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Abstract

Detecting and mitigating radio frequency interference (RFI) is critical for enabling and maximising the scientific output of radio telescopes.
The emergence of machine learning (ML) methods capable of handling large datasets has led to their application in radio astronomy,
particularly in RFI detection. Spiking neural networks (SNNs), inspired by biological systems, are well suited for processing spatio-temporal
data. This study introduces the first exploratory application of SNNs to an astronomical data processing task, specifically RFI detection. We
adapt the nearest latent neighbours (NLNs) algorithm and auto-encoder architecture proposed by previous authors to SNN execution by
direct ANN2SNN conversion, enabling simplified downstream RFI detection by sampling the naturally varying latent space from the internal
spiking neurons. Our subsequent evaluation aims to determine whether SNNs are viable for future RFI detection schemes. We evaluate
detection performance with the simulated HERA telescope and hand-labelled LOFAR observation dataset the original authors provided.
We additionally evaluate detection performance with a new MeerKAT-inspired simulation dataset that provides a technical challenge for
machine-learnt RFI detection methods. This dataset focuses on satellite-based RFI, an increasingly important class of RFI and is an additional
contribution. Our SNN approach remains competitive with the original NLN algorithm and AOFlagger in AUROC, AUPRC, and F1-scores
for the HERA dataset but exhibits difficulty in the LOFAR and Tabascal datasets. However, our method maintains this accuracy while
completely removing the compute and memory-intense latent sampling step found in NLN. This work demonstrates the viability of SNNs
as a promising avenue for ML-based RFI detection in radio telescopes by establishing a minimal performance baseline on traditional and
nascent satellite-based RFI sources and is the first work to our knowledge to apply SNNs in astronomy.
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1. Introduction radio data as flagged by AOFlagger produced by Offringa (2010).
This methodology significantly reduces the dependence on high-
quality flags in the training data, making it more suitable for
real-world deployment. Nonetheless, the NLN algorithm requires
sampling similar data patches from a pre-loaded test set, requir-
ing the availability of this data in memory during inference and
ensuring it represents the operational environment.

In parallel to the development of ANNS, spiking neural net-
works (SNNs), a computational model inspired by biological neu-
ron behaviours, are becoming increasingly practical and affordable
to simulate in standard computing hardware or implement in spe-
cialised neuromorphic processors for various ML tasks. Bouvier
et al. (2019) survey recent developments and the foundations of
SNNs. The spiking behaviour and time-varying nature of SNNs
make them particularly well suited for spatio-temporal data pro-
cessing, rendering them promising candidates for astronomical
data processing tasks. SNNs can be trained from scratch with var-
ious methods, including biologically inspired rules, adaptations of
back-propagation, or evolutionary algorithms. Additionally, SNNs
can be generated by converting pre-trained ANNs, exploiting the
advantages of ANN methodologies while leveraging the energy
efficiency and time-varying dynamics of SNNs at inference at the
cost of foregoing their unique capabilities during training. Yi et al.
(2023) provide an excellent review of such methods.
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Radio frequency interference (RFI) poses significant challenges
for current and future radio telescopes, with RFI sources’ num-
ber, variety, and overall disruption to observations increasing
(noa 2022). Consequently, detecting and mitigating RFI is criti-
cal for modern radio observatories. RFI detection algorithms can,
broadly speaking, be categorised as either analytical or machine
learning (ML)-based. Although ML methods have shown promise
in outperforming traditional approaches, they often require vast
amounts of labelled training data, obtained either through expen-
sive manual annotation or from traditional algorithms, as Akeret
et al. (2017) do. For these reasons and their relative computa-
tional expense, the practical deployment of ML-based RFI detec-
tion schemes remains limited, necessitating fine-tuning algorithm
parameters and manual data annotations for optimal perfor-
mance. However, the ability to learn from the abundance of avail-
able interferometric data is tantalising, especially in an increas-
ingly crowded radio background.

The nearest latent neighbours (NLNs) algorithm proposed
by Mesarcik et al. (2022a) introduces a novel approach to RFI
detection by framing it as a downstream anomaly detection task
based on a generative model trained to represent only noiseless
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(SNLNs) method. This approach involves training a generative
model using the same methodology as the original NLN scheme
and then converting the network into an SNN. Instead of search-
ing for latent-neighbours from available data, SNLN averages a
set of outputs from the SNN auto-encoder after presenting the
network with a single input patch for multiple time steps. This
process effectively samples the internal latent space, which exhibits
stochastic variation over time, exploiting the spiking behaviour to
generate its own latent neighbours. Our method retains the oper-
ational benefits of the original NLN approach in terms of RFI
detection compared to supervised ANN methods while also reduc-
ing the amount of data required to evaluate each inference patch
to the specific patch under consideration.

