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CALCULUS OF VARIATIONS IN MEAN
AND CONVEX LAGRANGIANS, II

JOEL BLOT

We prove the Legendre Necessary Condition of the Calculus of Variations in Mean in
an arbitrary finite dimension. When the Lagrangian is convex, we establish that if the
Buler-Lagrange equation possesses an almost periodic solution then it possesses periodic
and constant solutions. We deduce from this fact various consequences on the structure
of the set of almost periodic solutions.

1. INTRODUCTION

The notation is as in [3]. APk(Rn) denotes the space of u.a.p. (uniformly almost
periodic, or Bohr almost periodic) functions from R into Rn of which all the derivatives,
up to order k, are u.a.p. If / is u.a.p., Mod(/) denotes the Z-module of frequencies
of / . Qpk(w;Rn) is the subspace of Apl°(Rn) of all the functions / such that Mod(/)
is generated by « = (a>i, . . . , w,). The mean value of an u.a.p. function / is denoted
by M{f}, and its Fourier-Bohr coefficients by a(/;A) := M{/(<)e~'A<}<» w i t h ^ G R.
The translation operation is denoted, for r £ R, by rrf(t) := f(t + r).

If E is either AP^R") or QP1{w;Rn), on a lagrangian L G Cr(Rn x Rn, R),
r > 1, we construct a nonlinear functional 4>: E —• R, <j>(x) := M{L(x, x)} where
x = dx/dt, and we formulate a variational problem in mean
(P) minimise <f> on E.

In [2, 3] we have established that <j> is Frechet - C1 and that 4>'(x) = 0 if and only
if x is an u.a.p. solution of the Euler-Lagrange equation:
(E) Lx{x,x) = (d/dt)Li(x,x).

2. SECOND VARIATION

In [3, part C] we have established the Legendre Necessary Condition of the second
order in the case where the dimension n is equal to 1; we prove it here for an arbitrary
positive integer n.
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THEOREM 1. Let E be either APl{Rn) or QF^wjR") , let L € C2(Rn x Rn,R)

and <j>(x) :— M{L(x, £)} for x G E. If x realises a local minimum of <j> on E, then

for all t G R Lx±(x(t), x(t)) > 0 (a nonnegative definite bilinear form).

PROOF: We prove the case with E = AP1(Rn), the case of QPl{u, Rn) being

similar. From results of [2, 4] we know that <j> G C2(E, R) and if x, h, k G E we have:

If x realises a local minimum of <fr on E, then the usual Necessary Condition of the

second order is <j>"(x)(h, h) ^ 0 for all h G E.

By the same calculation as in the one-dimensional case, see the proof of Theorem 2

of [3], for / G E, A G R taking in turn h(t) — cos M.f(t), h(t) = sin Xt.f(t) we obtain:

0 ̂  M{Lxx.(f, /) + 2£li(/J / ) + Lix.(jj) + \2Lix.(f, /)}.

This inequality must be valid for all A € R. When A is sufficiently large, we see that

0 < M{Lxi{x, x){f, / ) } , for every / £ E.

Because E is dense in AP°(Rn), this last inequality is valid for every / € AP°(Rn).
We fix now / G E, and write u = Lxi(x, x)(f, / ) G AP°(R). It is clear that u+, u~ G
AP°(R), and so V t F G AP°{R). For every a G AP°{R), af G 4P°(Rn) and we have:

0 < M{Lix(x, x)(af, af)} = M{ua2},

therefore 0 ^ M{u~a2} ^ M{u+a2}. Also if a = Vu~ then we have 0 ^
M{(u~)2} < M{u+u~} = M{0} = 0. Therefore, (see [1, p.19]), u~ = 0 and so
u = u+, that is u ^ 0. Hence

£**(*(<). *( ' ) ) ( / ( ' ) . /(<)) > 0 for alH G R.

