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Monte Carlo simulation I: the method 

The lattice formulation reduces the Feynman path formula for the gauge 
theory into a multiple ordinary integral. This suggests that, at least for 
finite size systems, one might attempt to numerically evaluate the partition 
function. A moments thought, however, reveals that the high multidimen­
sionality ofthe integrals makes conventional mesh techniques impractical. 
For example, consider a 104 site lattice, a size fairly typical for numerical 
work. Such a system has 40000 link variables. If we now take the simplest 
possible gauge theory, that with gauge group Z2' the partition function 
becomes an ordinary sum. But this sum has an enormous number of terms, 
that number being 

240000 = 1.58 X 1012041• (18.1) 

Even if we could add one term in the time it takes light to pass by a proton 
and continue for the age of the universe, we would not put a perceptible 
dent in the sum. 

The appearance of such large numbers immediately suggests a statistical 
treatment. Indeed, there are also an enormous number of ways to place 
molecules of H20 into a glass and yet one only needs a few to determine 
the thermodynamic properties of water. The goal of the Monte Carlo 
approach is to provide a small number of configurations which are typical 
of thermal equilibrium in the statistical analog. Whereas the super­
astronomical number of terms indicated in eq. (18.1) can never be summed 
exactly, it is straightforward to store the few tens of thousands of numbers 
characterizing typical configurations which strongly dominate the sum. 

A Monte Carlo program begins with some initial configuration of the 
fields stored as an array in a computer memory. It then sequentially makes 
pseudo-random changes on these variables in such a manner that the 
ultimate probability density for encountering any configuration C is 
proportional to the famous Boltzmann factor 

peq(C) oc e-PS(C), (18.2) 

where S( C) is the action associated with the given configuration. In this 
chapter, to emphasize the connection with statistical mechanics, we 
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128 Quarks, gluons and lattices 

explicitly display the factor of p which we previously absorbed in the 
definition of the action. Our goal is to use the computer as a 'heat bath' 
at inverse temperature p. 

The Monte Carlo simulation technique is quite old in statistical physics 
(Metropolis et al., 1953). It provides the possibility of performing 'experi­
ments' on virtual 'crystals' with interactions governed by an arbitrary 
Hamiltonian of choice. This in principle enables isolation of various 
dynamical features and their role in such phenomena as phase transitions. 
Furthermore, as the entire configuration is stored, any desired correlation 
function is in principle available. The technique converges well in both high 
and low temperature regimes and interpolates nicely in between. This latter 
point is of particular import to the particle physicist, who desires to relate 
the Wilson demonstration of confinement in strong coupling to the 
continuum field theory obtained in the weak coupling limit. 

As with real experiments, Monte Carlo simulations have certain inherent 
sources of error. Statistical fluctuations are always present, and only 
decrease with the square root ofthe computing time. This can be a serious 
handicap if one is interested in some detailed parameter displaying 
fluctuations comparable to the signal. Then one must run a hundred times 
longer to merely reduce the errors to 10%. In addition, systematic effects 
may arise from the finite lattice size and spacing. For the four-dimensional 
systems considered here, the linear size of the lattice is necessarily quite 
limited, eight to ten sites on a side being typical. (At this writing, the largest 
lattice yet studied for a gauge theory had 164 sites; Bhanot and Rebbi, 
1981.) Finally, a systematic error arises in determining when equilibrium 
has been reached; in particular, one must worry about being trapped in 
some metastable state. 

Many of these systematic effects are readily amenable to further study. 
The lattice size is easily varied over a limited range and indeed observation 
of finite size effects can provide useful information on the states of the 
theory (Brower, Creutz and Nauenberg, 1982). Different initial conditions 
can test for thermal equilibrium; some possible starting states will be 
discussed later. Finite lattice spacing effects are of interest because they 
are tied to the renormalization of the bare coupling, as extensively 
discussed in chapters 12 and 13. 

Regarding the computer as merely a heat bath immediately suggests the 
most intuitive Monte Carlo algorithm (yang, 1963). We successively touch 
this heat bath to all the links in the lattice. A real thermal source in contact 
with a link would cause that variable to fluctuate thermally throughout 
the group manifold. When the source is removed, the link would be left 
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in any of its allowed states with a probability given by the associated 
Boltzmann weight. For example, to mimic this process for the gauge group 
Z2 = {I, - l}, one would begin by calculating the probability of the given 
link to be left in the state + 1 

P(l) = e-PS(l)/(e-PS(l)+e-PS(-l». (lS.3) 

Here S(± 1) is the action evaluated with the link in question in the 
corresponding state and all other links held fixed at their current values. 
Note that if the action is local, that is if only nearby links are directly 
coupled, then this probability depends solely on these nearby links. The 
algorithm continues by asking the computer for a randomly selected 
number from a uniform distribution between zero and one. If P(l) exceeds 
this number, the link is set to unity, otherwise it is set to - 1. The 
entire procedure is then repeated on the next link and so forth until the 
entire lattice is covered. This represents one Monte Carlo iteration and 
generates the next state in a Markov chain of configurations. 