This study presents four contributions to (radio) astronomy
and RFI detection. First, we introduce SNNs to the domain of
astronomy for the first time, opening up new avenues for lever-
aging this biologically inspired computational model in data pro-
cessing tasks for astronomical data analysis. Second, we propose a
novel RFI detection algorithm, named SNLNs, which builds upon
the unsupervised approach of the NLN method. We train an ANN
model suitable for the NLN method, convert it to an SNN and
modify the downstream inference task to use SNNs’ time-varying
nature. Thirdly, we introduce a new RFI detection dataset based
on the MeerKAT telescope produced by the Tabascal simulation
package written by Finlay et al. (2023) focussing on satellite-based
RFL Finally, we evaluate the effectiveness of our SNLN approach
compared to the original artificial neural network (ANN) method,
providing valuable insights into the detection performance trade-
offs and highlighting the competitive nature of our SNN-based
approach. Collectively, these contributions showcase the promise
of SNNs in improving RFI detection in radio telescopes and under-
score their potential as a valuable tool for future astronomical data
processing.

Section 2 briefly discusses other RFI detection schemes, more
thoroughly introduces SNNs, discusses general anomaly detec-
tion using SNNs and discusses auto-encoder architectures with
SNNs. Section 3 explains the ANN2SNN conversion and novel
SNLN algorithm in more detail. Section 4 discusses the data
used in training and evaluation and introduces our new Tabascal
dataset. Section 5 presents the results of our experiments, and we
present our conclusions and several suggestions for future work in
Section 6.

2. Related work

This section discusses the application of neural networks to RFI
detection. Astronomy is a good target for deep learning tech-
niques due to the abundance of available data. Specifically, neural
networks have been used for galaxy detection, classification, and
transient detection. RFI detection can be viewed as a classification
task on pixels in time-frequency spectrograms, aiming to output
a boolean mask of contaminated pixels, the same as traditional
algorithms output. This task, more generally known as seman-
tic segmentation, is also applied to other domains like medical
imaging.

2.1. RFIdetection with neural networks

The most popular base architecture for supervised RFI detec-
tion with neural networks is UNet, a neural network designed
for image segmentation. Most works modify the original network
design, improvements to the training routine, or both such as Yang
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etal. (2020). As is the case in all ML works, data is central to overall
performance. Many works use simulated data for training, pro-
viding high confidence in the labels but limiting the model to the
constraints of the simulator’s model. On the other hand, works
using real data face a choice of using a traditional algorithm to
generate training flags or using expertly labelled data. Using tra-
ditional algorithms to generate training masks on simulated or
real data is straightforward. It yields abundant training data but
constrains the ANN to learn from the behaviour of the traditional
algorithm. Using expertly labelled data, arguably the most accu-
rate by definition, is expensive, scarce, and, therefore, strains the
training scheme. An alternate strategy is to train on simulated data
and then perform transfer learning with small amounts of expertly
labelled real data, aiming to combine the benefits of all worlds
(e.g. Vafaei Sadr et al. 2020) often termed Sim2Real. This Sim2Real
method often struggles with a reality gap between the simulation
behaviours and the real world, adding an additional challenge.

Mesarcik et al. (2022a) introduce a particularly interesting
approach, where a traditional flagging algorithm generates flags
with many false positives to select uncontaminated patches with
high certainty, training an auto-encoder with these uncontami-
nated patches, then using this model to perform RFI detection as a
downstream inference task, transforming the task from a seman-
tic segmentation problem into an anomaly detection problem.
By adopting this method, an abundance of training data is avail-
able, agnostic to the noise sources in the real data. This approach
serves as the basis for our SNN conversion. However, the anomaly
detection routine, which involves searching through latent rep-
resentations of other examples, is iterated upon with our SNN
approach while retaining the appealing innovations introduced by
this method.

Developing a general-purpose model capable of producing RFI
masks for any telescope across a wide range of frequencies and
configurations remains a grand challenge in applying ML and
NN to RFI detection. Part of the enduring appeal of using tradi-
tional algorithmic approaches is their flexibility. Despite extensive
efforts, currently, no method, traditional or NN-based, achieves
an Fl-score above 0.6 on a real, representative dataset (Mesarcik
et al. 2022a). As we explore and develop new approaches, achiev-
ing better performance on real-world data becomes a crucial
focus in advancing RFI detection techniques using ML and neural
networks in radio astronomy.

2.2. Spiking Neural Networks

SNNs are ANNs that closely mimic the behaviour of biological
neurons, enabling efficient and accurate processing of complex
data sets. Unlike traditional ANNs, which use continuous activa-
tion functions, SNNs use discrete events called spikes. Incoming
spikes contribute to a neuron’s membrane potential, and when
the potential reaches a threshold, the neuron emits a spike. The
precise mathematical behaviours of how the membrane potential
increases with spike arrivals and decays over time hold much of
the basis for SNNs and contemporary ANNs.

