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Abstract

We derive bivariate polynomial formulae for cocycles and coboundaries in Z2(Zn
p, Zn

p), and a basis
for the (pn

− 1− n)-dimensional GF(pn)-space of coboundaries. When p = 2 we determine a basis
for the (2n

+
(n

2

)
− 1)-dimensional GF(2n)-space of cocycles and show that each cocycle has a unique

decomposition as a direct sum of a coboundary and a multiplicative cocycle of restricted form.
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1. Introduction

We consider only two-dimensional cocycles between finite groups, with trivial
action. These cocycles are functions arising naturally in surface topology, projective
representation theory, combinatorial designs and quantum dynamics, amongst other
areas. They are used to search for good high-distance error-correcting codes,
low-correlation sequences and functions with strong nonlinearity properties for
cryptographic applications. Two basic classes of cocycles, the coboundaries and
the multiplicative cocycles, have proved very productive for these purposes. The
coboundaries are used to find S-box functions with low differential uniformity, such
as perfect nonlinear (PN) and almost perfect nonlinear (APN) functions, which are
thus robust against differential cryptanalysis [4, 3]. The multiplicative cocycles over
elementary abelian groups form a structured space within which to find generalized
Hadamard matrices and codes [10, 12], relative difference sets [11] and finite
semifields which coordinatize certain projective planes [9]. Cocycles fall into
equivalence classes (‘bundles’) within which these desirable properties are invariant.
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Very little is known about the form of individual cocycles or how to find all the
cocycles (or even all the coboundaries) from a finite group G to a finite abelian
group C . In the early 1990s, a group theoretic algorithm was developed that lists
a minimal set of generators of the group of cocycles for abelian groups G. However,
focus is usually on listing a set of representatives of the second cohomology group (the
quotient group of the group of cocycles by the subgroup of coboundaries). Facilities
for computation and manipulation of a set of cohomology class representatives exist
in several computational algebra packages; for instance, MAGMA has a module (due
to Flannery and O’Brien [7]) which uses the universal coefficient theorem to list them.
Another algorithm uses a smaller homological model to compute such representatives
much faster, but requires more precomputation.

The second cohomology group decomposes as an internal direct sum of two groups,
so every cocycle is a sum of an ‘inflation’ cocycle, a ‘transgression’ cocycle and a
coboundary, but the decomposition is not unique. Computation of a set of generators
for the subgroup of coboundaries is usually left as an exercise in linear algebra,
although for cocycles mapping to Z2 an algorithm is known. See [8, Chapter 6.3]
for details.

This paper has two main purposes. The first is to present a formula for any
cocycle from Zn

p to Zn
p as a bivariate polynomial over GF(pn). This provides a new

technique for working with these cocycles and a fourth algorithm for computation in
this particular case. The second is to exploit an overlying vector space structure of the
group of cocycles to extract a basis for the space of coboundaries. When p = 2—the
most important case for applications—we then extract a basis for the space of cocycles.

The paper is organized as follows. In Section 2 we use Lagrange interpolation
and the cocycle equation to derive polynomial formulae for coboundaries, cocycles
and multiplicative cocycles from Zn

p to Zn
p. In Section 3 we prove two results about

coboundaries. The first (Theorem 3.1) is the basis theorem for coboundaries and we
show that the bases exhibit self-similarity as n increments. The second (Theorem 3.4)
captures this self-similarity in a recursive formula for the coboundary basis when
p = 2, suitable for computation.

In the final Section 4, we concentrate on cocycles from Zn
2 to Zm

2 , n ≥ m. We show
(Lemma 4.1) that every symmetrization cocycle is a coboundary (which, when m = n,
must be defined by a unique Dembowski–Ostrom polynomial). We then derive the
basis theorem for cocycles (Theorem 4.5) and, as a consequence, bases and dimensions
for several other subspaces of interest. From this we prove that any cocycle over
Zn

2 has a unique decomposition as a direct sum of a coboundary and a multiplicative
noncoboundary cocycle of specific form (Corollary 4.7).

