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ABSTRACT. Dry snow avalanches consist of two distinct layers. A dense-flow layer is
superposed by a powder-snow layer, a cloud of relatively small ice particles suspended in
air.The density of this suspension is one order of magnitude smaller than that of the dense
flow. A simulation model for dry avalanches has been developed, based on separate sub-
models for the two layers.The sub-models are coupled by an additional transition model,
describing the exchange of mass andmomentumbetween the layers.The fundamentals of
the two-dimensional granular flow model for the dense flow and of the three-dimensional
turbulent mixture model for the powder flow are presented. Results of the complete
coupled model, SAMOS (Snow Avalanche MOdelling and Simulation), applied to
observed catastrophic avalanche events, are discussed, and the prediction of powder-snow
pressures acting on a tunnel bridge is briefly described. SAMOS is used routinely for
hazard zoning at the Austrian Federal Service forTorrent and Avalanche Control.

1. INTRODUCTION

The increasing exploitation of alpine regions by tourism,
traffic and the power industry exposes human lives, build-
ings and roads to snow avalanches. Numerical simulations
may be used to estimate avalanche hazard zones or to assess
the efficiency of planned defence structures such as support-
ing constructions in potential avalanche-release areas or
protective dams in run-out zones. In Austria, the equivalent
of E350 million was spent on such measures between 1949
and 1989 (BMFL, 1989). Dry avalanches occur quite fre-
quently in theAlps, and the catastrophic avalanches in Aus-
tria in 1984, 1988 and 1999 were of this type, so they have
been the focus of simulation activities in Austria. The most
widely used models, such as statistical run-out models (e.g.
Lied and Bakkeh�i,1980), which are restricted to avalanche
tracks that fit into certain categories, or one-dimensional
centre-of-mass models (e.g.Voellmy,1955), are highly simpli-
fied and cannot describe the deformation of the avalanche
body. Moreover, the avalanche path has to be prescribed
by the user. Therefore, more use has been made in recent
years of two- and three-dimensional models based on fun-
damental fluid mechanics (see, e.g., Gruber and Margreth,
2001). Two- (or higher-) dimensional models (two dimen-
sions tangential to the terrain surface) can predict the ava-
lanche track as well as lateral spreading and run-out
distances and thus provide additional validation criteria.

Dry avalanches are assumed to consist of small, non-
cohesive ice particles. Every avalanche starts as a dense-flow
avalanche with flow densities of 100^400 kgm^3.Within this
dense-flow layer, momentum is transferred by particle con-
tacts and collisions. If the avalanchemoves fast enough, par-
ticles at the surface of the dense flow are stirred up due to the
shear stress induced by the velocity difference to the air
above. Small particles may be kept in suspension by turbu-
lence in the air, thus forming a powder-snow layer, which

itself is accelerated by gravitation.Within the powder-snow
layer, momentum is transferred by the viscosity and turbu-
lence of the air. Direct particle interaction is assumed to be
negligible since the snow volume fraction is small, of the
order of 0.01 (corresponding to mixture densities up to 5 or
10 kgm^3). Since the two layers differ in the nature of their
momentum transfer, separate models are used for them in
SAMOS (Snow Avalanche MOdelling and Simulation).
These separate models are coupled by relations describing
the exchange of mass and momentum between the dense-
flow and suspension layers (Fig.1).

2. DENSE-FLOW MODEL

In the presented model, the dense-flow layer of the ava-
lanche is assumed to behave like a quasi-statically deform-
ing pile of granular material, sliding with velocity u on a
thin shear layer at its bottom.This approach was developed
by Savage and Hutter (1989).The shear layer is mathemati-
cally reduced to a boundary condition that relates the
normal stress �ðbÞ to the tangential stress � ðbÞ at the bottom
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Fig.1. Dense-flow and powder-snow layers in a dry avalanche.
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of the dense-flow layer.Within a wide range of strain rates,
most granular materials show a constant, rate-independent
relation between the exerted normal and tangential stresses
(see, e.g., Stadler,1986).This quasi-static regime is described
by a dry Coulombian friction law � ðbÞ ¼ tan � � �ðbÞ�� ��,
where � denotes the static bed friction angle. On the other
hand, the stresses caused by inter-particle collisions domi-
nate in rapidly sheared granular flows, called the ‘‘grain-
inertia’’ regime by Bagnold (1954). The friction then shows
a dependence upon the square of the strain rate and hence
on the square of the velocity u.We combine these two limit-
ing regimes in the boundary condition at the bottom by
using the larger shear stress of both:

