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Abstract

Exact lower bounds on the exponential moments of min(y, X) and X 1{X < y} are
provided given the first two moments of a random variable X. These bounds are useful
in work on large deviation probabilities and nonuniform Berry—Esseen bounds, when the
Cramér tilt transform may be employed. Asymptotic properties of these lower bounds
are presented. Comparative advantages of the so-called Winsorization min(y, X) over
the truncation X 1{X < y} are demonstrated. An application to option pricing is given.
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1. Introduction

Cramér’s tilt transform of a random variable (RV) X is an RV X, such that

E f(X)eX

Ef(Xo) =~

(1.1
for all nonnegative Borel functions f, where c is areal parameter. This transform is an important
tool in the theory of large deviation probabilities P(X > x), where x > 0 is a large number; then
the appropriate value of the parameter c is positive. As, e.g. in the proof of [23, Theorem 2.3],
one often needs to bound from above the f-moment E f(X.) of the c-tilted RV X, for a
nonnegative f—and, therefore, we need to bound the denominator E e“X in (1.1) from below.
If E X = 0, this can be done quite easily: by Jensen’s inequality, Ee‘X > 1.

A usual problem with this approach occurs when the right tail of X is too heavy for E e¢X
to be finite and, hence, for the transform to make sense. The standard cure in such situations is
to truncate the RV X, say to T, (X) := X 1{X < y} for some real number y > 0, where 1{-} is
the indicator function. Then, of course, Eev®) < oo for any ¢ > 0. However, now instead
of the condition E X = 0 we have E 7},(X) < 0, and the inequality E ¢ (X > 1 (in place of
EeX > 1) will not hold in general. In fact, E eTy(X) can be however small for some ¢ > 0,
even if one imposes a restriction such as E X 2 <o2fora given real o > 0; see the discussion
in Subsection 2.3.

A much better way to cut off the right tail of the distribution of X is the so-called Winsoriza-
tion. That is, instead of the truncation 7y (X), we deal with Wy (X) := y A X = min(y, X).
Clearly, Wy (X) > Ty (X) and, hence, E eWyX) > EeTy(X) for ¢ > 0. Moreover, it turns out
that, for any given real o > 0 and y > 0, the infimum of E eWy(X) gver all ¢ > 0 and all RVs
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X with E X > 0 and E X? < o2 is strictly positive; furthermore, it decreases slowly from 1 to
0 as o increases from 0 to co. These properties of Winsorization make it a clear winner over
truncation in many relevant situations.

2. Results
Take any real o > 0. Let X denote any RV with

EX>0 and EX?<o?2.

For any positive real a and b, let X, ; stand for any zero-mean RV with values in the two-
point set {—a, b}; thus, the distribution of X, j is uniquely determined by a and b. Note also
that E X2 , = ab.

2.1. Winsorization
Consider the Winsorization function defined by the formula
Wkx):=1Ax. 2.1
The following proposition allows us to define the terms in which to express the exact lower
bounds on E e X)
Proposition 2.1. Take any real ¢ > 0.

(i) Forany real a, let
2(et9¢ — 1) —ac

b;c = E 2.2)
Then there exists a unique a. s such that
{aco} =1{a > 0:ab} . =0} (23)
(ii) The expression
. . a 2a+1)(a—o?)
E](a) = Z](G,O') = lno‘_z_az—i——o'z (24)

changes sign exactly once, from negative to positive, as a increases from 0 to ol
Therefore, we can uniquely define a, by the formula

{ag} = {a € (0,0%): £1(a) = 0}. (2.5)

The proofs are deferred to Section 4.
Now we are ready to define three more symbols:

2
o
beo = s (2.6)
deo
2
by = 2, 2.7
(20
In b,
= . 2.8
Co 1+ ag (2.8)
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Theorem 2.1. For any real ¢ > 0,

Eexp{cW(X)} > Lw;c,o :==Eexp{cW (X4, ,.b.,)} (2.9)
> Lwy.s := Eexplce W(Xq, p,)}- (2.10)

Moreover, inequality (2.9) is strict unless X = X besr Where ‘2’ denotes equality in distri-
bution, and inequality (2.10) is strict unless ¢ = c,. Furthermore,

e =, o and by =be, o = b} (2.11)

Ao ,Cq’
so that (2.10) turns into an equality if and only if ¢ = ¢, .