The leaky-integrate-and-fire (LiF) neuron is a simple yet accu-
rate model of this biological process, resembling a low-pass filter
circuit with a resistor R and capacitor C. The following RC circuit
equation models the dynamics of the passive membrane potential
for a single neuron subject to an input current I:

du(t) B
e —U(t) + Lin(£)R, (1)
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where T = RC is a fixed time constant. Abbott & Dayan (2001) pro-
vide a comprehensive derivation of spiking neuron dynamics and
their relationship to ANN.

SNN§’ close resemblance to biological neurons allows them to
excel at tasks challenging for other neural network types as Deng
et al. (2020) show, particularly real-time spatio-temporal data pro-
cessing. It is precisely the time-varying nature of spiking neurons
that contributes to their ability to capture time-varying details of
ingested data. This spiking behaviour enables various information
encoding techniques based on the timings of individual spikes or
patterns of spikes, unlike artificial neurons in most contemporary
deep learning approaches that operate only on an equivalent to
rate-based encoding.

It is worth noting that these two neural network models
are equivalent, with ANNs better suited for implementation on
existing computing hardware. The time-varying nature of SNNs
requires specialised hardware to realise efficiently but consumes
orders of magnitude less energy in the process, Schuman et al.
(2022) give a wide and long-range view of a future for neuro-
morphic computing. The equivalence rooted in the derivation of
sigmoidal neurons found in ANNs from spiking neurons permits
the conversion of trained ANNs back to an SNN as Rueckauer et al.
(2016) summarise.

The development of neuromorphic hardware and SNNs
has occurred alongside contemporary deep learning and ANN
research. James et al. (2017) summarises the main developments
throughout the last century. The increasing importance energy
efficiency plays in modern computing reignites more widespread
interest in SNNs. While energy improvements without rigorous
benchmarking on real hardware are difficult, Lemaire et al. (2023)
provide an analytical approach to estimate the energy use of equiv-
alently sized ANNs and SNNs and show an improvement of six to
eight times greater efficiency for SNNs on 45nm CMOS hardware.

The advancement in neuromorphic hardware and SNNs holds
promise for tackling energy-intensive tasks while preserving the
advantages of spiking behaviours inspired by biological neurons.
Neuromorphic hardware combined with a suitable SNN-based
technique would enable real-time and adaptable RFI detection,
with orders of magnitude less power consumption than contem-
porary ANN and classical methods.

2.3. Anomaly detection with SNNs

Anomaly detection is a problem often encountered in time-
varying domains. As such, there are several works exploring
anomaly detection with SNNs. Notably, many anomaly detec-
tion works employing SNNs exist in sensor-based environments
and on one-dimensional time-varying data streams. In health-
care, Bauer et al. (2019) employ a recurrent SNN and custom
neuromorphic processor to preprocess electrocardiograms for
detecting anomalous behaviour. In industrial settings, Demertzis
et al. (2017) implement one-class anomaly detection with SNNs
for industrial control systems, while Demertzis et al. (2020) pro-
pose a semi-supervised one-class anomaly detection scheme using
SNNs in industrial environments. Dennler et al. (2021) design
neuromorphic hardware for real-time detection of anomalous
vibrations, applicable to various industrial settings.

The conversion of ANNs to SNNs for anomaly detection is also
explored. Jaoudi et al. (2020) convert a traditional auto-encoder
to an SNN to detect in-vehicle cyberattacks, achieving compa-
rable performance to the original converted ANN in analysing
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one-dimensional, time-varying data. Paul et al. (2022) convert
a one-dimensional convolutional neural network to an SNN for
anomaly detection in the breathing patterns of newborn infants.

Several studies present hardware implementations for real-
time anomaly detection using SNNs. Chen & Qiu (2017) propose
a component library and design method for implementing real-
time anomaly detection on IBM’s TrueNorth neuromorphic chip.
Ronchini et al. (2022) develop wearable neuromorphic hardware
for detecting anomalies in biological measurements in healthcare
settings.

Other notable works include Chen et al. (2018) presenting an
anomaly recognition and detection framework for incremental
online learning from data streams, Stratton et al. (2020) perform-
ing anomaly detection on text streams with SNNs, Maciag et al.
(2021) providing an online evolving SNN method for detecting
anomalies in streaming data without supervision, Phusalculkajom
etal. (2022) using SNNs to generate fuzzy logic intervals for detect-
ing anomalies in rail networks, and Baessler et al. (2022) proposing
a multivariate anomaly detection scheme based on SNN.

Our approach uniquely sits as a conversion of an existing
auto-encoder performing anomaly detection on two-dimensional
spectrograms.