2. Cocycles and coboundaries

Let GF(q) be the finite field of order q = pn , where p is prime and n ∈ Z+.
Let G be a finite group, C be an additively written finite abelian group, and let
C1(G, C)= {φ | G→ C, φ(1)= 0} be the group of all normalized functions from
G to C .
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Each φ ∈ C1(G, C) determines a coboundary ∂φ(x, y)= φ(xy)− φ(x)− φ(y),
which measures how much φ differs from a homomorphism from G to C . A
coboundary is the simplest form of cocycle. A (two-dimensional normalized) cocycle
(with trivial action) is a mapping ψ : G × G→ C satisfying

ψ(1, 1)= 0; ψ(x, y)+ ψ(xy, z)= ψ(x, yz)+ ψ(y, z) ∀x, y, z ∈ G. (2.1)

The set Z2(G, C) of cocycles over G with values in C is an abelian group under
pointwise addition. The subgroup of coboundaries is denoted B2(G, C), and
the coboundary mapping ∂ : C1(G, C)→ B2(G, C) mapping φ to ∂φ is a group
homomorphism with kernel ker(∂)= Hom(G, C).

In the reverse direction to ∂ is the diagonal mapping

D : Z2(G, C)→ C1(G, C), Dψ(x)= ψ(x, x) ∀x ∈ G. (2.2)

It follows that ∂ ◦ D : Z2(G, C)→ B2(G, C) and (D ◦ ∂)φ(x)= φ(x2)− 2φ(x).
The mappings D and ∂ may be thought of as generalizing the mappings between
bilinear and quadratic forms.

We are interested in two other subgroups of Z2(G, C): the subgroup M2(G, C) of
multiplicative cocycles and the subgroup S2(G, C) of symmetric cocycles1.

A cocycle is called multiplicative if it is a homomorphism on either coordinate (and
hence on both coordinates, by (2.1)). If G is abelian, on defining ψ>(x, y)= ψ(y, x)
and ψ−(x, y)= ψ(x, y)− ψ(y, x) for all x, y ∈ G, we have that ψ> and ψ− are
cocycles, the decomposition ψ = ψ> + ψ− is unique, and ψ−, the commutator
pairing, is multiplicative [2, Exercises IV.3.8 and V.6.5].

A cocycle ψ is called symmetric if ψ(x, y)= ψ(y, x) for all x, y ∈ G. If G
is abelian, the coboundaries are all symmetric, that is, B2(G, C)≤ S2(G, C), the
symmetrization ψ+ of ψ , given by ψ+(x, y)= ψ(x, y)+ ψ(y, x), is a symmetric
cocycle, and then the symmetrization mapping S+ : Z2(G, C)→ S2(G, C), given by
S+(ψ)= ψ+, is a group homomorphism. We set S2

+(G, C)= S+(Z2(G, C)).
If G is abelian the isotype of the finite abelian group Z2(G, C) may be derived

using cohomological techniques [8, Theorem 6.13, Corollary 6.16]. We record the
elementary abelian case needed here.

PROPOSITION 2.1. Let G ∼= Zn
p and C ∼= Zm

p , n ≥ m ≥ 1 and set N = pn
+
(n

2

)
− 1,

with
(n

2

)
= 0 if n = 1. Then Z2(Zn

p, Zm
p )
∼= C N ∼= (Zm

p )
N .

2.1. A polynomial formula for cocycles over GF(q) This subsection is devoted
to the representation of cocycles in Z2(Zn

p, Zn
p) as bivariate polynomials. We treat

Zn
p as the underlying additive group of the finite field GF(q), where q = pn , so that

G = C = (GF(q),+).
By the Lagrange interpolation formula [15, Theorem 1.71], if m ≥ 1, then for

m distinct points a0, . . . , am−1 of GF(q) and m arbitrary points b0, . . . , bm−1 of

1 In [8] the subgroup of symmetric cocycles is denoted S2
+(G, C) but the notation presented here, with

S2
+(G, C) reserved for the subgroup of symmetrization cocycles, is more consistent.
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GF(q) there exists a unique polynomial f ∈ GF(q)[x] of degree less than m such
that f (ai )= bi for i = 0, . . . , m − 1. Any function π : GF(q)× GF(q)→ GF(q)
can therefore be represented by a unique polynomial P ∈ GF(q)[x, y] as follows.
Let α be a primitive element of GF(q) and order GF(q) as GF(q)= {α0 = 0, α1 = 1,
α2 = α, . . . , αq−1 = α

q−2
}. Under this ordering a q × q array A with entries from

GF(q) determined by π(αi , α j )= ai j will have, for each row Ai = [ai0, . . . , ai,q−1],

a unique polynomial fi (y)=
∑q−1

k=0 bik yk
∈ GF(q)[y] such that fi (α j )= ai j . For

fixed k, the coefficients of yk from each row are {bik | i = 0, . . . , q − 1}, and for each
k there is a unique polynomial gk(x)=