In addition to being zero mean, each of the RVs X, »., and Xg, p, has variance o2, in
view of (2.6) and (2.7). Moreover, by (2.5) and (2.7), b, > 1 and, hence, ¢, > 0 by (2.8).
Thus, (2.9) provides an exact lower bound on E exp{cW (X)} for a fixed ¢ > 0, while (2.10)
provides an exact lower bound on E exp{c W (X)} over all ¢ > 0.

Let us now describe the asymptotics of the bounds Ly.. s and L., foro | O ando — oo.
As usual, we writea ~ bifa/b — 1.

Proposition 2.2. (i) For any real ¢ > 0,

2
—c
Ly.co — 1~ 4((3“——1)02 aso | 0, (2.12)
4e€ In’ o
LW;C,U ~ 3 2 as o — Q. (213)
¢ o
(ii) The expression
f@) =Int+2(1 —1) (2.14)

changes sign exactly once, from negative to positive, as t increases from 0 to 1. Therefore, we
can uniquely define t, by the formula

{ts} ={t € (0, ): f() =0} (2.15)
in fact, t, = 0.203.. ..
(iii) We have
Lw.o —1~—(—t)t,0> aso |0, (2.16)
Zlnza
Lw.s ~e 5— aso — 0. 2.17)
o

(iv) To compare (2.12) with (2.16), and (2.13) with (2.17), we observe that

2
. —C .
611;1(:) m = —(1 —to )ty (attainedatc = —Int, = 1.593..)), (2.18)
4e€ 2 .
inf — =¢ (attained at ¢ = 2). (2.19)
c>0 ¢

Thus, the asymptotic expression in (2.16) is the minimum in ¢ > 0 of that in (2.12), and the
asymptotic expression in (2.17) is the minimum in ¢ > 0 of that in (2.13).
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Note that the convergence for 0 — oo in Proposition 2.2 is very slow. For example, the
ratio e?(In? 6/02) /L., of the terms in (2.17) is 1.201 ... for o as large as 10'°.

The relations a, ~ t.02 as o J 0 and a, ~ %ln(oz) as o — 00, to be established
in the proof of part (iii) of Proposition 2.2, suggest, and numerical calculations confirm,
that a good initial approximation for solving the equation ¢1(a) = 0 in (2.5) for a, is
a=%In(l +2t,06%) ~ $In(1 + 0.40602).

2.2. Truncation
Consider the truncation function 7' defined by the formula

T(x) =x1{x < 1}. (2.20)

The following proposition allows us to define the terms in which to express the exact lower
bounds on E e¢TX),

Proposition 2.3. Take any real ¢ > 0. For any real a, let

B* — 2(e% — 1) — ac
a,c * c ’

cf. (2.2). Then we can uniquely define A, and A s by the formulae

{Acy={a>0:B} =1}, (2.21)
{Aco}={a > 0:aB} . =0}, (2.22)

because each of the equations on the right-hand sides of (2.21) and (2.22) has a unique root
a > 0. Moreover, we have the implication

Ac<0? = Ao > A (2.23)

‘We shall need one more definition:

Theorem 2.2. For any real ¢ > 0,

Eexp(cT (X,2,,)} ifo? < A,

Eexp{cT(X)} > L71.c.c :==
PleT (X} = L1:co Eexp{cT(Xa,,.5.,)} ifo” = Ac.