2.4. Auto-encoders with SNNs

Auto-encoders are a neural network architecture designed to
extract signals from high-dimensional feature space without
supervision. The encoder compresses raw input data into a latent
space, and the decoder reconstructs the original input data from
this latent representation. Training an auto-encoder minimises the
difference between the reconstruction and input data, enabling it
to learn an efficient representation of the input data.

Efforts have been made to craft SNN-based auto-encoders
to achieve energy-efficient and sparse latent representations. For
instance, Alom & Taha (2017) trains an auto-encoder for detect-
ing anomalous network packets, converting it to an SNN using
discrete vector factorisation, which is then simulated and executed
on IBM TrueNorth hardware. Yin & Gelenbe (2019) combine an
auto-encoder architecture with a spiking random neural network.
Their approach performs well on typical image datasets. Roy et al.
(2019) develop a spiking auto-encoder to synthesise audio inputs
into image outputs. Stratton et al. (2020) perform anomaly detec-
tion on text streams using an SNN auto-encoder. Kamata et al.
(2022) present a fully spiking variational auto-encoder, enabling
variational learning through random sampling of the latent space.
Stewart et al. (2022) create a hybrid SNN auto-encoder specialised
in encoding event-based data from vision sensors.

In our work, we leverage the time-varying nature of the latent
state built by an SNN during inference to simplify the downstream
anomaly detection scheme.

3. Methods

In Summary, we train an auto-encoder in the same way as appli-
cable for the NLN algorithm, convert this trained ANN to an SNN
and modify the downstream inference task. The modified infer-
ence task is more computationally efficient than the original NLN
owing to the unique time-varying property of SNNs. We adopt the
same problem formulation for fair and reasonable comparison as
Mesarcik et al. (2022a). We re-implemented the model, training
loop, and evaluation routines in PyTorch, replicating the original
study. To promote transparency and accessibility, we make our
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code, evaluation datasets, and all data used in the figures presented
in this paper available online. Our analysis aims to provide a mini-
mal detection performance baseline against which future methods
can be compared. This decision guides us in selecting datasets and
tests for which performance metrics are known in the case of the
HERA and LOFAR datasets or providing a simple yet challenging
test in the case of our Tabascal dataset. We do not assess compu-
tational performance in this work as we aim to focus on exploring
the viability of SNNs for RFI detection.

3.1. Conversion to SNN

Several SNN simulation and training libraries exist, and we
selected SpikingJelly by Fang et al. (2020) due to its robust GPU
acceleration and straightforward ANN-to-SNN (ANN2SNN) con-
version routine. The conversion algorithm replaces neuron layers
with spiking neurons and scales existing weights to voltage values
suitable for the LiF neuron implementation. Successful conver-
sion requires using ReLU activation functions and the absence of
MaxPool layers, both of which are true in the original network
architecture.

3.2. Network architecture

Our network architecture is a two-layer strided auto-encoder,
as in the original work. We include optional batch-norm and
dropout layers after each convolutional layer for regularisation.
Regularisation is an additional parameter.

3.3. Training strategy and hyperparameter optimisation

We diverge from the original training strategy Mesarcik et al.
(2022a) deploy by performing a hyperparameter search individ-
ually for each dataset. We used Optuna written by Akiba et al.
(2019) for hyperparameter optimisation; we specifically use the
default tree-structured Parzan estimation algorithm to intelli-
gently search through potential options. The hyperparameter opti-
misation generates hyperparameters comparable to the original
work with adjustments to the number of training epochs. We opti-
mise hyperparameters to yield the highest F1-score; we look for the
best-performing auto-encoder, end to end to ensure the network
is informative for latent neighbour searching. Table 1 displays our
final hyperparameters. The requirement for larger learning rates
and epochs for the LOFAR dataset reflects the increased challenge
of detecting RFI in real data. Determining that the number of
neighbours is almost identical may suggest that the size of patches
sent through the auto-encoder determines this attribute.

3.4. Spiking NLN

We encourage readers to refer to Mesarcik et al. (2022a) for an
authoritative explanation. However, the original NLN algorithm
operates as follows:

e A set of test patches are encoded into latent space.

e Additionally, the set of training patches is additionally
encoded into latent space.

e For each latent test patch, an L2 norm search is performed
against the latent training patches to find the k most similar.

e The test patches and training patches are decoded.
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Table 1. Results of hyperparameter search. The number of trials conducted for
each dataset is listed in parentheses next to the dataset name. LOFAR optimisa-
tion is limited due to extensive training length.

