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Abstract

The asymptotic behavior is studied for an interacting particle system that involves
independent motion and random sampling. For a fixed sampling rate, the empirical
process of the particle system converges to the Fleming–Viot process when the number
of particles approaches ∞. If the sampling rate approaches 0 as the number of particles
becomes large, the corresponding empirical process will converge to the deterministic
flow of the motion. In the main results of this paper, we study the corresponding central
limit theorems and large deviations. Both the Gaussian limits and the large deviations
depend on the sampling scales explicitly.
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1. Introduction

The Moran model introduced in [16] is a continuous-time birth–death Markov chain used
to describe the evolution of biological populations of fixed size. The focus is on the allele
frequency in the population and the evolution usually involves three basic forces: the mutation,
the natural selection, and the random genetic drift (also known as random sampling or sampling
replacement).

Let S be a Polish space. For each n ≥ 1, denote by Cb(S
n) and C2

b (Sn) the space of
bounded continuous functions and the space of functions with bounded second-order continuous
derivatives on Sn, respectively. Let A be the infinitesimal generator of a strong Markov process.
Assume that the domain D(A) of the A is dense in Cb(S). For any ε > 0, the Moran particle
process considered in this paper is a Markov process (Y1(t), . . . , Yn(t)) with generator

Lεg(y1, . . . , yn) =
n∑

i=1

Aig(y1, . . . , yn) + ε

2

n∑
i,j=1

[�ijg(y1, . . . , yn) − g(y1, . . . , yn)],

where g is in D(A), Ai is A acting on the ith coordinate, and �ijf is obtained from f

by replacing yj with yi . The number n is the population size. Each Yi(t) is the type of
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380 S. FENG AND J. XIONG

individual i. The Ais correspond to mutations while the random sampling �ij corresponds
to the replacement of the type of individual j with the type of individual i. The constant ε is
called the sampling rate. The natural selection is not included for notational convenience.

LetM1(S)denote the space of all probability measures onS equipped with the weak topology.
Then the empirical distribution (or allele frequency) of the process (Y1(t), . . . , Yn(t)) is an
M1(S)-valued process. It is well known (cf. Chapter 2 of [3]) that, for large n, if the empirical
initial distribution of the Moran particle system converges to µ in M1(S), then the empirical
process of (Y1(t), . . . , Yn(t)) converges (in the sense of finite-dimensional distributions) to
the probability-valued process introduced by Fleming and Viot in [12], which is known as the
Fleming–Viot process.

Define D = {F : F(µ) = f (〈µ, φ〉), f ∈ C∞
b (R), φ ∈ D(A), µ ∈ M1(S)}. The genera-

tor of the Fleming–Viot process with mutation operator A and sampling rate ε has the form

LεF (µ) =
∫

S

(
A

δF(µ)

δµ(x)

)
µ(dx) + ε

2

∫
S

∫
S

(
δ2F(µ)

δµ(x)δµ(y)

)
Q(µ; dx, dy), (1.1)

where
δF (µ)

δµ(x)
= lim

γ→0+
F(µ + γ δx) − F(µ)

γ
,

δ2F(µ)

δµ(x)δµ(y)
= lim

γ1→0+, γ2→0+
F(µ + γ1δx + γ2δy) − F(µ)

γ1γ2
,

Q(µ; dx, dy) = µ(dx)δx(dy) − µ(dx)µ(dy),

and δx stands for the Dirac measure at x ∈ S. The domain of Lε is D . The space S is called
the type space and the last term in (1.1) corresponds to the random sampling. It follows from
direct calculation that, for F(µ) = f (〈µ, φ〉),

δF (µ)

δµ(x)
= f ′(〈µ, φ〉)φ(x),

δ2F(µ)

δµ(x)δµ(y)
= f ′′(〈µ, φ〉)φ(x)φ(y).

The class of the Fleming–Viot processes is one of the two basic classes of measure-valued
diffusions. The Fleming–Viot processes presented here are only a small portion of the class.
More general models include forces such as natural selection, recombination, and interaction.
Interested readers should consult [10] for a comprehensive survey on the subject.

The term Fleming–Viot process is also used in the literature for some finite particle systems.
In [1], [2], and [13], finite particle systems are studied where each particle moves independently
of the others until one particle hits a certain boundary or a catalyst or, more generally, is killed
and a new birth occurs at a location uniformly chosen among the remaining particles. This
sampling mechanism clearly resembles that of the Moran particle system or the Fleming–Viot
process. These particle systems are closely related to the Moran particle system introduced
above. A common new feature of the models in [1], [2], and [13] is that the sampling mechanism
strongly depends on the motion or mutation. This strong interaction creates a lot of new
challenges that do not present in our model.