∑q−1
l=0 λlk x l such that gk(αi )= bik . Since

fi (y)=
∑q−1

k=0 gk(αi )yk , there exists a unique polynomial P ∈ GF(q)[x, y] such that

π(x, y)= P(x, y)=
q−1∑
k=0

q−1∑
l=0

λlk x l yk .

If ψ : GF(q)× GF(q)→ GF(q) also satisfies ψ(x, 0)= ψ(0, y)= 0 for all
x, y ∈ GF(q) (a necessary condition for the cocycle equation (2.1) to hold for
G = C = (GF(q),+)) then it has a unique representation in GF(q)[x, y],

ψ(x, y)=
q−1∑
i=1

q−1∑
j=1

λi j x i y j . (2.3)

For a coboundary, the coefficients in (2.3) are very restricted. Again by Lagrange
interpolation every φ ∈ C1(G, G) may be represented uniquely as a polynomial of
degree at most q − 1 in GF(q)[x].

LEMMA 2.2. Let ψ : GF(q)× GF(q)→ GF(q) be given by (2.3). If φ : GF(q)→
GF(q) is given by φ(x)=

∑q−1
i=1 φi x i , then ψ = ∂φ if and only if:

(1) λi j = 0, for j = q − i, . . . , q − 1;
(2) λi j =

(i+ j
i

)
φi+ j , otherwise.

PROOF.

∂φ(x, y) =
q−1∑
i=1

φi {(x + y)i − x i
− yi
} =

q−1∑
i=2

i−1∑
j=1

φi

(
i

j

)
x i− j y j

=

q−2∑
i=1

q−i−1∑
j=1

φi+ j

(
i + j

j

)
x i y j ,

and the result follows on equating coefficients. 2

Clearly, if ψ : GF(q)× GF(q)→ GF(q) is given by (2.3) then ψ is symmetric if
and only if λi j = λ j i , 1≤ i, j ≤ q − 1.
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Subsequently we will need the following theorem, attributed to Lucas [16] in [6],
and its corollaries.

THEOREM 2.3 (Lucas’ theorem). [6, Theorem 1] Let p be a prime, and let

m = m0 + m1 p + m2 p2
+ · · · + mk pk (0≤ mr < p),

n = n0 + n1 p + n2 p2
+ · · · + nk pk (0≤ nr < p).

Then (
m

n

)
=

(
m0

n0

)(
m1

n1

)(
m2

n2

)
. . .

(
mk

nk

)
modp. (2.4)

COROLLARY 2.4. [6, Theorem 3] A necessary and sufficient condition that all the
binomial coefficients (

m

n

)
, 0< n < m, (2.5)

be divisible by p is that m be a power of p.

The p-ary weight wp(k) of the natural number k is the weight of the vector
of coefficients of its p-ary expansion, so, for example, wp(pi )= 1 and, for i 6= j ,
wp(pi

+ p j )= 2.

COROLLARY 2.5. Let m = 2, . . . , pn
− 1 and n < m. Then wp(m)= 1 implies

(m
n

)
= 0 mod p.

The next function class of interest is that consisting of the ‘multiplicative’ bivariate
polynomials (2.3); that is, those which are homomorphic in each coordinate. Such
functions are always cocycles. The following result may be well known but a proof is
provided for completeness. The coboundary case is well known [1].

THEOREM 2.6. Let ψ : GF(q)× GF(q)→ GF(q) be given by (2.3). Then ψ is
multiplicative if and only if

ψ(x, y)=
n−1∑
i=0

n−1∑
j=0

λpi p j x pi
y p j
.