HERA  LOFAR Tabascal Parameter
Attribute (256) (32) (256) range
Latent dimension 64 64 64 8,16,32,64
Batch size 32 128 32 16, 32, 64,128
Epochs 17 100 75 2,128
Auto-encoding learning rate  1.59e-3  le-4 2.00e-4 le-4-1e-2
Generator learning rate 1.77e-3 le-4 7.76e-4 le-4-1e-2
Discriminator learning rate 1.68e-4 le-4 6.87e-4 le-4-1e-2
Optimiser Adam  Adam Adam Adam, RMSprop,

SGD

Neighbours 21 20 20 1-25
Num filters 16 32 64 16, 32,64
Regularise network False True True True, False

e The k most similar test patches are averaged and subtracted
from the test.

e The remaining pixel values in the test patches are binarised to
obtain a noise mask.

In contrast, our SNLN algorithm utilises the time-varying
nature of SNN execution to build implicitly similar latent neigh-
bours. SNLN operates by:

e Presenting each test patch to the SNN auto-encoder for T
timesteps

e The final k output frames from the auto-encoder represent
the decoded values of the k internal latent representations.

e Average the k output frames and subtract the result from
the original test patch, and the remaining pixel values are
binarised to obtain a noise mask.

The SNLN method is notably simpler than the original NLN as
it relies solely on the test data of interest at inference time. This is
possible due to the time-varying nature of SNN execution. By skip-
ping the expensive latent neighbour search found in the original
NLN, the SNLN requires a constant, rather than variable, quan-
tity of computing resources regardless of the quantity flagged data,
addressing the main weakness known of the original NLN.

4. Data selection

Existing ML approaches to RFI detection typically rely on abun-
dant high-quality labelled data. By transforming the RFI detection
problem from a semantic segmentation problem to an anomaly
detection problem (Mesarcik et al. 2022a) significantly reduces the
need for large-volumes of high-quality labelled data. Additionally,
inconsistency with test data is a common issue in comparing RFI
detection methods. To ensure a fair comparison, we utilise the
same datasets prepared by Mesarcik et al. (2022b), specifically the
Hydrogen Epoch of Reionisation Array simulations (DeBoer et al.
2017) and hand-labelled LOFAR observations. The only modi-
fication required to adapt the datasets for use with PyTorch is
changing the channel containing pixel values from the last channel
to the first channel; otherwise, our dataset is prepared in precisely
the same manner as the original work.
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Table 2. Description of each dataset used for training and testing. We reproduce
values for the HERA and LOFAR datasets from Mesarcik et al. (2022a).

Dataset # Baselines # Training samples # Test samples % RFI
HERA 28 420 140 2.76
LOFAR 2775 7500 109 1.26
Tabascal 512 409 103 12.23

4.1. Tabascal

We additionally create and publish openly a new dataset generated
using the Tabascal simulator written by Finlay et al. (2023) and
emulating the MeerKAT telescope. The main focus of this dataset
is to provide a large-array mid-frequency dataset that includes
moving low-orbit satellite RFI sources, which are expected to
become increasingly troublesome in the coming years. The major-
ity of simulation parameters come from Finlay et al. (2023) which
are in turn derived from MeerKAT documentation. We simulate
for 512, two second integration steps over 512 frequency channels
from 1.227 to 1.334 GHz of 209 KHz width, average the visibil-
ity amplitude over 16 samples per integration and finally sample
512 baselines to produce 512 x 512 x 512 x 1 datasets. The result-
ing spectrograms contain RFI localised in narrow frequency bands
but present for the entire simulation duration. While this dataset is
not truly indicative of practical observation, and in practice, these
frequencies may be removed entirely without the need for more
sophisticated methods, it creates a difficult task for ML methods
to distinguish the fine boundary between the contaminated and
uncontaminated region precisely.

Table 2 contains the size of each dataset and the proportion of
RFI contamination.

Tabascal’s architecture produces sky and RFI visibilities sepa-
rately, which we then use to produce input and label data. Access
to machine-precision ground truth in the RFI visibilities intro-
duces an interesting problem; the vast majority of affected pixels
are perturbed by incredibly small values close to zero. Therefore,
we can threshold the ground-truth data to provide the same
dataset at several difficulty levels. Our uploaded datasets con-
tain the original RFI visibility data, masks without thresholds,
with thresholds of 0, 1, 2, 4, 8, 16 and finally thresholded above
the median value of the sky visibilities, as a rough analogue of
human perception. We use a simulation containing two satellite
sources similar to GPS and GLONASS satellites and three static
ground-based RFI sources.

The resulting dataset exhibits RFI strongly localised in time but
over all frequencies and thus provides a challenge for the NLN
method, which will never be exposed to heavily contaminated data
during training.