It is sufficient to take / — z G R n , and so we have Lxx{x(t), i(t))(z, z) > 0 for all

te R, and all z G R n . D

3. CONVEX LAGRANGIANS

In this section we consider a lagrangian L which is convex on R ° x R " , and so
<f> is convex. Therefore when x G AP1{Rn), x solves (P) if and only if x is an u.a.p.
solutions of (E) (see [3, part D]). The existence of an u.a.p. solution of (E) implies the
existence of many others.
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PROPOSITION 1. Let L £ C2(Rn x Rn, R) be a convex function. Let x £ AP1(Rn)
be an u.a.p. solution of (E). Then for every (z, w) £ ~co(x, x)(R) there exists y £
AP1{Rn) such that y solves (E), y(0) = z, y(0) = w, M{y} = M{x} and Mod(y) C
Mod(z) .

PROOF: By a theorem of Bochner, {rr(x, x) : T £ R} is relatively compact in

AP°(Rn x R n ) . Then by a theorem of Mazur (see, [5, p.416]) co{rr(x, x)\r £ R} is

compact in AP°(Rn x R n ) . Let (z, w) £ co(x, x)(R) in Rn x R", then there exists a

sequence:

^2 K,a{x{tv,a), z{tv,a)) ] , where AB,a > 0

and

^v,a = 1) tliat converges to (z, w) in R™ x Rn.
a=l

But the sequence ( J^ \v<a Ttva(x, i) J takes its values in co{rr(a;, x) : r £ R}.

Therefore this sequence admits a subsequence that converges uniformly towards an
element (y, yj) € AP°(Rn x R n ) . It is easy to verify that yi = y and that y has the
required properties. D

In [3, Part D], we proved that if (E) admits periodic solutions with incommen-
surable periods, then necessarily (E) admit a nonperiodic u.a.p. solution. The main
result of the present paper is a kind of converse: if (E) admits an u.a.p. solution then
(E) admits periodic solutions. Explicitly we have

THEOREM 2. Let L e C2(Rn x Rn, R) be a convex iagrangian. We assume that
(E) possesses an u.a.p. solution x £ AP1(Rn). Then

(i) (E) posseses a constant solution equal to A4{x}(Ai{x} £ cox(R));
(ii) let T £ R, T ^ 0; if there exists an integer Jfc ^ 0 such that

a(x;(2n/T)k) ^ 0, then

(E) posseses a non constant T-periodic solution xT. Moreover A4{xT} — A4{x},
(xT,xT){R) C co(x, x)(R) in R" x R", (xT, xT) £ co{rr(x, x)\r £ R} in
AP\Rn x R n ) , and for all m £ Z a(xT;{2w/T)m) = a(x,(2w/T)m).

PROOF: If » £ N, » M , f € R, T / 0, we define the function CV<T

( i ) := l / r J n r J i 6 APl{Rn). We remark that {d/dt)CVjT{x) = Cv,T(i), and
k=o

from [1, p.44], we know that there exists a T-periodic function xT, of class C1 ,
such that {CVtT(x))vefsi converges to xT in ^IP'-norm. Because x is an u.a.p. so-
lution of (E), x solves (P), and because L is autonomous and M. is invariant un-
der translations, we have ^(T^XX) = <t>{x) = lnf<£. The convexity of (f> implies:
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v-l
<j>{CVlT{x)) ^ £ 1/v </>(TkTx) = Inf^, therefore 4>(Cv,T{x)) = Inf<A, and by the

continuity of <j>, we obtain <fi(xT) = lim<J?(CVIT{X)) = Inf</>. Thus xT is a solu-

tion of (E). Since (CVIT{X), CVIT{&)) is an element of co{rr(x, x)\r € R we see that

(xT, xT) e CO{TT{X, x)\r S R} in AP°{Rn x Rn), therefore (a;TiT)(R) C co{x, x)(R).
By [1, p.45], we know that the Fourier series of xT is exactly the T-periodic part
of the Fourier-Bohr series of x. Writing Ay = {A £ R | A € 2TT/TZ} we have
xT(t) ~ ^Z a(x, A)elAt. From this relation we deduce that AA{xT} = M(x) and

that for all m € Z a(xT; (2TT/T) rn) = a(x; (2TT/T) m ) .

We have shown that, for each T ^ 0, xT is a T-periodic solution of (E), but we must

refine the argument to assertain whether or not xT is constant.

It is well known that {A € R \ a(x; A) ^ 0} is a countable set. Note that A ^ f~l

{0} implies T\jTi € Q, and that (J AT = R- Consequently there exists a real

number To ^ 0 such that A-p0 = {0}, so xT = a(x, 0) = A4(x). This fact justifies

assertion (i).