PROOF. It is straightforward to show that if ψ has this form it is multiplicative. To
show that the converse is true, let ψ be multiplicative in both coordinates, that is

ψ(x + z, y) = ψ(x, y)+ ψ(z, y), (2.6)

ψ(x, y + z) = ψ(x, y)+ ψ(x, z). (2.7)

Expanding the left-hand side of (2.6) gives, for each λi j 6= 0,

q−1∑
i=1

[(
i

1

)
x i−1z +

(
i

2

)
x i−2z2

+ · · · +

(
i

i − 1

)
xzi−1

]
= 0, ∀x, z ∈ GF(q).
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Therefore, we must have that, for each i = 1, 2, . . . , q − 1,(
i

r

)
≡ 0 mod p ∀r = 1, 2, . . . , i − 1.

From Corollary 2.4, i = ps for s = 0, 1, . . . , blogp(q − 1)c = n − 1. By symmetry,
(2.7) implies j = pl only, with l = 0, 1, . . . , n − 1. 2

Our main result for this section is the following formula for any cocycle in
Z2(Zn

p, Zn
p), in terms of simultaneous linear equations over GF(q) in the bivariate

polynomial coefficients λi j . The proof is a straightforward exercise in tracking limits
of summation.

This new approach to studying Z2(Zn
p, Zn

p) complements those in [8].

THEOREM 2.7. Let ψ : GF(q)× GF(q)→ GF(q) be given by (2.3). Then ψ satisfies
(2.1) if and only if:

(1)
(i+l

l

)
λi+l, j = 0, for i = 1, . . . , j − 1 and l = q − j, . . . , q − 1− i ;

(2)
( j+l

l

)
λi,l+ j = 0, for i = j + 1, . . . , q − 1 and l = q − i, . . . , q − 1− j ;

(3)
(i+l

l

)
λi+l, j =

( j+l
l

)
λi,l+ j , otherwise.

PROOF. Now, ψ(g, h)+ ψ(g + h, k)− ψ(g, h + k)− ψ(h, k)= 0 if and only if

0 =
q−1∑
j=1

q−1∑
i=2

i−1∑
l=1

λi j

(
i

l

)
gi−lhlk j

−

q−1∑
j=2

q−1∑
i=1

j−1∑
l=1

λi j

(
j

l

)
gi h j−lkl

=

q−1∑
j=1

q−2∑
i=1

q−i−1∑
l=1

λi+l, j

(
i + l

l

)
gi hlk j

−

q−2∑
j=1

q−1∑
i=1

q− j−1∑
l=1

λi, j+l

(
j + l

l

)
gi hlk j .

Splitting this into cases for i < j , i = j and i > j gives

0 =
q−2∑
j=2

j−1∑
i=1

q−1− j∑
l=1

(
λi+l, j

(
i + l

l

)
− λi,l+ j

(
j + l

l

))
gi hlk j

+

q−3∑
j=1

q−2∑
i= j+1

q−1−i∑
l=1

(
λi+l, j

(
i + l

l

)
gi hlk j

− λi,l+ j

(
j + l

l

))
gi hlk j

+

q−2∑
i=1

q−1−i∑
l=1

(
λi+l,i

(
i + l

l

)
− λi,l+i

(
i + l

l

))
gi hlki

+

q−1∑
j=2

j−1∑
i=1

q−1−i∑
l=q− j

λi+l, j

(
i + l

l

)
gi hlk j

−

q−2∑
j=1

q−1∑
i= j+1

q−1− j∑
l=q−i

λi,l+ j

(
j + l

l

)
gi hlk j .

The sum on the right-hand side contains each term gi hlk j exactly once, so by linear
independence it is equal to 0 if and only if the stated conditions hold. 2
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Solution of these simultaneous equations using Theorem 2.3 will give the general
cocycle formula for each q . Some coefficients will necessarily be zero.

We illustrate Theorem 2.7 for the smallest examples q = 2, 3, 4, 5, 7, 8. The
number of independent coefficients λi j , namely 1, 2, 4, 4, 6, 10, is the integer N of
Proposition 2.1. (See also [8, Examples 6.3.1 and 6.3.2].)

EXAMPLE 1. Let G = C = (GF(q),+). Let ψ ∈ Z2(G, G) have form (2.3).