These ideas are applicable to any group. The 'heat bath' algorithm 
replaces each group element with a new value selected randomly with a 
weighting given by the current exponentiated action. When applied to an 
ensemble of states, this gives a new ensemble which is closer to an 
equilibrium ensemble in a sense that we will shortly make precise. 

When the group manifold is intricate, the above selection procedure for 
new group elements may be impractical or too time consuming to 
implement efficiently. For this reason computationally simpler algorithms 
are often used. These are also constructed to bring one closer to equilibrium, 
but may require more iterations to achieve the same convergence. If each 
iteration takes less computer time than a heat bath selection, there can be 
a net gain. 

To design alternative procedures, we need a criterion for determining 
when an algorithm for randomly changing an ensemble of configurations 
will tend towards equilibrium. In general, each state in the Monte Carlo 
sequence results from a Markovian process applied to the previous 
configuration. Each stage in the algorithm is thus specified by a probability 
distribution P( C, C) for taking configuration C into C. An obvious 
necessary condition on P is that it leave an equilibrium ensemble in 
equilibrium. Thus the Boltzmann weights should be an eigenvector of P 

e-PS(C) = ~ P(C, C)e-PS(C'). (IS.4) 
C 

Remarkably, if the algorithm has eventual access to any configuration, this 
is also a sufficient condition for any ensemble to ultimately approach the 
Boltzmann distribution of eq. (IS.2). 
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To demonstrate this claim, we need a notion of 'distance' between 
ensembles. Suppose we have two ensembles E and E', each of many 
configurations. Denote the probability density for configuration C in E or 
E' by P(C) or p'(C), respectively. Then we define the distance between E 
and E' as the sum liE-E'li = ~ Ip(c)-p'(C) I, (1S.5) 

C 

where the sum is over all possible configurations. Now suppose that E' 
resulted from the application of a Monte Carlo algorithm satisfying 
eq. (1S.4) to ensemble E. This means that 

p'(C) = ~ P(C, C)p(C). 
c' 

As P(C, C) is a probability, it satisfies 

P(C, C) ~ 0, 

~ P(C, C) = 1. 
c' 

(\S.6) 

(1S.7) 

(\S.S) 

We can now compare the distance of E' from equilibrium with the distance 
of E from equilibrium 

liE' -Eeqll = ~ I ~ P(C, C) (p(C)-Peq(C» I 
C C' 

~ ~ P(C, C) Ip(C)-Peq(C) I = IIE-Eeqll. (1S.9) 
c.c' 

We conclude that the algorithm reduces the distance of an ensemble from 
equilibrium. Note that if P(C, C) never vanishes, this inequality is strict 
unless we are already in equilibrium. 

To insure that an algorithm has the equilibrium distribution as an 
eigenvector, most algorithms in practice are based on products of steps 
each satisfying a condition of detailed balance 

P(C, C)e-PS(C) = P(C, C)e-PS(C'). (IS. 10) 

Summing over the second index C and using eq. (\S.S) immediately gives 
the eigenvector eq. (IS.4). 

The detailed balance condition, which is sufficient but not necessary for 
the approach to equilibrium, far from uniquely specifies the matrix 
P( C, C). The heat bath algorithm automatically satisfies the condition 
because P( C, C) is independent of C and proportional to the Boltzmann 
weight for C. Metropolis et al. (1953) used the detailed balance criterion 
to formulate another algorithm which, because of calculational simplicity, 
has become the most popular in practice. For the gauge theory, we begin 
with the selection of a trial U' as a tentative replacement for some link 
variable U. The test variable is selected with a distribution PT ( U, U') which 
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must be symmetric in U and U' 

(18.11) 

Beyond this constraint, PT is arbitrary and may be selected empirically to 
optimize convergence. Normally it is best if U' has a weighting towards 
the old value of U. Once U' is chosen, we evaluate the tentative new action 
S( U') for comparison with its old value S( U). If the action is lowered, that 
is if the new configuration has a larger Boltzmann weight, then this change 
is accepted. The detailed balance condition then determines the remainder 
of the algorithm: if the action is raised the change must be accepted with 
conditional probability exp( -jJ(S(U')-S(U»). 