� ðbÞ ¼ maxðtan � � j�ðbÞj; cdyn�Su2Þ; ð1Þ
with �S being the mean density in the shear layer and cdyn
an empirically determined model constant. The expression
tan � can be related to the � value and cdyn to the � value in
theVoellmy model, for which a rich literature on empirical
values exists (see, e.g., Salm and others,1990). However, the
Voellmy model always adds both stress components. Physi-
cally, Equation (1) can be interpreted as an instant change
between the two flow regimes at a certain threshold shear
rate. The threshold increases with the quasi-static bottom
pressure �ðbÞ which mainly results from the weight of the
dense-flow layer. As a consequence, shallow avalanches with
low density will enter the grain-inertia regime at lower
velocities than deep, channelled avalanches. Contrary to
earlier numerical implementations of the Savage^Hutter
model (e.g. Zwinger,1996), we apply a finite-volume scheme
(see, e.g., Gersten and Herwig,1992, ch.5.2.3).The conserva-
tion laws of mass and momentum are integrated over a ma-
terial control volume V ðtÞ that moves with the avalanche
(Lagrangian formulation), yielding

dV

dt
¼ dðAhÞ

dt
¼ �jnA; ð2Þ

�D
dui

dt
¼ �Dgi

þ 1

AH

I
@A

Z bþh

b

�ijnj dx3

( )
dl� �i1

� ðbÞ

h
; i ¼ 1; 2

ð3Þ

for a local coordinate systemwith direction i ¼ 1 parallel to
the velocity vector and direction i ¼ 3 normal to the terrain

surface (Fig. 2). In these relations �D denotes the bulk den-
sity of the dense-flow layer, which is assumed to be constant,
u1; u2 the velocity components tangential to the terrain sur-
face, gi the acceleration due to gravity, A the base area, �ij

the stress tensor (neglecting �12; see end of section), nj the
lateral surface normal of a volume element V ðtÞ, �h the
dense-flow layer height measured normal to the terrain sur-
face, and �ij the Kronecker delta (equal to 1 if i ¼ j and 0 if
i 6¼ jÞ. The mass flux from the dense layer to the powder
layer is denoted by jn (see section 4). @A denotes the bound-
ary line of the base area A of the control volume, and the
integrals in the second term on the righthand side of Equa-
tion (3) sum up all the forces acting on the lateral bound-
aries of the volume over the avalanche depth and base area
boundary line. dl is an element of the boundary line. b is the
terrain surface coordinate in direction i ¼ 3. Since the ratio
� of the height to the length of the dense-flow layer is very
small, terms of order �3=2 or smaller were dropped after a
dimensional analysis of the full equations, according to
Savage and Hutter (1989). Equations (2) and (3) provide a
system of three differential equations for the three volume-
averaged variables: the tangential velocities u1; u2 and the
flow depth h.The hydrostatic pressure distribution

�33ðxi; tÞ ¼ �Dg3ðbðx1; x2Þ þ �hðx1; x2; tÞ � x3Þ ð4Þ
has to bemodified for the centripetal acceleration due to the
curvature 1=R ¼ @2b=@x2

1 of the surface in flow direction
(note that direction 1 is always locally chosen to coincide
with the flow direction). The pressure at the bottom then
reads

�33ðx3 ¼ bðx1; x2ÞÞ ¼ �ðbÞ

¼ �D g3 � u2
1

@2bðx1; x2Þ
@x2

1

� �
hðx1; x2; tÞ:

ð5Þ

By applying the Mohr^Coulombian bed friction at the
bottom, the normal components of the stress tensor at the
bottom are related by earth pressure coefficientsKðiÞ:

�
ðbÞ
11 ¼ Kð1Þ�

ðbÞ
33

�
ðbÞ
22 ¼ Kð2Þ�

ðbÞ
33 :

ð6Þ

The earth pressure coefficients are trigonometric functions of
� and of the internal friction angle � of the granular material,
depending on whether the volume element is stretched or
compressed (see Zwinger, 2000, for the detailed relations
used in SAMOS; earth pressure coefficients have been used
in snow avalanche simulations since 1966 (Salm, 1966)). The
off-diagonal components are neglected except for �ðbÞ

13 � � ðbÞ.
It is further assumed that the stresses linearly drop with in-
creasing x3 to zero at the free surface.These assumptions are
used to determine the integral in Equation (3).