It there exists an integer k ^ 0 such that a(x;(2ir/T)k) ^ 0, then the Fourier

series of xT contains at least the term o(x; (27r/T)fc)e'(27r/T)fc<, therefore xT is non

constant. That justifies (ii). D

R e m a r k . Assertion (i) has already been established in [3, Theorem 4], but with a

radically difference method based on a Fixed Point theorem.

From Theorem 2 we can deduce two general principles for the study of the Euler-
Lagrange equations with convex lagrangian:

COROLLARY. Let L e C 2 (R n x Rn, R) be a convex lagrangian.

(1) If (E) does not possess any constant solution then (E) possesses neither

u.a.p. solutions nor periodic solutions.

(2) If (E) does not posses any periodic solution, or if all the periods of its

periodic solutions are rational multiples of one fixed real number, then

(E) possesses no nonperiodic u.a.p. solution.

We can give some simple and useful indications on the problem of u.a.p. solutions

of (E). We shall assume that the lagrangians satisfy a condition of differentiability and

convexity:

(D.C.) L £ C 2 (R n x Rn, R) and I is a convex function .

If XQ £ R") we remark that x0 is a constant solution of (E) if and only if
Lx(xo, 0) = 0. And so by the Corollary, when 0 ^ Lx(R

n x 0) we are sure that
(E) does not admit any u.a.p. solution. Therefore the interesting case is that when
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0 6 i i ( R n X 0). Consequently we consider the condition:
(Z) there exists x0 £ Rn such that Lx(x0, 0) = 0.

PROPOSITION 2. Under the conditions (D.C.) and (Z) we have:

(i) <j> is bounded from below on AP1(Rn), even if L is not bounded from

below on R"xR" , and Min0(AP1(R")) = Min£(Rn x 0) = L{x0, 0).
(ii) If in addition we assume that Lxx(x0, 0) > 0 then all the u.a.p. solutions

of (E) admit XQ as mean value.

PROOF: Because x0 solves (E), xo solves (P), therefore Min<j> = <j>(xo) = L(XQ, 0).
The convexity of x -* L(x, 0) on Rn and (Z) ensure that L(x0, 0) = MinI(Rn x 0).
For (ii), the assumption on Lxx(x0, 0) implies that x0 is the sole vector of Rn that
satisfies Lx(xo, 0) = 0; that is, Xo is the sole constant solution of (E). We conclude by
using the assertion (i) of Theorem 2. D

We divide the condition (Z) into two subconditions:
(Zl) There exists xx £ Rn, such that Lz(xlf 0) - 0 and Lt{xu 0) £ 0.
(Z2) There exists x2 £ Rn such that Lx(x2, 0) = 0 and Lx(x2, 0) = 0.

LEMMA. Under condition (D.C.) we have:

(1) (Zl) implies that, for x £ Rn, if Lx{x, 0) = 0 then Lx{x, 0) ^ 0;
(2) (Z2) implies that, for x £ Rn, if Lx(x, 0) = 0 then Lx(x, 0) = 0.

PROOF: For (2), if Lx{x, 0) = 0 then L(x, 0) = MinX(Rn x 0). But L{x2, 0) =
MinI(Rnx0) = Min i (R n xR") , therefore L{x,0) = Mini(Rn x Rn), and so
L'(x, 0) = 0, and then Lx(x, 0) = 0. Then (1) is a consequence of (2). D

This lemma shows that the conditions (Zl) and (Z2) induce a partition of the set
of lagrangians that satisfy (D.C.) and (Z). In particular, we cannot have (Zl) and (Z2)
simultaneously. We can characterise the two conditions

PROPOSITION 3. Under the assumptions (D.C.) and (Z) we have:

(i) (Zl) is equivalent to: Min<^(>lP1(Rn)) > Inf L(Rn x Rn).
(ii) (Z2) is equivalent to: Mm<t>(APl(Rn)) = Inf L{Rn x Rn).