A simple way to implement this procedure is to obtain U' by multiplying 
U with a random group element from a table, where this table is itself of 
random elements with a convenient weighting towards the identity. The 
table should contain enough elements to generate for the group and should 
contain the inverse of each of its elements in order to satisfy eq. (18.11). 

The Metropolis algorithm described above has an essential dependence 
on two parameters. The first is the weighting of the random changes 
towards the identity. This peaking should become more severe at low 
temperatures where large changes would be routinely rejected. A popular 
criterion for selecting this distribution is to make the acceptance probability 
at any step roughly 50%. 

A second parameter in the algorithm is the number of trial changes 
attempted on any given link before going on to the next. In most statistical 
problems this is taken to be one; however, for the gauge theory the 
interaction is rather complicated and requires considerable arithmetic to 
evaluate. This means that it can be extremely beneficial to do as good a 
job as possible in selecting the stochastic changes. In terms of real 
computer time involved in reaching equilibrium, it is usually of value to 
test ten or more new elements, during which time the multiplication of 
neighboring elements appearing in the action need not be repeated. Note 
that as the number of tries, or 'hits' increases, the Metropolis algorithm 
approaches the heat bath. This is because repeating the procedure on one 
link will ultimately bring that link into thermal equilibrium with its 
temporarily fixed neighbors. This is what the heat bath does in one step. 
To determine an optimum number of hits, one can simply make a few trial 
runs on a small lattice to study the convergence in real time. 

Although the Metropolis procedure brings an ensemble closer to 
equilibrium by less per iteration than the heat bath, it has the advantage 
of being extremely simple. The detailed form of the group measure is not 
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needed; the algorithm automatically generates it with a random walk 
around the group. Furthermore, to change the form of the action or group 
is straightforward. Nevertheless, for groups with simple enough manifolds 
the heat bath algorithm may be rather elegantly implemented. 

To illustrate some techniques for generating variables with a given 
weight, we will now discuss the heat bath generation of SU(2) elements 
for the gauge theory with the Wilson action (Creutz, 19S0b). First we need 
a source of random numbers uniformly distributed between zero and one. 
Such generators are standard in most high level computer languages, and 
we assume a good one has been provided (Knuth, 1969). The important 
point for our purposes is that calls to such a generator are extremely fast, 
comparable to a multiplication, and thus usually represent only a minor 
part of the time of a simulation. 

Given a source of random numbers with such a uniform distribution, 
we can easily produce a random sequence with an arbitrary distribution. 
Suppose we have some positive functionf(x) on the unit interval and wish 
to generate points with a weighting proportional to f For simplicity 
assume that f is bounded; if not, make a change of variables to make it 
so. Without loss of generality, we assume thatf(x) is bounded by unity. 
Using the given random number generator, we obtain a trial number for 
the first element of our weighted sequence. Calling this number x, we obtain 
a second random number and accept x if the new random variable is less 
than f(x). This is repeated many times to form a sequence of accepted 
values of x. As the probability of accepting any x is proportional to f(x), 
the sequence has the desired weighting. 

This process will be inefficient if the function f is strongly peaked. In 
this case we may need to generate many points before one is accepted. If 
one knows approximately where the peak is and its form, one may be able 
to change variables to spread it out. This forms the basis for the following 
SU(2) algorithm. 

While working on a particular link (ij), we need consider only the 
contribution to the action coming from the six plaquettes containing that 
link. Ifwe denote by Va., ex = 1, ... ,6, the six products of three link variables 
which interact with the link in question, then the probability distribution 
for the new link variable under the heat bath algorithm is 

dp(U) "" duexp ( ~Tr( U a.; 1 Va.)). (18.12) 

For SU(2) the trace is automatically real. In chapter S we parametrized 
SU(2) as the surface of a four-dimensional sphere 

SU(2) = {ao+ia'(Jla~+a2 = I}, (IS.13) 
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where tT represents the Pauli matrices. The invariant group measure is 
uniform over this sphere 

(18.14) 

This representation shows the useful property that a sum over any number 
of SU(2) elements is proportional to another element of the group. In 
particular, we have 6 

1: Oa = kU, (18.15) 
a=1 

where U is an element of SU(2) and k is the determinant 

(18.16) 

The utility of this observation appears when we use the invariance of the 
group measure to absorb U 

dp(UU-l) '" dUexp(i,BkTr U) '" d4att(a2 -l)exp(pkao)' (18.17) 

