a subset of K.
Since H and K are mutually separated, H is a domain. S — H is a domain D
containing K. H contains 8 and since D contains K, it contains 8. Therefore
B is a subset of H-K and H - D. Each point of H-K is in 8, thus H - D
contains H - K. Each point of H-D is in 8, thus H- K is H-D and the
domains H and D satisfy the conclusion of this theorem. Now suppose 8 is
not a subset of K. Since 8 is closed and compact, the closure of the set of all
points of 8 that do not belong to K is compact and it follows from Theorem 2
that H and K are strongly separated.

THEOREM 4. If S is connected, the point set M separates the point set H from
the point set K in S, and the boundary of M is compact, then some closed subset
of M separates H from K.

Proof. S — M is the sum of two mutually separated point sets U and V
containing H and K respectively. Since S is connected, U and M + V are
not mutually separated. Since U and V are mutually separated, either U
contains a limit point of M or M contains a limit point of U, thus the boundary
of U exists and is a subset of the boundary of M and hence is compact. It
follows from Theorem 3 that there exist two domains Dy and Dy containing
U and V respectively such that either Dy and Dy are mutually exclusive or
Dy-Dyis U-V. Dy and Dy are mutually exclusive domains containing
H and K respectively and S is connected, therefore S — (Dy + Dy) is a
closed subset of M which separates H from K.

THEOREM 5. If the hypothesis of the continuum is true, there exists a separable
space which satisfies Moore's Axioms 0 and 1-6 [2] and contains two con-
ditionally compact point sets H and K such that

(1) H and K are mutually exclusive,

(2) there exists a domain containing H whose closure does not intersect K and
there exists a domain containing K whose closure does not intersect H, and

(3) H and K are not strongly separated.

Proof. Let F denote the collection of all nondecreasing infinite sequences of
positive integers. Let M denote the set of all points in a Cartesian plane E
whose coordinates are positive integers. Let.## denote the collection of subsets
of M to which % belongs if and only if the points of # are the points of a
sequence Pj, P,, P, . .. such that Py is (1, 1) and for each positive integer #,
P, is at a distance of 1 from P, and either above it or to the right of it. For
each element % of 77, let G, denote the collection of all images of # in M under
a translation in E throwing (0, 0) into (k, —k) for some integer k.
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If the hypothesis of the continuum is true, it follows from [1, Theorem 1]
that there exists an uncountable subcollection 5#’ of # such that

(1) if # and &’ are two elements of 5/, no point set of G, contains infinitely
many points of any one point set of G, and

(2) if M’ is an infinite subset of M, there exists a point set # of ## ' such
that some element of G, contains infinitely many points of M’.

Let & denote the collection to which g belongs if and only if g is in G, for
some % in #'. There exists a reversible transformation T from F to#’. If
A and B are two points of E, let 4B denote the straight line interval having
end points 4 and B and let L (4 B) denote its length.

Suppose P is a point (x, ¥) of M, k is a number between 0 and 1, and g is an
element of ¥ containing P. Let 4 » and 4 »’ denote two points of a line having
slope —1 and containing P such that (1) 4 p is above 4 5, (2) P is the mid-
point of 4 p4 5/, and (3) the length of this interval is (x + y)~1. Let Bp and
B’ denote the points of A pA p’ which lie in the order 4 pBpPBp'A ' such
that BpB»' is the middle third interval of 4 p4 »'. For some element % of 7/,
g is an element of G, and for some positive integer ¢, P is the <th point of g.
Let v denote the 7th term of the sequence f of F such that 7(f) = k. Let
Cp, Dp, Ep, Ep', D}/, and C;' denote the points of BpBjp' in the order indi-
cated from Bp to Bp' such that each of the intervals BzCp, CpDp, DpEp,
E Dy, D'C’, and C'B’ has length [3(v + 6)(x + y)]~.

Let A p; denote the point of 4 pBp such that L(BpA p;) = kE[L(4ApBp)].
Let Cp; denote the point of BpCp such that L(BpCpi) = R[L(BrCp)]. Let
Dp;, denote the point of DpEp such that L(DpDp;) = E[L(DpEp)]. Let
Ep;, denote the point of PEp such that L(PEp;) = k[L(PEp)]. Let 45y,
Cpi'y Dpi', and Ep, denote the images of 4 pr, Cpr, D pi, and E p;, respectively
under a rotation of A A ' about P which throws 4 » into 4 5'.

Let Py, Py, Ps, ... denote the points of g. Let s,0 denote Y~ P;P,y;. Let
ty0 denote 3 Bp,Bp,,, and let ¢y’ denote 3 Bp;/Bp,,, . Let 5,1 denote

Z (EPjEPj+1 + EPj,EPjﬂ,)'

Let sy, Sg', tyx, and £’ denote the point sets obtained by substituting E, D, 4,
and 4’ for X and E’, D', C, and C’ for Y respectively in the expression

Z (XijXPj +1k ‘l‘ Yij YPj +1k)-

Suppose g is a point set of the collection ¥, & is a number between 0 and 1,
7 is a positive integer, and z is some one of the symbols s, ¢, and . Let ,Ry,
denote the set to which w belongs if and only if either

(1) w is 240,

(2) for some number &’ between 0 and &, w is 2z, or

(3) wis a point of E which is separated from (0, 0) by the sum of the point
sets z,, and the interval 4 p4 p’ for the nth point P of g.

Let ,R,;, denote the set to which w belongs if and only if either

1) wis sy,
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(2) for some number &’ between k and 1, w is either s, or s,/, or

(3) w is a point of E which is separated from (0, 0) by the sum of s,
Sgr’y D piE pi, and D pi/ E p’ for the nth point P of g.