Let us return to the Fleming–Viot process in (1.1). When the sampling rate ε goes to 0,
the Fleming–Viot process converges to the solution of the forward equation associated with A.
It is natural to consider limiting theorems, such as the central limit theorem and the
Freidlin–Wentzell-type large deviations associated with this limiting procedure. These are
useful in providing information on the stability of the mutation process under small sampling
perturbations. The establishment of large deviations turns out to be a very challenging problem
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Asymptotic behavior of the Moran particle system 381

due to the degenerate nature of the sampling mechanism. There have been many efforts in
dealing with the problem. To the best of our knowledge, it is still an open problem except in
the case when the mutation generator has the form

Af (s) = c

∫
S

(f (u) − f (s))ν(du), (1.2)

where c ≥ 0 and ν is in M1(S) (cf. [4], [5], [11], and [18]).
Motivated by this problem, we consider the particle system (Y1(t), . . . , Yn(t)) when the

sampling rate ε = β(n) such that limn→∞ β(n) = 0. The scale of β(n) is divided into the
following three cases.

Case A: limn→∞ nβ(n) = 0.

Case B: limn→∞ nβ(n) = c ∈ (0, +∞).

Case C: limn→∞ nβ(n) = +∞.

As expected, for large n, the empirical process of (Y1(t), . . . , Yn(t)) converges to the flow
generated by A in all cases. But our main result shows that a critical phenomenon appears in
both the central limit theorem and the large deviations depending on the scale of β(n). Central
limit theorems hold in all scales, but the Gaussian processes have different covariances. Large
deviation principles with speed 1/n are considered in all three cases. The large deviation
behavior in case A is shown to be equivalent to the independent particle system. In case C the
large deviation behavior is trivial in a sense (see Section 3) at the speed 1/n. In case B, we
obtain the exponential tightness and the upper bound. The large deviation lower bound for this
case is still open.

We conclude the introduction with an outline of this article. Central limit theorems are
established in Section 2. The martingale methods are used in the proof. Three main factors
contribute to the large deviations, namely, the noise in the initial distribution, the noise in the
independent motion, and the random sampling. We call the first two averaging factors. In
case A, the averaging factors are stronger than the sampling factor. In case B, all three factors
act at the same scale. In case C, the averaging factors are weaker than the sampling factor. In
Section 3 we first establish large deviation principles in case A. The proof is based on a detailed
analysis of the genealogical structure of the particle system. The large deviation results in
case B are obtained by first establishing the exponential tightness and then establishing the
local estimates. A comparison is made between the Moran system in case A and the Fleming–
Viot process in Section 4, revealing that the Freidlin–Wentzell-type large deviation for the
Fleming–Viot process corresponds to the large deviations of the Moran particle model in case B.

2. Central limit theorem

Recall that in the Moran particle system (Y1(t), . . . , Yn(t)) each particle moves indepen-
dently of all other particles according to A until an exponential clock with parameter

(
n
2

)
β(n)

rings. When the clock rings, an unordered pair (Yi(t), Yj (t)) of particles is chosen at random
and the particle at position Yj (t) jumps to the position Yi(t). Before the clock rings again, each
particle moves independently of all other particles according to A.

The empirical process of the particle system is defined as

ηn(t) = 1

n

n∑
i=1

δYi(t).
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We assume that (Y1(0), . . . , Yn(0)) are independent with identical distribution µ in M1(S).
Thus,

ηn(0) ⇒ µ.

For fixed ε, it was shown in [8] that ηn(t) has the same distribution as the empirical process
of a particle approximation of the Fleming–Viot process. Thus, for large n, ηn(t) converges to
the Fleming–Viot process starting at µ.

From now on, we assume that ε = β(n) and limn→∞ β(n) = 0.
Let D([0, 1], M1(S)) be the space of all functions from [0, 1] to M1(S) that are right

continuous and have left limits (left continuous at 1) furnished with the Skorokhod topology.
Let Tt be the semigroup associated with generator A. Then it follows (cf. [3]) from the law of
large numbers that

lim
n→∞ ηn(t) = µTt = µ(t).

Let
α(n) = min{√n, β−1(n)}

and
ξn(t) ≡ α(n)(ηn(t) − µ(t)).

The objective of this section is to establish a functional central limit theorem for the sequence
of processes {ξn(·)}. Based on the work of Mitoma [15], we need to find a nuclear Fréchet
space E so that the process ξn(·) can be viewed as an element of the dual space of E. In this
section we choose E = S, the space of Schwartz functions on R

d , even though the result can
be relaxed. Since our main focus here is on the critical behavior of the particle system, the loss
due to the restriction on space S is minor.

Let S′ denote the dual space of S. For κ = 0, 1, 2, . . . , define

‖f ‖2
κ =

∑
0≤|k|≤κ

∫
Rd

(1 + |x|2)κ |Dkf (x)|2 dx.

Let Sκ be the completion of S with respect to ‖ · ‖κ . Let S−κ be the dual space of Sκ .
The process ξn(·) now belongs to the space D([0, 1], S′) in which the central limit theorem

will hold. To obtain the tightness in D([0, 1], S′), we first consider the martingale problem of
ηn(t) and assume the following.

Assumption I. The space S ⊂ D(A) is a core of A and there exist two indices, κ ′ > κ

and a constant K , such that, for any f ∈ S, we have Af ∈ S, ‖Af ‖0,∞ ≤ K‖f ‖κ , and
‖Af ‖κ ≤ K‖f ‖κ ′ , where ‖ · ‖0,∞ denotes the supremum norm.