(2.24)

Moreover, inequality (2.24) is strict unless X equals X ;2 | or Xa,, B, in distribution, de-

pending on whether > < A or 6% > A..

c,0

To complete this subsection, let us describe the asymptotics of the bound Lr.. , foro | 0
and 0 — 00; cf. Proposition 2.2.

Proposition 2.4. For any real ¢ > 0,

Lrico —1~—co? aso |0, (2.25)
4 In’c

Lr.co ™~ —S——5— aso — 0. (2.26)
C o
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2.3. Winsorization and truncation: discussion and comparison

The Winsorization function W and the truncation function T as defined by (2.1) and (2.20)
‘cut’agiven value x atthe level 1. However, by simple rescaling, itis easy to restate the results for
any positive ‘cut’ level y. Indeed, we may consider Wy (x) := y Ax and Ty (x) := x 1{x < y},
sothat Wi = Wand Ty = T. Then ¢W,(X) = cyW(X/y) and cTy(X) = cyT (X/y). Now
we can use the results of Subsections 2.1 and 2.2 with ¢, X, and o replaced by cy, X/y, and
o/y, respectively. It should therefore be clear that the ‘cut’ level was set to be 1 just for the
simplicity of presentation.

Observe that, for each ¢ > 0, the exact lower bound L., in (2.9) is no greater than 1,
since the zero RV X obviously satisfies the conditions EX > 0 and E X 2 < o2, Hence, the
exact lower bounds L., and Lt..,, which are no greater than Ly.. s, are also no greater
than 1. It is also clear that each of these exact lower bounds is nondecreasing in c—since the
exactness isover all RVs X withEX > 0and EX 2 < o2, However, for any ¢ > 0, the exact
lower bound L., for the Winsorized RV W (X) decreases rather slowly from 1 to 0 as o
increases from O to co. Even the smaller, universal over all ¢ > 0 exact lower bound L.,
decreases rather slowly; see Figure 1 and also recall Proposition 2.2. In particular, for the value
o2 = 1 (which is of special interest as far as the application in [23] is concerned), the lower
bound L., is 0.878.. ., rather close to 1. Even for o2 = 100, this bound is 0.194 .. ., not
very small.

Moreover, the universal (over all ¢ > 0) Winsorization bound L., is remarkably close
to the fixed-c Winsorization bounds Lwy.. ., especially if the value of ¢ is in the interval
[1,3] = {p/2: 2 < p < 6}—which is of particular interest in [23]. See the top diagram of
Figure 2; the ¢ = 2 line (cf. (2.19)) of this diagram looks exactly horizontal at level 1, but it is
in fact not.

As for the truncation case, it is quite different from the Winsorization case. Indeed, the exact
lower bound L7, is significantly smaller than L., , especially for larger values of o. In
the bottom diagram of Figure 2 we plot the ratios of these two bounds for ¢ = 1, %, 2,3,5.

It is also easy to compare the asymptotics for L., in (2.25) and (2.26) with those for
Lw.co in (2.12) and (2.13). Comparing (2.12) with (2.25), it is easy to see that, for o | 0,
1 — L7.. is at least four times as large (asymptotically) as 1 — Lw.. -, and may be infinitely

1 1 1 1 1 o
0 10 20 30 40 50

FIGURE 1: The exact lower bound Ly ..
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FIGURE 2: The ratios Lw.q/Lw.c,o (top) and Lt.c o /Lw.c.s (bottom).

many times as large when ¢ goes to 0 or co. Similarly, for o — 00, Ly .. o is € times as large
(asymptotically) as Lt.c.o.

Moreover, in contrast with the Winsorization case, there is no nontrivial lower bound in the
truncation case that would be universal over all ¢ > 0. Namely, for any given o > 0, the
infimum of E exp{cT (X)} over all ¢ > 0 and all RVs X with EX > 0 and E X?> < o2 is 0;
the same holds even if the conditions EX > 0 and E X2 < o2 are strengthened to EX = 0
and E X2 = ¢2. Indeed, leta | 0, b := 0%/a, and ¢ := 1/a?; then it is easy to see that
Eexp{cT (X4.p)} = 0O; cf. (2.25) and (2.26), with large c.