3. POWDER-SNOW MODEL

The powder-snow layer of the avalanche is considered a sus-
pension of ice particles in air. This suspension can attain
velocities of up to100m s^1and flow depths of tens of metres.
Reynolds numbers are therefore very high and the flow of
the suspension can be regarded as highly turbulent (see,
e.g., Scheiwiller and Hutter, 1982; Tesche, 1987). To handle
the turbulent flow, the fundamental mass and momentum
balances are averaged, as usual in turbulent fluid dynamics:
quantities are split into a mean part (indicated by overbars)
and a fluctuating part (primed). Density-weighted

Fig. 2. Lagrangian mass element in the dense-flow layer.
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averaging is applied (Favre averaging; cf. Schlichting and
Gersten,1997). After averaging, only the mean variables re-
main in the linear terms. In the higher-order terms, fluctu-
ation variables remain which are modelled as explained
later. A fixed coordinate system is used (Eulerian ap-
proach).The averaged mixture density is given by

� ¼ �Að1� cÞ þ �Pc ; ð7Þ

with �A and �P being the intrinsic densities of air and snow
particles, respectively, and c the particle volume fraction.
Density variations in the air caused by compressibility are
neglected.The particles are assumed to move with the same
velocity as the air, except for a small, constant settling
velocity uSi of the order of 1m s^1, which is only considered
in the particles mass balance to account for sedimentation.
The mass balance for the mixture then reads

@�

@t
þ @ð� � uiÞ

@xi
¼ 0: ð8Þ

The snow-particles mass balance

@ð�PcÞ
@t

þ @ð�Pc � uiÞ
@xi

¼ � @ð�Pc0u0
iÞ

@xi
� @ð�Pc uSiÞ

@xi
ð9Þ

includes turbulent dispersion and sedimentation of the par-
ticles on the righthand side. Note that the dispersion also
accounts for air entrainment as the computational domain
includes the air outside the powder cloud.The mixture mo-
mentum balance is given by

@ð� � uiÞ
@t

þ @ð� � ui � ujÞ
@xj

¼ � @�

@xi
þ @

@xj
ð�ij � � � u0

iu
0
jÞ þ �gi;

ð10Þ

with the viscous stresses �ij being very small compared to
the apparent turbulent stresses �� � u0

iu
0
j. The fluctuation

terms containing the primed quantities are modelled ac-
cording to the widely used k-"model (Launder and Spald-
ing, 1972; Rodi, 1980), written for the mixture (Zwinger,
2000). Boundary conditions for velocity and turbulence
quantities at the ground and at the interface with the
dense-flow avalanche are prescribed by wall functions de-
rived from boundary-layer theory. The interface to the
dense-flow layer is assumed to be a rough wall moving with
the velocity of the dense flow. Entrainment of snow from the
resting snow cover is not considered.

4.TRANSITION MODEL

In contrast to the Sl-1d model (Issler, 1998), no detailed
model is formulated for the re-suspension/saltation layer.
Instead, this layer is collapsed to an interface, and a simple
transition model is developed that couples the dense-flow
and powder-snow layers by prescribing the transfer of snow
mass between the two parts. In the case of neutrally buoyant
fine dispersed particles, particle mass transport is approxi-
mately analogous to turbulent momentum transport in the
boundary layer above the dense-flow surface (Reynolds
analogy; Gersten and Herwig, 1992). Parker and others
(1986) applied a similar concept to submarine turbidity cur-
rents.We adapt this analogy by adding the empirical turbu-
lent Schmidt number �t to account for the buoyancy of the
snow particles and the slip velocity between fluid and

particles. Hence, for the particle mass flux normal to the
dense-flow surface we write

jn ¼ ��P
�c

�u

�w
�

1

�t
; ð11Þ

with the differences between the wall and free stream values
(in the sense of boundary-layer theory) �u of velocity and
�c of particle volume fraction. In the equation, �w is the
shear stress between the dense-flow and powder-snow
layers.We relate the Schmidt number to the size of the sus-
pended snow particles, dp.We use the empirical relation

�t ¼
dp
dref

ð12Þ

with a constant value for dref. This yields a mass flux
inversely proportional to the particle size, and roughly
accounts for the fact that large particles will not follow the
air motion closely and are more difficult to re-suspend.