Suppose g is in G, k; and k; are numbers between 0 and 1, » is a positive
integer, and z is some one of the symbols s, s/, t, and ¢'. Let Ry z,,» denote
the set to which w belongs if and only if either

(1) for some number k between k; and k., w is 2, or

(2) wis a point of E which is separated from (0, 0) by the sum of z,;,, 3.,
and the intervals X p;, X pr, for the nth point P of g where X is some one of
the symbols 4, C, D, E, A’, C', D', and E'.

Let Z; denote a space such that

(1) X is a point in Z; if and only if either X is a point of E or X is s, s,/
Lo, OF ' for some g and k£ and

(2) R is aregion in Z, if and only if either R is the interior of a circle in E,
R is R, for some z, g, k, and #, or R is ,R s, fOr some z, g, k1, ks, and #n.

The space Z; satisfies Axioms 0 and 1-6 and is separable.

Let H denote the point set to which % belongs if and only if for some point
P of M, his Bp. Let K denote the set of all points Bp'. Let Dy denote the point
set to which the point w belongs if and only if for some point P of M, w is a
point of the interior of a square with center Bp and one vertex P. Let Dy
denote a similar set but with B’ as the center of each square. Dy and Dy are
domains containing H and K respectively. Since H — H is the set of all points
150 of 27 and those points of Dy — Dy which do not lie in E lie in a subset of
the set of all points s,x, 5./, and ¢,/ and since E - (Dy — Dy) does not inter-
sect A, H and Dy are mutually exclusive. Similarly K and D, are mutually
exclusive.

Suppose Dy is a domain containing H and Dg is a domain containing K.
For each point P of M, there exists a number 7p such that each point of the
interval PBp nearer to Bp than rp is in Dy and each point of the interval
PBp' nearer to Bp' than rp is in Dg. There exists a sequence ry, 79, 73, . . .
such that for each positive integer #n, r, < rp for every point P = (x, y) of M
such that x + y < # + 2. There exists an increasing sequence of integers
k1, k2, k3, . .. such that for each positive integer n, [(k, + 6)(n + 1)]7! < 7,.
This sequence is a member f of the collection F. 7°(f) is a point set k of
the collection S#. Let Py, Py, Ps, ... denote the points of %z and for each
positive integer #n, let x, and y, denote the abscissa and ordinate respectively
of P,. x, +v, =n-+1and

LBr,Ep,) = [(ky + 6)(n + 1]

thus Ep, is a point of Dy. Similarly, Ep,” belongs to Dg. Each of the sequences
Ep, Ep,, Ep;,...and Ep/’, Ep,’, Ep/, ... converges to the point s;;. There-
fore Dy intersects Dy.

THEOREM 6. If the hypothesis of the continuum 1is true, there exists a separable

https://doi.org/10.4153/CJM-1973-022-3 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1973-022-3

COMPACTNESS AND STRONG SEPARATION 231

space satisfying Axioms 0 and 1-6 [2] and containing two conditionally compact
point sets H and K such that

(1) H and K are mutually exclusive,

(2) K s a domain, and

(3) H and K are not strongly separated.

Proof. Notation not introduced here will be that of the previous theorem.
Suppose P is a point (x, y) of M, k is a number between 0 and 1, and g is a
point set of the collection & containing P. Let E," denote the midpoint of
the interval 4 p'Bp'. Let Py, Py, Ps, ... denote the points of g.

Let s,; denote the point set to which w belongs if and only if for some
positive integer 7, w is either (1) a point of the straight line interval EpEp; s
or (2) a point of the straight line interval whose endpoints are the point of
P,Ep;" whose distance from P; is k[L(P,E,;”)] and the point of P;1Ep,,,"”
whose distance from Py is B[L(P;41Ep,,,"")]. Let s, denote the point set
to which w belongs if and only if for some positive integer j, w is either (1)
a point of the straight line interval Dp;Dp;,,x or (2) a point of the straight
line interval whose endpoints are the point of 4 p;/E ;" whose distance from
Ap; is k[L(A »;/Ep,”)] and the point of A p,,,'Ep;,,” whose distance from
Ap;, is k[L(Ap; .. 'Ep;,,"")]. Let s, denote the sum of all the straight line
intervals Ep,Ep,;,, and Ep, " Ep;.,". 540, t0, and f,, are as described in the
previous theorem.

Let sRyiny Rokns uloiny sRorrkans s Rorikan, and T gxix0n denote the set described
in the preceding theorem taking into account the new definitions of sy, s,
and s, in the paragraph above.

Let =, denote a space such that (1) X is a point in =, if and only if either
X is a point of E or X is sy, Sy, or ¢, for some g and k and (2) R is a region
in 2, if and only if either R is the interior of a circle in E, R is R, for some z,
g, k, and n, or R is ,R 1., for some z, g, k1, ks, and #.

The space Z; is separable and satisfies Axioms 0 and 1-6.

Let H denote the set of all points Bp. Let K denote the point set to which
k belongs if and only if for some point P of M, k is a point of the interior of a
square with center B’ and a vertex at P.

Suppose Dy is a domain containing H. For each point P of M, there exists
a number 7 p such that each point of the interval PBp nearer to Bp than 7p is
in Dy. There exists, as in the preceding example, a point set % of the collection
7 such that if Py, P,, Ps, . .. denote the points of %, then for each positive
integer n, Ep, is a point of Dy. But, for each positive integer #, Ep,” is a point
of K. The sequences Ep,, Ep,, Ep;, ... and Ep"', Ep,”", Ep,’, ... converge
to the point s, thus if Dk is a domain containing K, Dy intersects Dy.
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