Let us also briefly discuss the case ¢ < 0. Then the function e ) is convex and nonin-
creasing, while e‘7) > e“W () These simple observations together with Jensen’s inequality
lead to the trivial lower bound 1 on both E eV and E eT™® for any RV X with E X < 0:

EeTX) s EetWX) & oeWEX) & cWO0) _ |

This lower bound is exact for any prescribed value ol e (0,0) of EX 2 which is easily seen
by letting X = X, 2/, witha | 0; indeed, then eventually

2 2.—
BecT _ 2 Fo7e
a’+ o2
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We may also note that no finite upper bound exists in this case; indeed, again let X = X
but now with a — o0; then eventually

a,oc?/a>

2.c0%/a 2,—ca
a“e +o°e
EeTX) > EeWX) — 5 5 — 00.
ac+o

Thus, the case ¢ < 0 is of little interest in this setting. However, imposing the additional
restriction that X > 0 with probability 1 and considering the exponential moments E eX of the
RV X itself (rather than its Winsorization W (X) or truncation 7 (X)), one has the following
interesting inequalities, both for ¢ > 0 and ¢ < 0:

EeX >Ee® forc>0 and EeX <EeX forc <.

Here X is any nonnegative RV with E X2 < oo and X is an RV taking values in the set of the
form {0, b} for some b € (0, co) and such that E X/ = E X/ for j =1, 2; these inequalities
immediately follow from the more general result [16, Inequalities (2.32)]. The method of [16] is
based on s-orderings (rather than on duality); for more on that method, see, e.g. [5]; concerning
stochastic orders in general, see [25].

3. Another application: covered call option pricing

A covered (European) call option is an investment portfolio which consists of a unit of stock
less a call option for the same amount of the stock. The value of such a portfolio at the expiration
time of the optionis § — (S — K)4+ = K A S, where K is the strike price and § is the stock
price at expiry. In the Black—Scholes model,

S = Spe’,
where Sy is the initial price of the stock (at time moment 0),
Y =0Br + (r — 30?)T, (3.1

o is the volatility, 7 is the expiration time, B. is a standard Brownian motion, and r is the interest
rate. Here K, Sy, o, T, and r are assumed to be known nonrandom positive real constants.
(It is hoped that the role that the symbol T is given in this section will not be confused with
the truncation role T plays in other sections; in the current section we shall deal only with
Winsorization and not at all with truncation.) The expected value, say Vgs, of K A § in the
Black—Scholes model can be easily expressed in terms of the standard normal distribution
function; note that the Black—Scholes formula provides such an expression for the expected
value, E(S — K), of the call option.

Assume now that the RV ¥ = In(S§/Sp) is not necessarily normally distributed, as in the
Black—Scholes model (3.1), but may follow any distribution with the same mean u :=EY =
(r —02/2)T and variance var Y = o2T. Let

. hl IVL, .2
¢ 0

for about a half of all call options encountered in practice, one will have ¢ > 0, which we shall
assume to be the case. Then K A S = SpeteWX) where X := (¥ — ) /c. Note also that
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FIGURE 3: The ratios V. / Vgs.

EX =0andE X? = 02T/ c2. Thus, by (2.9), we have an exact lower bound on the expected
value of the covered call:

E(KAS) >V, = SOeMLW;C,O'\/T/C'

The ratios Vi / Vs for K/Sy = 1.05¢’T, T = 0.5, r = 0.01,0.02,0.05,0.10, and o €
[0, 0.20] are shown in Figure 3, which suggests that the lower bound V7 on the expected
value of the covered call is not much less than Vgg, the expected value for the Black—Scholes
model.