Thus we have found the peak in the exponentiated action and rotated it 
to the identity. We have reduced the problem to generating points 
randomly on the surface of the unit sphere in four dimensions with an 
exponential weighting along the ao direction. Given an element U generated 
in this manner, we replace the link variable on the lattice with the product 

(18.18) 

To generate the appropriately weighted points on the sphere, we first 
do the integration over the magnitude of a with the delta function and 

obtain dUexp(iPkTr U) "'ldaodn(l-a~)lexp<pkao). (18.19) 

Here dO is the differential solid angle for the vector a, which has length 
(I-a~)i. We need the generate ao in the interval (-I, I) with probability 
density (18.20) 

and the direction for a is totally random. For moderate to large p, the 
dominant peaking in eq. (18.20) comes from the exponential factor. This 
can be removed with a change of variables from ao to 

z = exp(pkao). (18.21) 

Equation (18.20) now becomes 

dp(z) = dz (1-P-2k-2 10g2 z)l. (18.22) 

The generation of z can proceed as outlined earlier; with the random 
number generator a trial z is selected randomly in the allowed interval 

(18.23) 

and this is rejected with the probability given on the right hand side of 
eq. (18.22). Repeating this until a z is accepted, one reconstructs ao by 
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taking a logarithm. The final step in the algorithm is to randomly select the 
direction for a. This can be done in a variety of ways; for example, one 
could generate a random point in the interior of a three-dimensional sphere 
and use its direction from the origin. Note that in the above discussion 
several tricks special to the group SU(2) were used. To find corresponding 
tricks for a new group or even a new action can be tedious and thus most 
simulations in practice have turned to the Metropolis algorithm. 

Monte Carlo computer programs tend to be physically rather short and 
straightforward. They begin with a set of nested loops over the various 
links. The selection of the new variables, such as outlined above, involves 
only a few rather simple operations. The multiple loops result in these steps 
being repeated on the order of a million times. The SU(2) procedure is 
readily implementable so that it requires less than 200 microseconds per 
link on a CDC 7600 computer. The group SU(3) with a reasonably 
optimized algorithm uses one to two milliseconds per link on the same 
machine. In both these cases, the majority of the time is spent mUltiplying 
the neighboring group elements. In practice it is usually computer time 
rather than storage which limits these programs. For SU(2) it is convenient 
to store the four components of ap for each link, resulting in a relatively 
modest 160000 numbers for a 104 site lattice. 

We now turn to describe some simple Monte Carlo 'experiments'. An 
obvious first question involves the time required to reach equilibrium. 
When we are not operating near a phase transition this time can be 
remarkably short. In figure 18.1 we show the results of several runs with 
the heat bath algorithm on the group SU(2). The coupling constant was 
set to the constant value 

jJ = 4go2 = 2.3 (18.24) 

which was selected as representative of the slowest convergence occurring 
with this model. Runs are shown on four-dimensional lattices of from 44 
to 104 sites. Each iteration represents one application of the heat bath 
algorithm to every lattice link; on the 104 lattice one such step represents 
40000 new SU(2) elements. As a function of the number of iterations, we 
plot the average plaquette or expectation of the action 

P = (l-i Tr Uo), (18.25) 

discussed in chapter 9. For each size lattice, two different initial configur­
ations were studied. The + symbols represent an ordered start, with all 
link matrices set to the identity. This ground state of the statistical system 
corresponds to beginning at zero temperature. In contrast, the crosses 
represent an initial configuration where each element was selected ran­
domly, uniformly in the invariant measure, from the entire group. In this 
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case we start at infinite temperature. Thus we approach equilibrium from 
opposite extremes. Note that in all cases convergence appears to be 
essentially complete after only 20 to 30 iterations. Thermal fluctuations, 
which must always be present, are quite apparent on the small lattices but 
become relatively small on the 104 site system. 
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Fig. 18.1. Several Monte Carlo runs with the group SU(2) (Creutz, 1980b). 

The situation can be considerably less advantageous if a phase transition 
is nearby. In figure 18.2 we show the convergence of the U(1) theory on 
a 64 lattice at p = 1.0. On an infinite lattice this system exhibits a 
second-order phase transition at p = 1.012±.005 (Lautrup and Nauen­
berg, 1980a; DeGrand and Toussaint, 1980; Bhanot, 1981). In addition to 
the rather slow convergence when compared to the SU(2) case, note the 
large fluctuations, characteristic of critical behavior. 