PROOF: We remark that (i) is a consequence of (ii). If (Z2) is valid then
MinI(R" x 0) = Inf L{Rn x Rn) because of the convexity of L, and by assertion (i)
of Proposition 2, we deduce that Min <j> = Inf L(Rn X Rn). Conversely, if Min<£ =
Inf (Rn x Rn), by assumption (Z) and assertion (i) of Proposition 2, L(x0, 0) = Min<£,
therefore L(x0, 0) = Inf L(Rn x Rn), and consequently L'(x0, 0) = 0, and (Z2) is
satisfied. U
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PROPOSITION 4. Under the assumptions (D.C.) and (Z2) we have:

(i) let x G AP1(Hn); then x is an u.a.p. solution of (E) if and only if
L(x(t), x(t)) = MinZ,(Rn x Rn) for all t G R;

(ii) if Argmin £ := / ^ ( I n f I(Rn x Rn)) is included in Rn x 0, then all the
u.a.p. solutions of (E) are constant; precisely they are the i £ R " such
that Lx(x, 0) = 0;

(iii) if L"(x2, 0) > 0 then the constant x2 is the single u.a.p. solution of (E);

(iv) if there exists a non-trivial linear subspace S of Rn such that
[Int(s+o)x(s+o)(ArgminXn(5 + 0) x (5 + 0))] n (Rn x 0) / 0 then, for
each Z-module of real numbers M there exists an u.a.p. solution of (E)
which the module of frequences is M. In particular, for each real T ^ 0
there exists a non constant T-periodic solution of (E).

PROOF: If x G 4P- 1 (R n ) is a solution of (E) then M{L(x, x)} = Min0 =
L(x2, 0), therefore M{L(x, x) - L(x2, 0)} = 0.
We know that L{x2, 0) = MinL(RnxRn), and so L{x, x) - L(x2, 0) > 0. By
a classical theorem, (see [1, p.20]), we have necessarily L(x, x) — L(x2, 0) = 0,
and consequently L(x, x) = MinL(Rn x Rn). Conversely if x G ^P^R71) satisfies
L{x, x) = MinX(R" x R") then L(x, x) = L{x2, 0) and <f>(x) = L(x2, 0) = Min<f>,
therefore x solves (P) and (E). Assertion (i) is proved.

We remark that we can formulate the condition of assertion (i) in the following way:
(x(t), x(t)) G ArgminX for all t G R. When Argmin L C Rn X 0 we have necessarily
x — 0, therefore x is constant. This justifies (ii).
For (iii), because of the convexity of L,(x2, 0) is the single vector of Rn x Rn that
realises the minimum of L. If x is a 7'-periodic function, of class C1, with values
of Rn, then by the Formula of the Mean Value there exists i G [0, T] such that
1/T/0

TL{x{t), x(t))dt = L(x(i), x(t)) > L{x2, 0), therefore <j>{x) > <f>(x2). And so
(E) cannot possess a nonconstant periodic solution. By assertion (2) of the Corol-
lary (E) cannot possess any nonconstant u.a.p. solution. Since L"(x2, 0) > 0 implies
Lxx{x2, 0) > 0, we can conclude by using assertion (ii) of Proposition 2.
For (iv), the additional assumption implies the existence of some c £ S and of an e > 0
such that for all z, w G X \c — z\ < e and \w\ < e imply that (z, w) G Argmini.

By the non triviality of 5 there exists some x £ AP1(S) such that Mod(x) =
M;(x, x)(R) is bounded in 5 x 5 and so there exists p > 0 such that |px(<)| < e,
\px(t)\ < e for all t G R. We have c + p G AP^S), Mod(c + px) = M and
| c - ( c + p*)(<)| < c, \d/dt(c+px)(t)\ = \pi(t)\ < e, therefore
(c + px(t), d/dt (c + px)(t)) G ArgminL, and then c + px solves (E) because of as-
sertion (i). U
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R e m a r k s . A = Argmin L is a closed convex subset of Rn x Rn and the condition of

assertion (i) is (x(t), x(t)) G A for all t 6 R. In introducing A(x) - {y £ Rn | (x, y) G

A), we can formulate this condition in terms of differential inclusion x(t) € A(x(t)) for

all t € R, where the multifunction A has a closed convex graph.

A particular case of the additional assumption of (iv) is when (Int Argmin L) 0

( R n x O ) ^ 0 .
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