Other exact lower and upper bounds for financial assets are known, under various conditions.
In particular, Lo [18] obtained an exact upper bound on the expected value of (S — K) given
the mean and variance of S (rather than of ¥ = In(S/Sp)). Grundy [9] provided such a bound
given the pth moment of S, for p > 1. De la Pefa et al. [4] gave exact lower and/or upper
bounds on E(S — K) 4 given the mean, variance, and other characteristics of the distribution of
S: P(S > K), the p-norm of the density function, or the third moments of S, as well as exact
lower and upper bounds on E(S — K) in the binomial model.

4. Proofs

The general problem of finding the maximum or minimum of the generalized moment [ f du
over the set of all nonnegative measures p with given generalized moments [ f; du (i € I)
goes back to Chebyshev and Markov; here a function f and a family of functions (f;);cs are
given; see, e.g. [10], [12], [13], [14], [15], and [19]. One group of results in this area is that, for
finite 7, under general conditions, it may be assumed without loss of generality that the support
of u is also finite, with cardinality no greater than that of /; methods based on such results may
be referred to as finite-support methods. Other results, valid for finite or infinite /, concern
the following duality: under general conditions, the supremum (say) of [ f du over all u such
that [ f; du < ¢; for all i € I coincides with the infimum of |, ; ¢iv(di) over all nonnegative
measures v on / (say with a finite support) such that f ; fivdi) > f.

Such methods were used in, e.g. [1], [2], [3], [11], [21], [24], [26], and [27]. In particular,
the supremum of [ e*(dx) given fyoo p(dx) = 0, f[pxu(dx) = 0, and [ x*u(dx) = o2
was found (implicitly) in [1] and (explicitly) in [24].
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In [11] a similar problem was solved, under the additional restriction that u is a probability
measure. This result was extended in [2] and [3] to the moment functions (- — t)%r (t e R)in
place of the exponential function e’ in [11]; on the other hand, this was a further development
of the line of results obtained in [6], [7], [19], and [20]. The results of [1], [11] and [2],
[3] were refined in [24] and [21], respectively, by also taking into account positive-part third
moments. The supremum of the moments | f du over all Stein-type moment functions x >
f(x) := xg(x) — g’(x) with Lipschitz-1 functions g’ and over all probability measures u with
given mean, variance, and third absolute moment was presented (in an equivalent form) in [8,
Theorem 3] and [26, Theorem 3]; see also [17]. Results somewhat related to the mentioned
ones were obtained in [22]; see also the bibliography therein. Of course, mentioned above is a
very small sample of the work done on the Chebyshev—Markov type of extremal problems.

Concerning our problems of minimizing the exponential moments of W (X) and T (X), we
could use the mentioned finite-support methods to reduce the consideration to RVs X taking
only three values, since we have here three affine restrictions: on the first two moments and
on the total mass of the measure (which has to be a probability measure). Another, more ad
hoc kind of approach would be to condition the distribution of the RV X on 1{X < 1}, which
would preserve the mean and would not increase the second moment; also, this conditioning
would not increase the exponential moments of W(X) and 7' (X), since both functions, eV
and eT | are convex on (—o00, 1) and on [1, 00); thus, it would remain to consider RVs X taking
only two values. However, the duality-type method that we chose to prove inequalities (2.9)
and (2.24) appears more effective, as it immediately reduces the consideration to RVs X, p
that not only take just two values, but also have the first two moments exactly equal to 0 and
o2, respectively; moreover, this approach appears more convenient in obtaining the strictness
conditions for inequalities (2.9) and (2.24).

Let us now turn to proving the specific statements made in Section 2.

Proof of Proposition 2.1. Part (i) follows because ab . strictly and continuously increases
from 0 to oo as a increases from 0 to co.

(i) Observe that a (a? —i—o'z)zﬁ/1 (a) is aquadratic polynomial in o2, whence we can see that the
system of inequalities £} (a) > 0 and 0 < a < o2 can be rewritten as 0 < a < /1402 — 1.
This means that £;(a) switches from increase to decrease over a € (0, '2); at that, £, (0+) =
—oo and ¢ (02) = 0. Now part (ii) of Proposition 2.1 follows as well.