The above runs illustrate the two simplest initial conditions, correspon­
ding to zero and infinite temperature. In the case of a first-order transition 
such initial states can result in the lattice being caught in a metastable state. 
As in a real experiment, a random (ordered) lattice can be supercooled 
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(superheated) substantially below (above) the transition temperature 
without settling in a reasonable time into the correct phase. To aid in 
approaching equilibrium one can add a 'seed' consisting of an ordered 
(disordered) piece of the lattice. This motivates a third interesting initial 
configuration consisting of a lattice which is half ordered and half 
disordered. For example, links from sites with fourth coordinate less than 
half the lattice size could be randomized and the remainder ordered. In 
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Fig. 18.2. Two Monte Carlo runs with the U(I) model near its critical point. 

figure 18.3 we show several Metropolis algorithm runs with such a start 
for the gauge group Za on an 83 by 20 lattice (Creutz, Jacobs, and Rebbi, 
1979 b). Several values of temperature are selected near the transition point 
as calculated in chapter 16. The figure shows a linear drift characteristic 
of one phase 'dissolving' the other. The aimless drift very near the 
transition indicates that this method can rather accurately determine the 
temperature of the phase change. Indeed, this is analogous to putting some 
ice in water to determine its melting point. 

The fact that convergence is fast away from phase transitions and slow 
near them suggests another type of experiment. Upon heating and then 
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cooling the system through a range of temperatures, regions of slow 
convergence will appear as hysteresis effects. This provides a technique for 
rapidly locating regions of coupling for further study. In figure 18.4 we 
show the results of such thermal cycling on the SU(2) model in four and 
five space-time dimensions and the U( I) = SO(2) theory in four dimensions. 
Each point in this figure was obtained by running on the order of twenty 
iterations with the heat bath algorithm from either a hotter or cooler 

0.6 -,------------_--, 

0.0 +-----rl---"TI---.,.I--~ 
o 100 200 300 400 

Iterations 

Fig. 18.3. Several Monte Carlo runs for the Zs model with mixed phase initial 
conditions. From the top down, these runs take p from 0.41 to 0.47 in steps of 
0.01 (Creutz, Jacobs and Rebbi, 1979a). 

configuration. As a check on normalizations, we also plot the lowest order 
strong and weak coupling results. Phase transitions are to be suspected in 
those regions where the heating and cooling cycles do not agree, as clearly 
observed for the five-dimensional SU(2) and four-dimensional U(l) 
models. Further analysis in the transition region suggests that the U( I) 
transition is second order (Lautrup and Nauenberg, 1980a) and the 
five-dimensional SU(2) transition is first order. As the latter fits the 
prediction of mean field theory, we conclude that d = 5 is close to d = 00. 
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This is further supported by the fact that the U(I) model in five dimensions 
also exhibits a first-order transition (Bhanot and Creutz, 1980). 

The hysteresis seen in figure 18.4c may at first seem a bit surprising 
because the transition is believed to be second order and should have a 
continuous internal energy regarded as a function of the temperature. 
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Fig. 18.4. Thermal cycles on several of the models (Creutz, 1979). 

However, this thermal cycle was rather rapid, and, as figure 18.2 shows, 
a few tens of iterations are insufficient for relaxation of the energy near the 
critical point. Repeating this type of experiment at different cycle rates does 
indeed provide information on the nature of a transition. With a strong 
first order phase change, superheating and supercooling result in a 
hysteresis cycle which is reasonably stable in shape and relatively inde-
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pendent of the speed with which the system is heated or cooled. The closing 
of the cycle is predominantly determined by the temperatures at which 
metastable minima of the free energy disappear. In contrast, the cycle 
associated with a second-order transition tends to close continuously as 
the experiment becomes more adiabatic. 

The four-dimensional SU(2) model exhibits a sharp contrast to the other 
systems in figure 18.4. It displays no clear structure other than a fairly rapid 
crossover from strong to weak coupling behavior at fJ around two. Careful 
analysis of the specific heat in this region shows a definite peak but no 
signal of a real singularity (Lautrup and Nauenberg, 1980b). This result 
supports the desired absence of a phase transition in this non-Abelian 
system. In figure 11.1 we showed the internal energy of the SU(3) model 
as obtained from Monte Carlo analysis. It exhibits a rapid crossover 
qualitatively similar to the SU(2) case. 

Problem 

I. On your home computer, write a Monte Carlo program to simulate 
the one-dimensional Ising model. Calculate the internal energy as a 
function of temperature and compare with the exact result. 

2. Devise a heat bath algorithm for the gauge group U(l). 
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