5. Results

We compare the results of our implementation of NLN and our
new algorithm SNLN on simulated HERA data, hand-labelled
LOFAR data and Tabascal-simulated MeerKAT data. We recreate
the AOFlagger threshold and out-of-distribution (OOD) experi-
ments found in the original work for the HERA dataset. For the
LOFAR and Tabascal datasets, we report results from repeat trials
containing all available data. To assess the overall performance of
our algorithms on the downstream RFI detection task, we employ
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three common metrics: area under the receiver operating char-
acteristic (AUROC), area under precision-recall curve (AUPRC),
and F1-score.

AUROC measures the model’s ability to distinguish between
positive and negative classes by varying the classification thresh-
old. A higher AUROC indicates better discrimination between the
two classes. However, in our case, the AUROC score is heavily
influenced by the behaviour on uncontaminated pixels.

AUPRC is particularly relevant in our task, considering the
imbalanced nature of RFI detection, where RFI examples are rel-
atively infrequent compared to the rest of the data. The AUPRC
score evaluates the trade-off between precision (the proportion
of correctly classified positive examples out of all positively clas-
sified examples) and recall (the true positive rate). It quantifies the
model’s ability to identify RFI while minimising false positives cor-
rectly. Additionally, the minimum AUPRC score is proportional
to the number of positive examples in a dataset; datasets with
less RFI will have a lower acceptable AUPRC score, reflecting the
challenges of imbalanced data distributions.

The Fl-score is the harmonic mean of precision and recall,
providing a balanced measure of the model’s overall performance.
By considering both precision and recall, the F1-score helps us to
evaluate how well the model achieves a balance between correctly
identifying RFI and minimising false positives, thereby provid-
ing a comprehensive assessment of its efficacy in RFI detection
tasks.

The AOFlagger strategies used in performance comparisons
are available online* and are based on standard example strategy
files. The strategy comprises a highpass filter and a transient fil-
ter, parameterised with a single threshold variable. While more
complex features are not present, we include a comparison with
AOFlagger to show the adaptability of ML-based methods and do
not provide a comprehensive benchmark here.

5.1. HERA

Fig. 1 illustrates the performance comparison between the ANN-
based NLN and our converted SNN-based SNLN approaches over
a range of AOFlagger thresholds, considering all available noise
sources. This threshold value affects the AOFlagger strategy to
define the patches presented to the auto-encoder during train-
ing. A higher threshold will under-flag the original data, allowing
RFI-contaminated patches into the auto-encoder’s training data.
A lower threshold will over-flag the data, limiting the variabil-
ity in patches exposed to the auto-encoder. The results indicate
that a threshold value of 10 yields the best performance, consis-
tent with the findings of the original work. Surprisingly, our SNLN
approach consistently outperforms the NLN regarding F1-scores
for all but the largest thresholds, despite the common experi-
ence that conversion from ANN to SNN may reduce accuracy
(Bouvier et al. 2019) However, in our case, the binarisation of the
auto-encoder output appears to enhance resilience.

Table 3 presents the performance metrics of the NLN and
SNLN methods on HERA data, considering all noise sources
with an AOFlagger threshold of 10. The table includes AUROC,
AUPRC, and Fl1-score. These results demonstrate that the SNLN
conversion does not impact overall performance significantly.

*https://github.com/mesarcik/RFI-NLN.
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Figure 1. Comparison of NLN and SNLN methods on HERA data with all available noise sources. The AOFlagger threshold sets the baseline amplitude used to determine noise. The
SNLN example used runs for 256 inference steps averaging over the last 128. Both the NLN and SNLN methods outperform AOFlagger at a low threshold, with NLN outperforming
AOFlagger in all metrics at all thresholds and SNLN outperforming NLN in F1-scores in most cases and AUPRC in some cases. This demonstrates that SNLN retains the NLN’s

principal benefit: the ability to train and perform on over-flagged data.

Table 3. Performance comparison between NLN and SNLN methods on HERA
data set with AOFlagger threshold of 10. Best scores in bold. The first number in
SNLN entries indicates the number of inference timesteps, and the second is the
number of averaged inference frames.

Model AUROC AUPRC Fl-score
AOFlagger 0.973 0.880 0.873
NLN 0.983 4-9.32e-4 0.940 +=6.65e-3 0.939 +-1.57e-2

SNLN-256-128
SNLN-256-256
SNLN-512-128
SNLN-512-256

0.944 +-2.15e-3
0.944 +-2.31e-3
0.944 +-2.23e-3
0.944 +-2.27e-3

0.920 +-3.87e-3
0.919 +-4.3%-3
0.920 +-3.71e-3
0.920 +-4.02e-3

0.952 +-3.29¢-3
0.952 +-3.45e-3
0.952 +-3.23e-3
0.953 +- 2.87e-3

One of the original advantages of NLN is its agnostic nature
towards the type of noise present. In Fig. 2, we showcase the
AUROC, AUPRC, and F1-scores for both NLN and SNLN meth-
ods in detecting noise from a class of RFI unseen during testing.
Remarkably, our SNLN approach demonstrates strong robust-
ness to the conversion process, producing results comparable to
those reported in the original paper. Moreover, the low variance
in performance observed across 10 trials for both methods in all
tests further confirms the reliability and consistency of NLN and
our SNLN algorithm. For AOFlagger, the results indicate per-
formance for each RFI morphology in isolation. The additional
skewed imbalance exacerbates any flagging weakness exhibited
by the lower AUPRC and F1-scores compared to those listed in
Table 3 and Fig. 1.