Proof of Theorem 2.1. The idea of the proof is in accordance with the general duality
principle discussed at the beginning of this section. Indeed, take any real ¢ > 0. Let

F(x) :=eV® =D and  G(x) := a + Bx + yx? 4.1)

for all x € R, where «, 8, and y are real parameters.

We are trying to obtain a tight lower bound on the F-moment E F(X) of an RV X subject
to linear (or, more exactly, affine) restrictions on its power moments: E X 0 = LEX! > 0,
and E X2 < o2. Thus, the function G is a linear combination of the power moment functions
x > xJ for Jj = 0,1, 2. We would like to find values of the parameters «, 8, and y such that
the function G is a tightest possible minorant of F on R, as shown in Figure 4. In particular,
we may begin by taking arbitrary real numbers a > 0 and

b>1, 4.2)
and then solving for «, 8, and y the system of three linear (in (&, 8, ¥)) equations

F(b)=G®b), F'(b)=G'®»), and F'(—a)=G'(-a). 4.3)
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FIGURE 4: A tightest possible minorization of F' (solid line) by G (dashed line).

It is not hard to see that the formulae

. b2ce—ac bee4c ce—ac
oi=e — —, Bi=—-, y i =—— 4.4)
2(a +b) a+b 2(a + b)
indeed define a solution to system (4.3). Moreover, with such «, 8, and y we have 2e%“(F (—a)—
G(—a)) = bc + ac — 2e%°T¢ + 2, whence we find that the condition F(—a) = G(—a) will be
satisfied by letting b equal b;‘, ¢» as defined in (2.2); note that then b > 2, so that condition (4.2)
holds, as well as all the four ‘tightness’ conditions

Fb) =G(0), F'(b) = G'(b), F(—a) = G(—a), F'(—a) = G'(—a).

Next, by (4.4), y < 0 and, hence, the function G is strictly concave, while the function F
is convex on (—oo, 1) and on [1, 00); so, the difference D := F — G is strictly convex on
(=00, 1) and on [1, 00); at that, D(—a) = D'(—a) = D(b) = D’(b) = 0, whence D > 0 and
F > GonR\ {—a, b}, while F = G on the two-point set {—a, b}.

Now specifically choose a = a. . Then, recalling (2.3) and (2.6), we see that

bzm’c =bco- 4.5)
Therefore, also specifically choosing b = b, ,, we have
EX;,=ab=0">EX? (4.6)
and
EeW XY —EF(X)>EG(X)=a+BEX +yEX? 4.7)
>a+BEX.p+vEXL, (4.8)

=EGXap) =EF(Xap) =Eexp{cW(Xap)}:  (4.9)

inequality (4.8) takes place because (in view of (4.4)) B > 0 > y, whileEX > 0 =E X,
and, by (4.6), E X2 <E Xg’b. Thus, (2.9) follows. Moreover, because F' > G on R\ {—a, b},
the inequality in (4.7) is strict unless the support of the distribution of X is a subset of {—a, b},
and inequality (4.8) is strict unless EX = 0 and E X?> = o2 = ab; thus, indeed, inequality
(2.9) is strict unless X 2 Xab-

To prove inequality (2.10), it suffices to show that E exp{c, W (X4, 1, )} is a lower bound on
Eexp{cW(X,.5)} for any a and b such thata € (0, 02) and b = 0% /a. Take any such a and b.
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Observe that E exp{cW (X4.5)} = (a%e¢ + e %a?)/(a® + o?) is strictly convex in ¢ € R and
attains its minimum,
@) a(l 4+ a)(ajo?)~1/1+®)
m(a,o) = ,
a’?+ o2
in c only at ¢ = ln(oz/a)/(l +a) = (Inb)/(1 + a); cf. (2.8). Next, the minimum of m(a, o)
or, equivalently, of

L(a) :=4L(a,o0) :=Inm(a, o)

ina € (0,0?) is attained only at the point a = a, defined by (2.5), because, by part (ii) of
Proposition 2.1, £’ (a) = £1(a)/(1 +a)? changes sign from negative to positive overa € (0, o).
Thus, inequality (2.10) is true, and it is strict unless ¢ = ¢, and a. s = do .