(1) If q = 2, ψ(x, y)= λ11 xy.
(2) If q = 3, ψ(x, y)= λ11 xy + λ12(xy2

+ x2 y).
(3) If q = 4, ψ(x, y)= λ11 xy + λ12 xy2

+ λ21 x2 y + λ22 x2 y2.
(4) If q = 5, ψ(x, y)= λ11 xy + λ12(xy2

+ x2 y)+ λ22(4xy3
+ x2 y2

+ 4x3 y)+
λ14(xy4

+ 2x2 y3
+ 2x3 y2

+ x4 y).
(5) If q = 7, ψ(x, y)= λ11 xy + λ12(xy2

+ x2 y)+ λ13(xy3
+ 5x2 y2

+ x3 y)+
λ14(xy4

+ 2x2 y3
+ 2x3 y2

+ x4 y)+ λ15(xy5
+ 6x2 y4

+ x3 y3
+ 6x4 y2

+ x5 y)
+ λ16(xy6

+ 3x2 y5
+ 5x3 y4

+ 5x4 y3
+ 3x5 y2

+ x6 y).
(6) If q = 8, ψ(x, y)= λ11 xy + λ12 xy2

+ λ21 x2 y + λ22 x2 y2
+ λ14 xy4

+ λ41
x4 y + λ24 x2 y4

+ λ42 x4 y2
+ λ44 x4 y4

+ λ16(xy6
+ x2 y5

+ x3 y4
+ x4 y3

+

x5 y2
+ x6 y).

3. Coboundaries over GF( pn)

We will abbreviate by B the finite abelian group of coboundaries B2(Zn
p, Zn

p).

THEOREM 3.1 (Coboundary basis theorem). For n > 1 and k = 2, . . . , pn
− 1,

define ck ∈ B by

ck(x, y)=
k−1∑
i=1

(
k

i

)
x i yk−i .

Then {ck | k = 2, . . . , pn
− 1, wp(k)≥ 2} is a basis for B over GF(pn), and

dim(B)= pn
− 1− n.

PROOF. For φ(x) as in Lemma 2.2,

∂φ(x, y) =
pn
−2∑

i=1

pn
−i−1∑
j=1

φi+ j

(
i + j

i

)
x i y j
=

pn
−1∑

k=2

k−1∑
i=1

φk

(
k

i

)
x i yk−i

=

pn
−1∑

k=2

φk ck(x, y),

so {ck | k = 2, . . . , pn
− 1} spans B. From Corollary 2.5, wp(k)= 1 implies ck ≡ 0

so there are pn
− 1− n elements ck spanning B. These ck are linearly independent

since distinct ck have no monomial summands in common. 2

MAGMA computations using Theorem 3.1 show that the coboundary bases exhibit
recursive patterns as n increments. In effect, this recursion occurs because the
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coefficients
(k

i

)
, i = 1, . . . , k − 1, of each basis element ck are the nontrivial binomial

coefficients in a row of Pascal’s triangle. In [17], Wolfram describes the self-similar
geometry of Pascal’s triangle when the binomial coefficients are taken modulo r . In
the case of prime r , it is observed to have a very regular self-similar pattern, but no
reason is given. We can explain this regularity in terms of Lucas’ theorem and the
matrix Kronecker product. The matrix Pn in Theorem 3.2 has the successive rows of
Pascal’s triangle as its upper diagonals, with the convention

(m
0

)
= 1. The core of Pn ,

that is, Pn stripped of its first row and column of 1’s, has the coefficients of successive
basis elements ck as its upper and main diagonals.

THEOREM 3.2. Define Pn = [ai j ], where ai j =
(i+ j

i

)
mod p, i, j = 0, 1, . . . ,

pn
− 1. Then Pn+1 = Pn ⊗ P1 =⊗

n+1 P1.

PROOF. Consider any entry ai j of Pk where i + j ≥ pk . These entries will all have a
factor pk , and hence ai j = 0 mod p for i + j ≥ pk . Therefore,

Pk =



(0
0

) (1
0

) (2
0

)
. . .

(pk
−1
0

)(1
1

) (2
1

) (3
1

)
. . . 0(2

2

) (3
2

) (4
2

)
. . . 0

... . . .
...(pk

−1
pk−1

)
0 0 . . . 0


. (3.1)

Now consider the (i, j)th entry of Pk+1, where i = upk
+ m, 0≤ u < p, 0≤ m < pk

and j = vpk
+ n, 0≤ v < p, 0≤ n < pk . Then

ai j =

(
(m + n)+ (u + v)pk

upk + m

)
.