Assumption II. The martingale problem associated with A is well posed.

Examples that satisfy these assumptions include the Brownian motion, diffusions with
bounded continuous coefficient, the random walk, and other Markov chains with bounded
finite range jumps.

For each f in S,

Nn
t (f ) ≡ 〈ηn(t), f 〉 − 〈ηn(0), f 〉 −

∫ t

0
〈ηn(s), Af 〉 ds
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is a martingale with quadratic variation

〈Nn(f )〉t = 1

n

∫ t

0
〈ηn(s), A(f 2) − 2f A(f )〉 ds

+ 2β(n)

∫ t

0
(〈ηn(s), f

2〉 − 〈ηn(s), f 〉2) ds. (2.1)

Lemma 2.1. Under Assumptions I and II, the sequence {ξn(·)} is tight in D([0, 1], S′).

Proof. For each f in S, set

Ñn
t (f ) ≡ 〈ξn(t), f 〉 − 〈ξn(0), f 〉 −

∫ t

0
〈ξn(s), Af 〉 ds.

It follows from (2.1) that Ñn
t (f ) is a martingale with quadratic variation process

〈Ñn(f )〉t = α(n)2

n

∫ t

0
〈ηn(s), A(f 2) − 2f Af 〉 ds

+ 2α(n)2β(n)

∫ t

0
(〈ηn(s), f

2〉 − 〈ηn(s), f 〉2) ds.

By convolution we obtain

〈ξn(t), f 〉 = 〈ξn(0), Ttf 〉 +
∫ t

0
d〈Ñn(Tt−sf )〉s ,

where {Tt } is the semigroup on Cb(S) of the Feller Markov process with generator A. Then

E(〈ξn(t), f 〉2) ≤ K1‖Ttf ‖2
0,∞ + K1E

∫ t

0

α(n)2

n
〈ηn(s), A(f 2) − 2f Af 〉 ds

+ c1E

∫ t

0
2α(n)2β(n)(〈ηn(s), f

2〉 − 〈ηn(s), f 〉2) ds

for t ≤ T . Without loss of generality, we assume that κ ≥ 1. Note that

‖Ttf ‖0,∞ ≤ ‖f ‖0,∞ ≤ K‖f ‖1 ≤ K‖f ‖κ ,

‖f Af ‖0,∞ ≤ ‖f ‖0,∞‖Af ‖0,∞ ≤ K‖f ‖1‖f ‖κ ≤ K‖f ‖2
κ ,

and

‖A(f 2)‖2
0,∞ ≤ K‖f 2‖2

κ

= K
∑

0≤|k|≤κ

∫
Rd

(1 + |x|2)κ |Dkf 2(x)|2 dx

= K
∑

0≤|k|≤κ

∫
Rd

(1 + |x|2)κ
∣∣∣∣

∑
0≤�≤k

(
k

�

)
D�f (x)Dk−�f (x)

∣∣∣∣
2

dx

≤ K‖f ‖0,∞‖f ‖κ

≤ K‖f ‖2
κ .

https://doi.org/10.1239/aap/1370870123 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1370870123


384 S. FENG AND J. XIONG

These estimates imply that
E(〈ξn(t), f 〉2) ≤ K‖f ‖2

κ .

Then, for u ≤ ε,

E(〈ξn(t + u) − ξn(t), f 〉2 | Ft ) ≤ E(ζ
1,n
f (ε) + ζ

2,n
f (ε)),

where

ζ
1,n
f (ε) =

∫ t+ε

t

〈ξn(s), Af 〉2 ds

and

ζ
2,n
f (ε) = α(n)2

n

∫ t+ε

t

〈ηn(s), A(f 2) − 2f Af 〉 ds

+ 2α(n)2β(n)

∫ t+ε

t

(〈ηn(s), f
2〉 − 〈ηn(s), f 〉2) ds.

Note that

Eζ
1,n
f (ε) = E

∫ t+ε

t

〈ξn(s), Af 〉2 ds ≤ Kε‖Af ‖2
κ ≤ Kε‖f ‖2

κ ′ .

Similarly to the above, we have

Eζ
2,n
f (ε) ≤ Kε‖f ‖2

κ .

We now have
lim
ε→0

sup
n

E(ζ
1,n
f (ε) + ζ

2,n
f (ε)) = 0.

By Remark 8.7 of [9, p. 138], we obtain the tightness of 〈ξn, f 〉 in D([0, T ], R) for every f .
Applying Doob’s inequality, we have

E sup
t≤T

〈ξn(s) − ξn(0), f 〉2 ≤ 8E

∫ T

0
(ζ

1,n
f (s) + T ζ

2,n
f (s)) ds ≤ K‖f ‖2

κ ′ .

Let κ ′′ > κ ′ be such that the embedding from Sκ ′′ to Sκ ′ is Hilbert–Schmidt. Let κ1 > κ ′′
be such that the embedding from Sκ1 to Sκ ′′ is compact. Then {ξn(·)} satisfies the compact
containment condition on D([0, T ], S−κ1). It now follows from Theorem 4.1 of [15] that {ξn(·)}
is tight in D([0, 1], S′). This completes the proof.