Table 3 also displays the variations in AUROC, AUPRC, and
Fl-scores as we manipulate the inference time (T € {256, 512})
and sample size (k € {128,256}). We convert an original ANN
model, trained with all noise and an AOFlagger threshold of 10
to choose uncontaminated patches in each trial. The results reveal
that performance remains mostly consistent regardless of the cho-
sen inference time and sample size beyond a specific threshold.
This is consistent with the assumption that the inference time
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should be sufficiently long to propagate information across the
spiking neurons.

Fig. 3 shows an example case from the HERA dataset. It is clear
that both the NLN and SNLN methods can produce acceptable
masks.

5.2. LOFAR

The LOFAR dataset is significantly more affected by RFI than
the HERA dataset, and moreover, the RFI present is real and
not simulated. Table 4 presents the performance metrics of the
NLN and SNLN methods on LOFAR data, considering all noise
sources with an AOFlagger threshold of 10. The table includes
AUROC, AUPRC, and F1-score. While the NLN method outper-
forms AOFlagger in AUROC, we struggle to reach the same level
of performance Mesarcik et al. (2022a) present. Moreover, conver-
sion from ANN2SNN incurs a more significant performance drop
that persists regardless of inference and averaging time.

Fig. 4 shows an example case from the LOFAR dataset. The
more complex background environment and the presence of more
subtle RFI provide a more challenge, and here we see a discrepancy
between the NLN and SNLN approaches where SNLN, on account
of the multiple time-step inference, produces less sharply defined
masks.

5.3. Tabascal

The Tabascal dataset exhibits RFI clustered in time but over all
frequencies; as such, when flagged with AOFlagger to generate
training patches, the auto-encoder is never presented patches bor-
dering on this region. Table 5 presents the performance metrics
of the NLN and SNLN methods on Tabascal data, considering
all noise sources with an AOFlagger threshold of 10. The table
includes AUROC, AUPRC, and F1-score. In a case similar to that
seen with LOFAR, NLN outperforms AOFlagger in AUROC but
underperforms with respect to AUPRC and F1-score. However,
the discrepancy is less dramatic and the conversion to SNN causes
less degradation in performance.
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Figure 2. Out-of-distribution (OOD) performance comparison between AOFlagger and
the NLN and SNLN methods. For each RFI morphology listed, all examples of that noise
are withheld from the training data and exclusively present in the testing set. This test
demonstrates the ability of NLN and SNLN to flag RFI that is completely unknown to the
auto-encoder. The SNLN example used runs for 256 inference steps averaging over the
last 128. Broad-band transient RFI is modelled on events like lighting, present across
allfrequencies butisolated in time. Broad-band continuous RFl is modelled on satellite
communications present across a wide range of contiguous frequencies and isolated
in time. Narrow-band burst RFI is modelled on ground station communication that is
isolated in frequency but present over all time. Blips are isolated in frequency and time
to asingleimpulse. See Mesarcik et al. (2022a) for for further details on the RFl included
in the HERA dataset.

Fig. 5 shows an example case from the Tabascal dataset.
The RFI is localised to a specific frequency and knowledge of
the precise ground-truth mask challenges the NLN and SNLN
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Table 4. Performance comparison between NLN and SNLN methods on LOFAR
data set with AOFlagger threshold of 10. Best scores in bold. The first number
in SNLN entries indicates the number of inference timesteps, and the second is
the number of averaged inference frames. The AOFlagger results are taken from

Mesarcik et al. (2022a).

Model AUROC AUPRC F1l-score
AOFlagger 0.788 0.572 0.570
NLN 0.818 +-5.09e-3 0.414 4+-2.97e-3 0.480 +-6.83e-3

SNLN-256-128
SNLN-256-256
SNLN-512-128
SNLN-512-256

0.608 +-3.81e-2
0.607 +-3.89e-2
0.609 +- 3.70e-2
0.608 +-3.73e-2

0.320 +-2.30e-2
0.319 +-2.36e-2
0.321 +-2.25e-2
0.321 +-2.25e-2

0.407 +-2.36e-2
0.406 +-2.41e-2
0.408 +-2.29¢-2
0.408 +-2.30e-2

Table 5. Performance comparison between NLN and SNLN methods on Tabascal
data set with AOFlagger threshold of 10. Best scores in bold. The first number in
SNLN entries indicates the number of inference timesteps, and the second is the
number of averaged inference frames.