From (3.1), if (m + n)+ (u + v)pk
≥ pk+1, then ai j = 0 mod p. Two cases can

occur if (m + n)+ (u + v)pk < pk+1. If m + n ≥ pk then ai j will have a factor
(1+ u + v)pk , and hence ai j = 0 mod p. If m + n < pk , then by Theorem 2.3,

ai j =

(
m + n + (u + v)pk

upk + m

)
=

(
m + n

m

)(
u + v

u

)
mod p.

Since Pk = [amn] for 0≤ m, n < pk , and P1 = [auv] for 0≤ u, v < p, we have that
Pk+1 = Pk ⊗ P1. 2

Theorem 3.2 implies that the basis elements for B2(Zn
p, Zn

p) are bivariate
polynomial functions of the basis elements for B2(Zn−1

p , Zn−1
p ).
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For p = 2 the recursion formula is very simple, and can be deduced by different
methods. An intermediate inductive lemma is our key; proof is left to the reader. We
sum over all the basis elements ck , that is, we sum all terms with coefficients in the
core of Pn .

LEMMA 3.3. For n > 1, define

An(x, y)=
2n
−1∑

k=2

ck(x, y), A(c)n (x, y)= y2n
2n
−1∑

l=1

(
l + 2n

l

)
x l

and

A(r)n (x, y)= x2n
2n
−1∑

l=1

(
l + 2n

2n

)
yl .

Then An+1 = An + y2n
An + A(c)n + A(r)n + x2n

An.

THEOREM 3.4. For n > 1 and 2n−1 < k < 2n , the coboundaries ck over Zn
2 can be

defined recursively:

ck(x, y)=

{
(xk−2n−1

+ ck−2n−1)y2n−1
+ x2n−1

(yk−2n−1
+ ck−2n−1), w2(k)≥ 3

x2r
y2n−1

+ x2n−1
y2r
, k = 2n−1

+ 2r , r = 0, . . . , n − 2.

PROOF. By Lemma 3.3,

2n
−1∑

k=2n−1

ck(x, y)= y2n−1
An−1 + A(c)n−1 + A(r)n−1 + x2n−1

An−1.

Hence

ck(x, y)= y2n−1
ck−2n−1 + xk−2n−1

y2n−1
+ x2n−1

yk−2n−1
+ x2n−1

ck−2n−1 .

If w2(k)= 2 then w2(k − 2n−1)= 1 and ck−2n−1 ≡ 0. 2

4. A polynomial basis for cocycles over Zn
2

From now on, we consider cocycles in Z2(Zn
2, Z

m
2 ), n ≥ m ≥ 1, where we can

say more about the subgroup of symmetrization cocycles S2
+. Not only is every

symmetrization multiplicative, it is also a coboundary.

LEMMA 4.1. Let G ∼= Zn
2 and C ∼= Zm

2 , n ≥ m ≥ 1.

(i) ker(S+)= S2(G, C) so S2
+(G, C)≤ M2(G, C) ∩ S2(G, C).

(ii) S+ = ∂ ◦ D so S2
+(G, C)= (∂ ◦ D)(Z2(G, C))≤ M2(G, C) ∩ B2(G, C).
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PROOF. (i) This follows by definition since ψ− = ψ+ and ψ− is multiplicative.
(ii) If ψ ∈ Z2(G, C), then

∂(Dψ)(x, y) = ψ(x + y, x + y)+ ψ(x, x)+ ψ(y, y)

= (ψ(x, y)+ ψ(x, y + x + y)+ ψ(y, y + x))+ ψ(x, x)+ ψ(y, y)

by (2.1), which is equal to

ψ(x, y)+ (ψ(y + y, x)+ ψ(y, y)+ ψ(y, x))+ ψ(y, y)

again by (2.1), which is equal to S+(ψ)(x, y). 2

Hereafter, assume G = C = (GF(2n),+)∼= Zn
2 . We will abbreviate by Z , B, M , S

and S+ the finite abelian groups of cocycles, coboundaries, multiplicative, symmetric
and symmetrization cocycles respectively. In this case, by Proposition 2.1, Z is a
GF(2n)-vector space of dimension N = 2n

+
(n

2

)
− 1.