Let ξ(·) be a limit point. We now characterize ξ(·). To this end, we first prove the continuity
of ξ(·) by adapting the proof of Theorem 8.1.1 of [14].

Lemma 2.2. Under Assumptions I and II, the limit point ξ(·) belongs to the space C([0, T ], S′)
with probability 1.

Proof. Let g be a nonnegative continuous function on R, vanishing in a neighborhood of 0
and ∞. Note that

∑
s≤t

g(�〈ξn(s), f 〉) =
∫ t

0

∫
U

g

(
α(n)

n
(f (Yi(s−)) − f (Yj (s−)))

)
Nn(ds, d(i, j)),
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where Nn is a Poisson random measure on R+ × U with intensity measure given by β(n),
multiplying the counting measure on

U = {(i, j) : 1 ≤ i �= j ≤ n}.
Thus,

E

∑
s≤t

g(�〈ξn(s), f 〉) = β(n)
∑

1≤i �=j≤n

E

∫ t

0
g

(
α(n)

n
(f (Yi(s)) − f (Yj (s)))

)
ds

≤ β(n)
∑

1≤i �=j≤n

E

∫ t

0
1
{

α(n)

n
(f (Yi(s)) − f (Yj (s))) > b

}
ds

≤ β(n)
∑

1≤i �=j≤n

b−p
E

∫ t

0

∣∣∣∣α(n)

n
(f (Yi(s)) − f (Yj (s)))

∣∣∣∣
p

ds

≤ Kn1−p/2

→ 0

by taking p > 2, where b > 0 such that g(x) = 0 when |x| ≤ b. By Fatou’s lemma we obtain

E

∑
s≤t

g(�〈ξs, f 〉) = 0.

Let

Ñt (f ) ≡ 〈ξt , f 〉 − 〈ξ0, f 〉 −
∫ t

0
〈ξs, Af 〉 ds.

From above, we see that {〈ξn(s), Af 〉 : s ∈ [0, T ], n ≥ 1} is uniformly integrable. It is easy
to show that {〈Ñn(f )〉t : t ∈ [0, T ], n ≥ 1} is uniformly integrable, and (Ñn(f ), 〈Ñn(f )〉)
converges to (Ñ(f ), 〈Ñ(f )〉). Thus, Ñt (f ) is a continuous martingale with quadratic variation
process

〈Ñ(f )〉t =

⎧⎪⎪⎨
⎪⎪⎩

∫ t

0
〈µs, A(f 2) − 2f Af 〉 ds if limn→∞ nβ(n) = 0,

2
∫ t

0
(〈µs, f

2〉 − 〈µs, f 〉2) ds if limn→∞ nβ(n) = ∞,

and, if
α(n) = √

n and lim
n→∞ nβ(n) = c,

then

〈Ñ(f )〉t =
∫ t

0
(〈µs, A(f 2) − 2f Af 〉 + 2c(〈µs, f

2〉 − 〈µs, f 〉2)) ds.

Theorem 2.1. Assume that β(n) satisfies case A, B, or C. Then, under Assumptions I and II,
the sequence {ξn(·)} converges to ξ(·) in distribution.

Proof. We only need to prove that ξ is the unique solution to the linear evolution equation

〈ξ(t), f 〉 = 〈ξ(0), f 〉 +
∫ t

0
〈ξ(s), Af 〉 ds + Ñt (f ) for all f ∈ S. (2.2)
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Let zt be the difference between two solutions of (2.2). Then

〈zt , f 〉 =
∫ t

0
〈zs, Af 〉 ds.

This implies that zt = 0.

3. Large deviations

In this section we study the large deviations for the empirical process of the Moran particle
system in case A and case B with speed 1/n. The initial distribution of (Y1(0), . . . , Yn(0))

is assumed to be independent and identically distributed (i.i.d.) with common distribution µ.
A large deviation principle is established first in case A. For case B, we are able to establish the
exponential tightness and the upper bound. We omit case C due to the following observation.

For appropriate function f ,

exp

{
〈ηn(t), f 〉 − 〈ηn(0), f 〉 −

∫ t

0
Anf (ηn(s)) ds

}

is an exponential martingale for

Anf (ηn) = n〈ηn, e−f/nAef/n〉 + n2β(n)

2
[〈ηn, ef/n〉〈ηn, e−f/n〉 − 1].

In case C, it follows from a direct calculation that β(n)Anf/β(n) has a limit for a large class
of operators A when n tends to ∞. This indicates that the large deviations in case C occur at
the scale of β(n), and aside from the speed differences it will be similar to case B. Hence, the
local large deviations with speed 1/n in case C will produce a trivial rate function which is 0
in the effective domain of the large deviation rate function with speed β(n).

3.1. Case A

For convenience, we will assume that the path of the motion process generated by A is
continuous. Let C([0, 1], S) denote the space of continuous functions from [0, 1] to S equipped
with the uniform convergence topology.