5. NUMERICAL IMPLEMENTATIONAND
APPLICATION

To solve the Lagrangian dense-flow layer equations (2) and
(3), the snow mass is divided into small mass elements, typ-
ically 5000^20 000. The Voronoi cells (cf. Edelsbrunner,
1987, ch. 13) of the element centre points projected into the
xy-plane define the geometrical shape of the elements. The
Voronoi cells are constructed as a geometric dual of the
well-known Delaunay triangulation. Each Voronoi cell is
guaranteed to be convex and contains all points in space
closer to the corresponding centre point than to any other
element centre. A fixed mass is assigned to each moving ele-
ment (except for the mass transferred to the powder layer),
so that mass conservation is guaranteed.To satisfy Equation
(2), the flow depth is obtained by dividing the element mass
by density and the bottom area of the Voronoi cell. The
dense-flow equations are integrated over each cell, and the
resulting discretized equation system is solved for a given
time-step, using an explicit integration scheme.The bottom
wall shear for each element (Equation (1)) is computed with
the velocity at the end of the time-step, however, to stabilize
the numerical scheme. After that, the element centres are
moved according to the calculated velocities. The Voronoi
cells are recalculated at each time-step. To obtain a stable
solution, the time-step must be chosen so that the moved
centre points stay within their original Voronoi cell. (This
corresponds to requesting a Courant number below1in Eu-
lerian schemes.) Whereas Eulerian schemes use a fixed grid
covering the entire avalanche track from the release areas to
the deposition areas, the Lagrangian scheme has the advan-
tage that the cells are tied to the avalanchemass and no cells
are ‘‘wasted’’ for the area not covered by avalanchemass at a
given time-step.

To solve the three-dimensional powder-snow-layer equa-
tions (8^10) a standard computational fluid dynamics code
(FIRE/SWIFT, developed by AVL Advanced Simulation
Technologies; www.avl.com) was adopted. A fixed (Euler-
ian) grid formed by structured layers of hexahedral volume
elements above the terrain surface is used. After discretiza-
tion according to the finite-volume approach, which guar-
antees mass conservation, the equation system is iteratively
linearized and solved numerically for each time-step by ap-
plying the SIMPLE algorithm (Patankar, 1980). The SIM-
PLE scheme is fully implicit in time and hence is stable for
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arbitrarily large time-steps, unless the grid geometry is ex-
tremely distorted. For coupled real-scale simulations, a
time-step of 0.05 s for the dense-flow model and of 0.1s for
the powder model is typically applied, i.e. the dense-flow
model performs two sub-steps for one powder step.

Since calculation of the dense-flow part is quasi-two-di-
mensional, the central processing unit (CPU) time required
is mainly determined by the number of nodes in the three-
dimensional powder avalanche grid.Typically a fewhours of
CPUtime are required on a high-end personal computer. A
graphical user interface for importing digital terrain models
and specifying input data as well as for post-processing is
part of SAMOS. As input for a simulation the following
are needed:

a digital terrain model,

the outline of the release areas together with snow
depths and densities,

optionally outlines and properties of areas with in-
creased friction (vegetation, etc.),

the density of the flowing dense snow,

the characteristic size of the suspended snow particles,
and

numerical parameter as time-steps and spacing for the
dense-flow and powder-layer grids.

The same values for all the constants (� ¼ 16‡, � ¼ 35‡,
cdyn ¼ 0:022, dref ¼ 10^4m) in the model are used for all
simulation runs, and the user cannot change these values.
The friction values are in good agreement with those re-
ported in the Swiss Guidelines (Salm and others,1990).

6. RESULTS

Validation of avalanche simulation models is difficult
because high-quality field data are rare and, if available,
are often restricted to run-out distances and snow fracture
lines in the release area. For a simulation run, all the input
datamentioned abovemust be specified.While a good-qual-
ity terrain model is often available, data on the release areas
must be extrapolated from fracture lines. Specifically the

lower boundaries of the release areas are determined based
on estimation. For a validation, simulations of a few
observed recent catastrophic avalanche events in Austria
were conducted. Three different calculations are presented
briefly.

6.1. Madlein avalanche, Ischgl, AustrianTyrol, 1984

In 1984 the Madlein avalanche killed one person in the vil-
lage of Ischgl and caused considerable damage. Atotal snow
mass of 76 kt was released at an altitude of 800^1400m
above the village (the release areas were reconstructed from
photographs after the event: Hufnagl, 1988; Hagen, 1997).
Figure 3 shows the terrain model (contour lines all 10m)
and the release areas. Different snow heights were pre-
scribed for the different areas. Nearly half of the snow mass
was suspended during the event, according to the simula-
tion. Figure 4 shows the observed deposition area (bold line;
Hufnagl, 1988) and calculated deposition heights (shaded;
0^5m) of the dense-flow part, which agree fairly well. Ras-
ter lines are shown all 100m, contour lines all 10m. Figure 5

Fig. 3. Madlein 1984: terrain model and release areas.

Fig. 4. Madlein 1984: observed (bold line) and computed

dense-flow deposition (depth 0^5 m); terrain contour line in-

terval 10 m.