The function φ : G→ G is said to be linearized or quadratic if every monomial
summand has degree of binary weight ≤ 1 or ≤ 2, respectively. A polynomial for
which every monomial summand has degree of weight 2 is called a Dembowski–
Ostrom (DO) polynomial in [5]. That is, a polynomial φ in GF(2n)[x] is DO if, when
reduced modulo x2n

− x , it is of the form

φ(x)=
n−1∑
j=1

j−1∑
i=0

λi j x2i
+2 j
, λi j ∈ GF(2n). (4.1)

When G = C , Lemma 4.1 can be improved to show M ∩ B = S+. We need the
following result, proof of which is an easy adaption of that of [5, Theorem 3.2] to the
case p = 2. Proposition 4.2 has been rediscovered by other authors, for example [13].

PROPOSITION 4.2 (see [5]). Let G ∼= Zn
2 , let f ∈ C1(G, G) have linearized summand

` and set φ = f − `. Then ∂φ = ∂ f ∈ M ∩ B if and only if φ is DO, if and only if f
is quadratic. That is, M ∩ B = {∂ f | f = φ + `, φ DO, ` linearized}.

Every DO polynomial is the image under the diagonal mapping of at least one
cocycle. For the DO polynomial φ in (4.1), define

ϕ(x, y)=
n−1∑
j=1

j−1∑
i=0

λi j x2i
y2 j
, (4.2)

which is multiplicative by Theorem 2.6. Then Dϕ = φ and so ∂φ = ϕ+.

COROLLARY 4.3. Let G ∼= Zn
2 , let φ be a DO polynomial (4.1) and let ϕ be the

corresponding cocycle (4.2). Then:

(i) ∂φ = ϕ+ = ∂ ◦ D(ϕ);
(ii) M ∩ B = S+ = (∂ ◦ D)(Z).
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We distinguish between the basis coboundaries ck with w2(k)= 2 and those with
w2(k)≥ 3, since it is plain from (4.2) and Corollary 4.3 that the ck with w2(k)= 2
form a basis for S+.

COROLLARY 4.4. For n > 1, define

bi j (x, y)= c2i+2 j (x, y)= x2i
y2 j
+ x2 j

y2i
, x, y ∈ GF(2n), 0≤ i < j ≤ n − 1.

Then S+ = span{bi j , 0≤ i < j ≤ n − 1} and B = S+ ⊕ C, where C is the span of
{ck, k = 2, . . . , 2n

− 1, w2(k)≥ 3}.

In Theorem 3.1 we proved the GF(2n)-subspace B of coboundaries has dimension
2n
− n − 1. By Proposition 2.1, Z has GF(2n)-dimension N = 2n

+
(n

2

)
− 1, so we

need only to identify a further n +
(n

2

)
basis cocycles which are not coboundaries.

We make the surprising and valuable observation that these may all be chosen to be
multiplicative. This observation is not apparent from the theory described above. The
multiplicative cocycles have already been identified in Theorem 2.6. If i < j , then

λi j x2i
y2 j
+ λ j i x

2 j
y2i
= (λ j i + λi j )x

2 j
y2i
+ λi j (x

2i
y2 j
+ x2 j

y2i
)

= (λ j i + λi j )x
2i

y2 j
+ λ j i (x

2i
y2 j
+ x2 j

y2i
)

and in either form the second summand is a multiple of the symmetrization coboundary
bi j (x, y). We have two possible representations of λi j x2i

y2 j
+ λ j i x2 j

y2i
here, and

without loss of generality we choose the former.
Hence dim(M)= n2

= n + 2
(n

2

)
and in M there are n linearly independent

multiplicative symmetric cocycles we denote by

di (x, y)= x2i
y2i
, 0≤ i ≤ n − 1,

and
(n

2

)
linearly independent multiplicative asymmetric cocycles we denote by

a j i (x, y)= x2 j
y2i
, 0≤ i < j ≤ n − 1

as well as the
(n

2

)
linearly independent symmetrization coboundaries bi j (x, y), 0≤ i <

j ≤ n − 1 already found as a basis for S+.