First, we consider the Moran particle system with sampling rate 0. This is simply an
independent particle system. Let X(t) be the Feller process generated by A with initial
distribution µ. For each n ≥ 1 and 1 ≤ i ≤ n, let X1(t), . . . , Xn(t) be independent copies
of X(t). Define

ζn(t) = 1

n

n∑
i=1

δXi(t).

Clearly, ζn(·) is in the space C([0, T ], M1(S)). For each s ≥ 0 and x in S, let Ps,x denote
the law of the process generated by A starting from x at time s. For any t ≥ s ≥ 0 and f in
Cb(S), set

Us,tf (x) =
∫

f (X(t)) dPs,x,

and, for any s ≤ t1 < t2 and any ν(t1), ν(t2) in M1(S),

L(ν(t1), ν(t2)) = sup
f ∈Cb(S)

{〈νt1 , f 〉 − 〈µ, log Ut1,t2 ef 〉}.
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For any ν, µ in M1(S), let

H(ν | µ) = sup{〈ν, g〉 − log〈µ, eg〉 : g ∈ Cb(S)}
denote the relative entropy of ν with respect to µ.

Theorem 3.1. Denote the law of ζn(·) by Qn. Then the family {Qn : n = 1, . . .} satisfies a
large deviation principle on the space C([0, 1], M1(S)) with rate function

Iµ(ν(·)) = H(ν(0) | µ)

+ sup

{ m∑
i=1

L(ν(ti−1), ν(ti)) : 0 = t0 ≤ t1 ≤ · · · ≤ tm = 1, m = 1, . . .

}
. (3.1)

Proof. For any m ≥ 1 and 0 = t0 < t1 < · · · < tm = 1, we denote by π(n)(t0, t1, . . . , tm) the
joint distribution of (ζn(t0), . . . , ζn(tm)) on M1(S)⊗(m+1). It follows from Theorem 3.5 of [6]
that, conditional on ζn(0) near a probability ν(0), the family {πn(t0, t1, . . . , tm) : n = 1, . . .}
satisfies a large deviation principle on the space M1(S)⊗(m+1) with speed 1/n and rate function

L̃(ν(0), ν(t1), . . . , ν(tm)) = sup
g0,...,gm∈Cb(S)

[ m∑
i=0

〈ν(ti), gi〉 − H(g0, . . . , gm)

]
,

where

H(g0, . . . , gm) =
〈
ν(0), log E

P0,X(0)

(
exp

{ m∑
i=0

gi(X(ti))

})〉
.

By the Markov property of X(t), H(g0, . . . , gm) can be written as

〈ν(0), log E
P0,X(0) (exp{g0(X(t0)) + h(g1, . . . , gm)(X(t0))})〉,

where

h(g1, . . . , gm)(X(t0)) = log E
Pt0,X(t0))

(
exp

{ m∑
i=1

gi(X(ti))

})
.

Since h(g1, . . . , gm) ∈ Cb(S), we conclude that

L̃(ν(0), ν(t1), . . . , ν(tm)) = sup
g0,...,gm∈Cb(S)

[ m∑
i=1

〈ν(ti), gi〉 − 〈ν(t0), h(g1, . . . , gm)〉
]

= sup
g1,...,gm∈Cb(S)

m∑
i=1

[〈ν(ti), gi〉 − 〈ν(t0), h(g1, . . . , gm)〉].

It follows by induction that

L̃(ν(0), ν(t1), . . . , ν(tm)) =
m∑

i=1

L(ν(ti−1), ν(ti)).

Since the initial deviations are controlled by the relative entropy, it follows that the family
{πn(t0, t1, . . . , tm) : n = 1, . . .} satisfies a large deviation principle on the space M1(S)⊗(m+1)

with speed 1/n and rate function

H(ν(0) | µ) + L̃(ν(0), ν(t1), . . . , ν(tm)).
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The rest of the proof follows by the same argument as used in the proof of Lemma 4.7 of [6],
namely a combination of the contraction principle and the projective limit technique. The path
continuity of X(t) guarantees that the projection map

π : M1(C([0, 1], S)) → C([0, 1], M1(S))

is continuous. Thus, the contraction principle applies.

Remark. Several such examples can be found in [6] where the rate function in (3.1) has an
explicit expression.

We now turn to the large deviations for the interacting particle system (Y1(t), . . . , Yn(t))

under the assumption that
lim

n→∞ nβ(n) = 0.

Let σk, k = 1, . . . ,
(
n
2

)
, be i.i.d. exponential random variables with parameter β(n). Set

τ = inf

{
σk : k = 1, . . . ,

(
n

2

)}
.

Then τ is exponential with parameter
(
n
2

)
β(n), and

(
n
2

)
β(n)τ is thus exponential with

parameter 1. It follows from the Markov property that the waiting time for the first jump
of the process (Y1(t), . . . , Yn(t)) is distributed as τ . Let τ1, τ2, . . . be i.i.d. copies of τ . The
waiting time for the kth jump is thus given by

∑k
i=1 τi . Since each jump results in the removal of

one existing motion, the n particles after the first jump will no longer be independent. Particles
that share a segment of path in the past are grouped together. Let kn(t) denote the number of
groups that have more than one member at time t . For each j = 1, . . . , kn(t), let nj denote
the corresponding number of members. Set rn(t) to be the number of jumps of the process
(Y1(t), . . . , Yn(t)) during the time period [0, t]. Then, clearly, kn(t) ≤ rn(t) and

kn(t)∑
j=1

nj = rn(t) + kn(t).