It remains to verify the three equalities in (2.11). In view of (4.5), the last of these equalities
is 1mphed by the first one. So, if any of the equalities in (2.11) were false then the equality
Xag by = Xag, 5.bey.» WOUld also be false, and so, by what has been proved, inequality (2.9)
with ¢, and X, p, in place of ¢ and X would be strict, which would contradict inequality
(2.10).

This completes the proof of Theorem 2.1.

Proof of Proposition 2.2. To prove part (i), consider first the case o | 0. Then, by (2.2)
and (2.3), ac,+ | 0. Moreover, ba . —> 2(e° — 1)/c whenever a — 0. So, by (4.5), be v —
2(e¢—1)/c>2>1,ands0,a,s =0 /bcg ~ ¢o?/(2(e€ — 1)). On the other hand,

EexpleW(Xap)) — 1= (€ - )—"— 4@ -1 ~ (=1 _\a @10
P @b - a+b a+b b '
whenever ¢ | 0 and @ = o(b). This, together with the relations b, , — 2(e“ — 1)/c and
deo ™~ caz/(2(ec — 1)), implies (2.12).
Now consider the case 0 — oo. Then, by (2.2) and (2.3), @, — 00. Next,

bf  ~ —e% asa— oo. (4.11)
' c
So, in view of (2.6) and (4.5), for a = a. ., we have

2 Cc
o2 ~ C_2ace — gac(l+o(D) (4.12)

whence ac o = a ~ (1/c) In(62) and beo = az/ac,g ~ co2/1n(c?). Also, for a — oo and
b =0 ., (4.11) yields a = o(b) and

a,c’

ae® +be %  age®+2e°/c  ae
E W(X = ~ ~— 4.13
exp{cW (X))} atb atb b ( )

This, together with the relations a.  ~ (1/c¢) In(62) and beo ~ co?/In(c?), implies (2.13).
Part (ii) follows because f(0+) = —oo, f(1) =0, and f'(t) = —2(t — %)/t changes sign
from positive to negative as ¢ increases from 0 to 1.
To prove part (iii), consider first the case o | 0. Then, by (2.4) and (2.14), for each fixed
t € (0, 1), we have £1(r62) = Int — 24+ o(1))(t — 1) = f(t) + o(1). So, by part (ii), for
each fixed 7 € (0, t,), we have £; (to%) < 0, eventually (for all small enough o); similarly, for
each fixed r € (#, 1), eventually ¢ 1(t02) > 0. Therefore, by (2.5), a5z ~ t.02 and, hence,
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by (2.7) and (2.8), by — 1/t, and ¢, — —Int,. Now (2.16) follows by (4.10), since, for
¢ = ¢y, we have e — 1/t, and ¢ - —Int, = 2(1 — t,), where the equality follows from
(2.15) and (2.14).

The case 0 — 00is c0n51dered similarly. Then, by (2.4), ¢; (x In(c)) ~ 2(k — %) In(a’?) for
each fixed « € (0, 00) \ { }, so that £1(k ln(o2)) is eventually less than O for each k € (0, 2)
and eventually greater than 0 for each k € (2, 00). Thus, by part (ii) of Proposition 2.1,
ag ~ ln(oz) and, hence, by ~ 202/In(0?) and ¢, — 2. Moreover, by (2.11), we have

b, = bj . Recall that relations (4.11) and (4.13) were derived assuming that a — o0,
b = b, and ¢ > 01is fixed. Reasoning quite similarly—with a,, by, ¢5 in place of such

a, b, c—we conclude that Ly., ~ ase‘ /b, and now (2.17) follows since a, ~ 5 ln(oz)
by ~202/In(c?), and ¢y — 2.