THEOREM 4.5 (Basis theorem). A GF(2n)-basis for Z2(Zn
2, Z

n
2), n > 1, consists of

the following N = 2n
+
(n

2

)
− 1 polynomials:

(1) n multiplicative symmetric noncoboundary cocycles di , i = 0, . . . , n − 1;
(2)

(n
2

)
multiplicative asymmetric noncoboundary cocycles a j i , 0≤ i < j ≤ n − 1;

(3)
(n

2

)
multiplicative symmetrization coboundaries bi j , 0≤ i < j ≤ n − 1;

(4) 2n
−
(n

2

)
− n − 1 nonmultiplicative symmetric coboundaries ck, 2≤ k ≤ 2n

− 1,
w2(k)≥ 3.

https://doi.org/10.1017/S1446788708000876 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788708000876


188 D. G. Farmer and K. J. Horadam [12]

COROLLARY 4.6. Define A = span{a j i , 0≤ i < j ≤ n − 1} and D = span{di , i = 0
, . . . , n − 1}. Then dim(A)=

(n
2

)
, dim(B)= 2n

− n − 1, dim(C)= 2n
−
(n

2

)
− n − 1, dim(D)= n, dim(M)= n2, dim(S)= 2n

− 1, dim(S+)=
(n

2

)
and dim(Z)=

2n
+
(n

2

)
− 1. Furthermore:

(1) Z = A ⊕ D ⊕ S+ ⊕ C = M ⊕ C = A ⊕ S;
(2) S = D ⊕ S+ ⊕ C;
(3) M = A ⊕ D ⊕ S+;
(4) B = S+ ⊕ C.

Theorems 3.4, 4.5 and Corollary 4.6 provide us with a new and effective approach
to working with cocycles over Zn

2 . Known algorithms for finding a generating set of
cocycles require costly precomputation of representative cocycles in each cohomology
class, and for a generating set of coboundaries to be found using linear algebra, on a
case-by-case basis. There are iterative techniques for finding the cohomology class
representatives as n increments, but no simple recursive formula for coboundaries,
such as we have given in Theorem 3.4.

We illustrate the transformation from the basis found by another algorithm to this
basis with a small example.

EXAMPLE 2. If n = 2, Z ∼= (Z2
2)

4. Using [8, Algorithm 1, 6.3.1], each cocycle ψ
is uniquely defined by the four values ψ(1, 1)= α, ψ(ω, ω)= β, ψ(1, ω)= γ and
ψ(1, ω)+ ψ(ω, 1)= κ , where ω is a primitive element of GF(4). These values
can be used to identify four basis cocycles. By Theorem 4.5, there are four basis
polynomials d0(x, y)= xy, d1(x, y)= x2 y2, a10(x, y)= x2 y and b01(x, y)= xy2

+

x2 y. Suppose that ψ = λ1d0 + λ2d1 + λ3a10 + λ4b01. Then the transform matrix is
given by 

λ1
λ2
λ3
λ4

=

ω 1 ω2 0
ω2 1 ω 0
0 0 1 0
1 1 ω 1



α

β

κ

γ

 .
As a consequence of the basis theorem, every cocycle from Zn

2 to Zn
2 has a

unique decomposition as a direct sum of a coboundary and a multiplicative cocycle
of restricted type, a fact which we do not believe has been previously observed.

COROLLARY 4.7. Since Z = (A ⊕ D)⊕ B, every cocycle ψ ∈ Z has a unique
decomposition as a direct sum of the form ψ = µ⊕ ∂φ where µ ∈ A ⊕ D is
multiplicative and ∂φ is a coboundary.

The known but previously unusable unique decomposition ψ = ψ> + ψ−,
where ψ− is the commutator pairing, is now revealed as the decomposition
Z = (A ⊕ D ⊕ C) ⊕S+, since ψ− = ψ+ = S+(ψ).
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We expect that the basis theorem and Corollary 4.7 will prove very useful in
the search for orthogonal and other cocycles with low differential uniformity in
Z2(Zn

2, Z
m
2 ), m ≤ n, for applications in coding and cryptography. For instance, it

is conjectured in [14] that all orthogonal cocycles in Z2(Zn
2, Z

m
2 ), n ≥ m ≥ 2 are

multiplicative, based on computed results for n ≤ 4. The decomposition above may
be the clue to discovering if this is true for all n when p = 2. (It cannot be true for
odd p [5].)
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