For any κ(n) converging to ∞ as n becomes large, it follows from the relation between the
gamma distribution and the summation of i.i.d. exponential random variables that

P

{κ(n)∑
k=1

τi ≤ t

}
= P

{κ(n)∑
k=1

(
n

2

)
β(n)τi ≤

(
n

2

)
β(n)t

}

=
∫ (n

2)β(n)t

0

1

�(κ(n))
xα(n)−1e−x dx

≤ (
(
n
2

)
β(n)t)κ(n)

�(κ(n))
. (3.2)

Lemma 3.1. For some 0 < a < 1, set

γ (n) = β(n) ∨ (n log n)−1 and κ(n) = n

(− log nγ (n))a
.

Then

lim
n→∞

1

n
log P{rn(t) ≥ κ(n)} = −∞.
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Proof. It is clear that κ(n) = n/(− log nγ (n))a converges to ∞ as n becomes large. It
follows from (3.2) that

lim
n→∞

1

n
log P{rn(t) ≥ κ(n)}

≤ lim
n→∞

1

n
log P

{κ(n)∑
k=1

τi ≤ t

}

≤ lim
n→∞

1

n
log

((
n
2

)
β(n)t

κ(n)

)κ(n)

≤ lim
n→∞

1

n
log

((
n
2

)
γ (n)t

κ(n)

)κ(n)

= lim
n→∞

1

(− log nγ (n))a

{
log

[
t

2
(− log nγ (n))a

]
− (− log(n − 1)γ (n))

}

= −∞. (3.3)

Consider a dense subset {fi : i = 1, . . .} of Cb(S), and let {gi : gi = fi/(|fi | ∨ 1)}. For any
µ and ν in M1(S), define

ρ(µ, ν) =
∞∑
i=1

|〈µ − ν, gi〉|
2i

. (3.4)

Then ρ is a metric on M1(S) and generates the weak topology.
For any µ(·) and ν(·) in D([0, T ], M1(S)), set

d(µ(·), ν(·)) = sup
0≤t≤1

ρ(µ(t), ν(t))

and

ds(µ(·), ν(·)) = inf
φ∈�

{
d(µ(·), ν(φ(·))) + sup

s �=t, s,t∈[0,1]

∣∣∣∣ log
φ(s) − φ(t)

s − t

∣∣∣∣
}
,

where � is the set of all strictly increasing continuous maps from [0, 1] to [0, 1]. Then the
Skorokhod topology on D([0, 1], M1(S)) is generated by the metric ds . Clearly,

ds(µ(·), ν(·)) ≤ d(µ(·), ν(·)).
Theorem 3.2. For each δ > 0, we can construct the processes ηn(t) and ζn(t) on the same
probability space such that

lim sup
n→∞

1

n
P{ds(ηn(·), ζn(·)) ≥ δ} = −∞. (3.5)

Using the terminology in [7], the process ηn(·) is exponentially equivalent to the process ζn(·).
Proof. For each n ≥ 1, let (X1(t), . . . , Xn(t)) be n independent processes generated by A

with respective starting points Xi(0), i = 1, . . . , n, that are i.i.d. with common distribution.
Construct the process (Y1(t), . . . , Yn(t)) as follows. Before the first ringing of the exponential
clock, (Y1(t), . . . , Yn(t)) is the same as (X1(t), . . . , Xn(t)). The waiting times of the clock are
independent of (X1(t), . . . , Xn(t)). Now both ηn(t) and ζn(t) live in the same space.
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For each fixed δ > 0, choose M large enough so that 2−M < δ/2. It then follows from the
definitions of the metrics ds and d that

lim sup
n→∞

1

n
log P{ds(ηn(·), ζn(·)) ≥ δ}

≤ lim sup
n→∞

1

n
log P{d(ηn(·), ζn(·)) ≥ δ}

≤ lim sup
n→∞

1

n
log P

{
max

1≤i≤M

{
sup

0≤t≤1
|〈ηn(t) − ζn(t), gi〉|

}
≥ δ

2M

}

≤ max
1≤i≤M

{
lim sup
n→∞

1

n
P

{
sup

0≤t≤1
|〈ηn(t) − ζn(t), gi〉| ≥ δ

2M

}}
. (3.6)

Applying (3.3), we obtain, for each i between 1 and M ,

lim sup
n→∞

1

n
log P

{
sup

0≤t≤1
|〈ηn(t) − ζn(t), gi〉| ≥ δ

2M

}

≤ max

{
lim sup
n→∞

1

n
log P

{
sup

0≤t≤1
|〈ηn(t) − ζn(t), gi〉| ≥ δ

2M
, rn(1) ≤ κ(n)

}
,

lim sup
n→∞

1

n
log P{rn(1) > κ(n)}

}

= lim sup
n→∞

1

n
log P

{
sup

0≤t≤1
|〈ηn(t) − ζn(t), gi〉| ≥ δ

2M
, rn(1) ≤ κ(n)

}
. (3.7)

On the set {rn(1) ≤ κ(n)},

sup
0≤t≤1

|〈ηn(t) − ζn(t), gi〉| ≤ 2(rn(1) + kn(1))

n
,

which combined with (3.7) implies (3.5) and the theorem.