(iv) The derivative of —c2 /(&€ — 1)) in ¢ > 0 is positive if and only if f(f) < O for
t := e . Therefore, and by part (ii), —02/ (4(e¢ — 1)) attains a minimum in ¢ > 0 at
¢ = —Int, = 2(1 — t,). Replacing ¢ in the denominator of —c2/(4@e€ — 1)) by —In#, and ¢
in the numerator by 2(1 — #,), we obtain (2.18). As for (2.19), it is much more straightforward.

Proof of Proposition 2.3. That each of the equations on the right-hand sides of (2.21) and
(2.22) has a unique root a > 0 follows because both B; . and a B . strictly and continuously
increase from 0 to 0o as a does so. Now (2.23) follows because the value of aBj; . ata = A,
is Ac.

Proof of Theorem 2.2. Here let F(x) := e‘T™) and let G(x) be defined as in (4.1).
Consider first the case 02 < A,. Take G(x) with

e (a2 + ca® +ac +2a + 1)
(a+1)?2
e~ aEe — 1) + ¢(1 — a?)) e —ac—c—1)
@+ 1)2 V= @+ 1)?

o =

’

=

Then, for D := F — G and any a > 0, we have D(—a) = D'(—a) = D(1) = 0. Now let
a = o2, so that (by the current case condition) 0 < a < A., which implies that B;’ ¢ <l and,
hence, G'(1) < 0 (because G'(1) = (B} . — Dce /(1 4 a)); also, 0 < a < A, implies
that (e — 1) — (1 + a)c < 2(e* — 1) — (1 +a)c = (B; . — 1)c < 0, whence y < 0,
so that G is strictly convex on R; moreover, 8 > e ““c(1 + az)/(l + a)2 > 0. In turn, the
inequality G’(1) < 0 means that D’(14) > 0; also, D is strictly convex on (—oo, 1) and on
[1, 00). Recalling now that D(—a) = D'(—a) = D(1) = 0, wehave D > Oand F > G
onR\ {—a, 1}, while F = G on the two-point set {—a, 1} = {—o?2, 1}. Now the first line of
(2.24) follows; cf. (4.7)-(4.9).
Consider now the case 02 > A.. Take G (x) with

e~ (ca? + 2abc + 2a + 2b) _ cbe™ ce~ac

*= 2a+b) ’ at+b VT T 2a+b)

where @ > 0 and b := B} .. Assume now that a is so large that b > 1. Then, again for
D := F — G, we have D(—a) = D'(—a) = D(b) = D'(b) = 0, while 8 > 0 > y, so that
again D is strictly convex on (—oo, 1) andon [1, 00), D > Oand F > G on R\ {—a, b}, while
F = G on the two-point set {—a, b}; if b = 1 then D’(b) is understood as the right derivative
of D at point 1. Since the current case is o2 > Ac, (2.23) yields A, > A, and, hence,
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Beo = 0%/Ary = B} .= B} .= 1. Now, reasoning again similarly to (4.7)~(4.9), we
obtain the second line of (2.24).

The proof of the strictness statement on (2.24) is quite similar to that for (2.9), because here
too we have 8 > 0 > y—in either case, whether ol < A or o> A

Proof of Proposition 2.4. Here the case o | 0 is quite straighgforward. Indeed, by (2.24),
we eventually have Lr;c s — 1 = Eexp{cT (X,2 1)} — 1 = (77 = 1)/(1 +02) ~ —co.

As for the case 0 — 00, the proof of (2.26) is quite similar to that of relation (2.13) in
part (i) of Proposition 2.2: replace all instances of b;‘,c, acosbeg, Wby B ., Acos Beos T,

a,c’
respectively, and also drop all instances of the factor e¢ in the numerators of the ratios in (4.11),

(4.12), and (4.13).
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