Fig. 5. Madlein 1984: observed (bold line) and computed

powder-snow impact area (pressure 0^15 kPa); terrain con-

tour line interval 10 m.
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shows the calculated maximal powder-snow impact pres-
sures 2.5m above ground (0^5 kPa) together with the
observed area of powder-snow impact (bold line; Hufnagl,
1988). The agreement is not so good as for the dense-flow
part. Differences may be due to simplifications in the model
and uncertainties in the initial conditions, but one also has
to remember that the observations, especially concerning
the powder-snow part, are of a qualitative rather than quan-
titative character.

6.2. Galtˇr, AustrianTyrol, 1999

In February 1999 a large dry avalanche killed 37 people in
the village of Galtˇr and caused considerable damage. The
local snow precipitation during this month amounted to
245mm (water value), which was 422% of the average
value in the preceding years.The release areawas estimated
by the Austrian Federal Service for Torrent and Avalanche
Control, Tyrol, based on observations. Including also the
meteorological data reported above, an estimated total
snow mass of 136 kt was released at an altitude of 300^
1300m above the village. Figure 6 shows the terrain model
(contour lines all 10 m) and the outline of the release areas
(again with different prescribed snow heights) used for the
simulation. The central part of the computed dense flow
crosses a road and hits the village, as was observed in reality.
The computed pressure at the position of actually destroyed
buildings is of the order of 100 kPa. Figure 7 shows in detail
the computed deposition depths of the dense-flow avalanche
mass (scaling 0^5m) together with the outline of the
observed deposition zone. The agreement is very satisfac-
tory. Deviations in the vicinity of buildings are to some
extent due to their very inaccurate representation in the ter-
rain model. Figure 8 shows computed maximal pressures
resulting from the powder-snow part of the avalanche at a
height of 2.4m above ground (scaling 0^25 kPa) together

with the observed zone of powder-snow impact. Computed
powder pressures are much lower than dense-flow pressures
both in simulation and in reality, but the area affected may
bemuch larger. According to the simulation,36 t of the total
136 kt of snow released was transferred to the powder-snow
part of the avalanche.

6.3. Evaluation of avalanche effects on a tunnel bridge

A specific application of the SAMOS model resulted from
the need to assess the effect of the powder part of an ava-
lanche on the statics of a tunnel bridge. The tunnel bridge
was constructed 40m above the bottom of the Gr˛ber ava-
lanche path to improve safety along the Bschlaber access
road in Au�erfern, Tyrol. The design of the bridge allowed
a maximum static load of 20 kPa.The simulation was done
as if the tunnel bridge had been absent. During the com-
puted impact phase the powder part attained a maximum
speed of 70m s^1with a maximum dynamic pressure (�u2)

Fig. 6. Galtˇr 1999: terrain model and release areas.

Fig. 7. Galtˇr 1999: computed (depth 0^5 m) and observed

deposition (observed deposition outline indicated by inner

bold line; outer bold line indicates observed powder-snow

impact area).

Fig. 8. Galtˇr 1999: computed (pressure 0^25 kPa) and

observed powder-snow impact area (observed deposition out-

line indicated by inner bold line; outer bold line indicates

observed powder-snow impact area).
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of 17.5 kPa at the bridge site, which was below the permissi-
ble limit. However, since no large avalanche has hit the
tunnel bridge yet, a validation was not possible.

7. CONCLUSION

The results obtained with the coupled dense-flow^powder-
snow model SAMOS show fairly good agreement with
observations, if one takes into account the uncertainties in
the input data and the simplicity of the transition model
used. The model is clearly superior to statistical or one-
dimensional centre-of-mass models for some uses since it
predicts avalanche paths and impact pressures in two and
three dimensions, respectively, and treats the dense-flow
and powder-snow layers as separate parts. It also allows the
assessment of protective constructions such as avalanche
dams or retaining walls, as these enter the calculation by
modifying boundary conditions (modified terrain model)
or initial conditions (reduced release areas). However, sim-
pler models also have their uses since their smaller resource
requirements (CPU time, memory) permit extensive
parameter studies, probabilistic modelling, etc. SAMOS is
used routinely at the Austrian Federal Service for Torrent
and Avalanche Control for hazard zoning and for designing
defence structures.

Themodel canbe improved by more detailed analysis of
the re-suspension zone between the dense-flow and powder-
snow layers. The current model does not account for all
physical effects (e.g. saltation or hindered settling). A model
for erosion of material directly from the resting snow cover
has recently been incorporated into SAMOS but needs to be
validated. Since a model can only be as good as the experi-
mental or field data it is validated with, the availability of
reliable and accurate data from laboratory experiments or
real-scale field measurements puts a severe constraint on
the development of more advanced avalanche-simulation
models.
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