Following Theorem 4.2.13 of [7], we obtain the following result.

Theorem 3.3. Denote the law of ηn(t) by Pn. Then the family {Pn : n = 1, . . .} satisfies a large
deviation principle on the space D([0, 1], M1(S)) with speed 1/n and rate function Iµ(µ(·))
defined in (3.1).

Remark. It follows from the proof of Theorem 3.2 that the large deviation result still holds on
D([0, 1], M1(S)) when equipped with the uniform convergence topology.

3.2. Case B

In this subsection, the space S is assumed to be compact. This restriction guarantees the
compact containment condition. To generalize to noncompact state spaces, one would need the
existence of a Lyapunov function.

Let
De(A) = {g ∈ C(S) : g, eg ∈ D(A)}.

We apply the following assumption to the motion generator A.
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Assumption III. De(A) is dense in C(S) and, for any g in De(A), there exists a positive
constant C depending only on g such that, for all λ ≥ 0,

〈ν, e−λgAeλg〉 + 1
2 (〈ν, eλg〉〈ν, e−λg〉 − 1) ≤ C(e2λ|g| − 1) (3.8)

holds uniformly in ν, where |g| = max{|g(x)| : x ∈ S}.
Many generators satisfy this assumption. In particular, this includes the generator defined

in (1.2), and the Laplacian operator.
Without loss of generality, we choose β(n) = 1/n. All the results below hold under

Assumptions I, II, and III.
For each n ≥ 1 and g in De(A), set

Z(µ(·); t, n, g) = exp

{
n

[
〈µ(t), g〉 − 〈µ(0), g〉 −

∫ t

0
〈µ(s), e−gAeg〉 ds

− 1

2

∫ t

0
(〈µ(s), eg〉〈µ(s), e−g〉 − 1) ds

]}
.

Then, by direct calculation, we have the following result.

Lemma 3.2. The process Z(ηn(·); t, n, g) is a Pn-martingale.

Lemma 3.3. For each g in De(A), and any γ > 0, there is a compact subset K(g, γ ) of
D([0, 1], R) such that, for all n and any ηn(0),

Pηn(0){〈ηn(·), g〉 ∈ K(g, γ )c} ≤ −enγ . (3.9)

Proof. For any δ > 0, set

W ′
〈µ(·),g〉(δ) = inf{tj } max

j
sup

tj−1≤t, s<tj

|〈µ(t), g〉 − 〈µ(s), g〉|,

where the infimum is taken over the finite points {tj } satisfying

0 = t0 < t1 < · · · < tm = 1, tj − tj−1 > δ, j = 1, . . . , m.

It follows from the Markov property that, for any � > 0 and δ ∈ (0, 1
4 ],

sup
ηn(0)

Pηn(0){W ′
〈ηn(·),g〉(δ) > �}

≤
[1/2δ]−1∑

j=0

sup
ηn(0)

Pηn(0)

{
sup

t,s∈[2jδ,2(j+1)δ)

|〈ηn(t), g〉 − 〈ηn(s), g〉| > �
}

+ sup
ηn(0)

Pηn(0)

{
sup

t,s∈[2δ[1/2δ],1]
|〈ηn(t), g〉 − 〈ηn(s), g〉| > �

}

≤
[1/2δ]−1∑

j=0

sup
ηn(0)

Pηn(0)

{
sup

t∈[2jδ,2(j+1)δ)

|〈ηn(t), g〉 − 〈ηn(2jδ), g〉| >
�

2

}

+ sup
ηn(0)

Pηn(0)

{
sup

t∈[2δ[1/2δ],1]

∣∣∣∣〈ηn(t), g〉 −
〈
ηn

(
2δ

[
1

2δ

])
, g

〉∣∣∣∣ >
�

2

}
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≤ 1

2δ
sup
ηn(0)

Pηn(0)

{
sup

t∈[0,2δ)

|〈ηn(t), g〉 − 〈ηn(0), g〉| >
�

2

}

≤ 1

δ
sup
ηn(0)

Pηn(0)

{
sup

t∈[0,2δ)

(〈ηn(t), g〉 − 〈ηn(0), g〉) >
�

2

}
,

where the control of the term

sup
ηn(0)

Pηn(0)

{
sup

t∈[2δ[1/2δ],1]

∣∣∣∣〈ηn(t), g〉 −
〈
ηn

(
2δ

[
1

2δ

])
, g

〉∣∣∣∣ >
�

2

}

is justified by the fact that 1 − 2δ[1/2δ] < 2δ.
This combined with assumption (3.8) and Lemma 3.2 implies that

Pηn(0)

{
sup

t∈[0,2δ)