Model AUROC AUPRC Fl-score
AOFlagger 0.903 0.896 0.878
NLN 0.941 +- 2.20e-3 0.855 +=15.24e-3 0.830 +-4.47e-3

SNLN-256-128
SNLN-256-256
SNLN-512-128
SNLN-512-256

0.739 +-2.05e-2
0.743 +- 1.4%e-2
0.754 +-2.45e-2
0.750 +-2.07e-2

0.711 +-1.98e-2
0.712 +-1.37e-2
0.726 +-2.19e-2
0.722 +-1.98e-2

0.734 +-1.58e-2
0.735 +-1.11e-2
0.749 +- 1.64e-2
0.747 +- 1.68e-2

approaches. Similarly to the LOFAR dataset, the SNLN produces
less sharply defined masks.

6. Conclusions

RFI detection is crucial to radio telescopes. Currently, state-
of-the-art ML solutions treat RFI detection as a supervised
semantic segmentation task. Meanwhile, real observatories utilise
algorithm-based flagging solutions. Mesarcik et al. (2022a) pro-
posed transforming the RFI detection problem into an anomaly
detection one, introducing the NLN algorithm to address the
lack of abundant high-quality labelled datasets. However, the
NLN approach requires holding enough latent space samples to
represent the problem domain accurately. This paper extended
their approach by converting the ANN-based auto-encoder to an
SNN. This conversion enables us to create a simpler downstream
RFI detection scheme, SNLN, which utilises the inherently time-
varying nature of SNN execution to generate latent neighbours.
Our SNLN approach requires minimal data during inference
time while maintaining comparable overall performance in the
simpler HERA environment. Given that ANN2SNN conversion
is the most straightforward way to approach using SNNs, our
results provide a benchmark for SNN performance and demon-
strate that SNNs offer promising potential for exploring ML-based
approaches to RFI detection. It is unlikely for an SNN built by con-
verting a trained ANN ever to exceed the original in performance.
However, by providing the simplest possible demonstration of
SNNs detecting RFI we lay a foundation for future work based
on training fully spiking networks from scratch. Additionally, this
work partially replicates the original NLN paper, providing the
foundation for future benchmarks.
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Figure 3. Example HERA Spectrogram, the original mask, the output mask of the NLN algorithm and the output mask of the SNLN algorithm.

(a) (b)

500

500

Frequency Bins
&
3

Frequency Bins

o
S
8

200 300
Time [s]

Original spectrum

100 200 300 400
Time [s]

Expert-labelled annotation

(c) (d)

500

Frequency Bins
Frequency Bins

200 300
Time [s]

NLN mask

200 300
Time [s]

SNLN mask

Figure 4. Example LOFAR Spectrogram, the original mask, the output mask of the NLN algorithm and the output mask of the SNLN algorithm.

(a) (b)

500

500

Frequency Bins
Frequency Bins

b
300
Time [s]

400 500 0 100 200 300 400 500
Time [s]

Ground-truth annotation

100 200

Original spectrum

(c) (d)

500

Frequency Bins
Frequency Bins

i H
100 200 300 400 500 0 100 200 300 400 500

Time [s]

NLN mask

Time [s]

SNLN mask

Figure 5. Example Tabascal Spectrogram, the original mask, the output mask of the NLN algorithm and the output mask of the SNLN algorithm.

6.1. Future work

We envisage future work to evaluate the practical performance
characteristics of this SNN-based RFI detection scheme in terms
of energy usage, ideally on physical neuromorphic hardware and
to create new SNN-based RFI detection schemes trained from
scratch. Fully spiking networks trained from scratch will exploit
the time-varying nature of SNNs more and permit more sophis-
ticated input encodings rather than being limited to rate-based
encoding, as is the case when doing any ANN2SNN conver-
sion. Moreover, this conversion introduces an additional time axis
rather than exploiting the present time variance. Leveraging input
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encodings bespoke to SNNs, we believe, is key to realising the
energy efficiency and performance SNNs promise.

Moreover, in addition to methodological expansions in the
application of SNNs, we anticipate future performance analysis on
the RFI environments of Australian facilities such as ASKAP, the
MWA and eventually SKA-Low. Such analysis should go beyond
the baseline level of comparison seen in this article and move
towards a more robust comparison and potential fusion with
operational RFI flagging schemes.

Finally, to our knowledge, this work marks the first application
of SNNs to any data processing or scientific task in Astronomy; we
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hope this technology finds use in more parts of the spatiotemporal
world, as seen in the radio sky.
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