(〈ηn(t), g〉 − 〈ηn(0), g〉) >
�

2

}

≤ Pηn(0)

{
sup

t∈[0,2δ)

Z(ηn(·); t, n, λg) > β

(
�

2

)
− 2δC

e2|g|λ − 1

λ

}

≤ exp

{
−n

[
β�

2
− 2Cδ(e2|g|β − 1)

]}
. (3.10)

For � ≥ 4Cδ|g|, by minimizing the right-hand side of (3.10) with respect to λ > 0, we
obtain

Pηn(0)

{
sup

t∈[0,2δ)

(〈ηn(t), g〉 − 〈ηn(0), g〉) >
�

2

}

≤ exp

{
−n

1

2|g|
[

log
�

4δC|g| + (4δC|g| − �)

]}
.

If we choose �k = 1/k and δk = e−2|g|(k+1)/4|g|Ck, then we have

sup
ηn(0)

Pηn(0){W ′
〈ηn(·),g〉(δk) > �k} ≤ exp{−nk}.

For any γ > 0, set

K̃(g, γ ) =
⋂

k>γ+1

{
x(·) ∈ D([0, 1], R) : sup

t∈[0,1]
|x(t)| ≤ 1, W ′

x(·)(δk) ≤ �k

}
.

Clearly, the closure K(g, γ ) of K̃(g, γ ) is compact in D([0, 1], R) and

Pηn(0){〈ηn(·), g〉 ∈ K(g, γ )c} ≤ Pηn(0){〈ηn(·), g〉 ∈ K̃(g, γ )c}
≤

∑
k>γ+1

e−kn

≤ e−n

1 − e−n
e−nγ ,

which implies (3.9).
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Lemma 3.4. The family {Pn : n = 1, 2, . . .} is exponentially tight, i.e. for any M > 0, there
exists a compact subset KM of D([0, 1], M1(S)) such that

lim
n→∞

1

n
log Pn{Kc

M} ≤ −M.

Proof. Let {gi : i = 1, . . . , } be defined as in (3.4). For each m ≥ 1, let ιj = 1 or −1,

j = 1, . . . , m. Set

hι1,...,ιm
m (s) =

m∑
j=1

ιj

2j
gj (s).

For each M > 0, let

K̃M =
∞⋂

m=1

mM+2m⋂
l=mM+1

⋂
ι1,...,ιm

{µ(·) ∈ D([0, 1], M1(S)) : 〈µ(·), hι1,...,ιm
m 〉 ∈ K(hι1,...,ιm

m , l)}.

Next we show that K̃M is relatively compact. Since the space M1(S) is compact, it suffices
to verify that

lim
δ→0

sup
µ(·)∈K̃M

W ′
µ(·)(δ) = 0,

where
W ′

µ(·)(δ) = inf{ti }
max

i
sup

ti−1≤t, s<ti

ρ(µ(t), µ(s)).

For any ε > 0, choose m large enough so that 1/2m ≤ ε/2. Then we have

W ′
µ(·)(δ) ≤ inf{ti }

max
i

sup
ti−1≤t, s<ti

m∑
j=1

1

2j
|〈µ(t) − µ(s), gj 〉| + ε

2

≤
∑

ι1,...,ιm

W ′
〈µ(·),hι1,...,ιm

m 〉(δ) + ε

2
.

Based on the construction, we have, for each ι1, . . . , ιm,

lim
δ→0

sup
µ(·)∈K̃M

W ′
〈µ(·),hι1,...,ιm

m 〉(δ) = 0,

which implies that there exists δm > 0 such that

sup
µ(·)∈K̃M

max{W ′
〈µ(·),hι1,...,ιm

m 〉(δm) : ι1, . . . , ιm} ≤ ε

2m+1

and
sup

µ(·)∈K̃M

W ′
µ(·)(δm) ≤ ε.

Thus, K̃M is relatively compact in D([0, 1], M1(S)).
Let KM be the closure of K̃M . Then KM is compact and

lim
n→∞

1

n
log P{Kc

M} ≤ lim
n→∞

1

n
log P{K̃c

M} ≤ lim
n→∞

1

n
log

∞∑
m=1

mM+2m∑
l=mM+1

e−nl ≤ e−M.
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Recall that Y1(0), . . . , Yn(0) are independent with common distribution µ. For any ν in
M1(S), g in De(A), and µ(·) in D([0, 1], M1(S)), define

lµ(ν, g) = 〈ν, g〉 − log〈µ, eg〉,

L(µ(·), g) = 〈µ(1), g〉 − 〈µ(0), g〉 −
∫ 1

0
〈µ(s), e−gAeg〉 ds

− 1

2

∫ 1

0
(〈µ(s), eg〉〈µ(s), e−g〉 − 1) ds,

and

H(µ, µ(·), g) = lµ(µ(0), g) + L(µ(·), g),

Iµ(µ(·)) = sup{H(µ, µ(·), g) : g ∈ De(A)}.

Lemma 3.5. For any µ(·) in D([0, 1], M1(S)) and ε > 0, there exists a δ > 0 such that

lim sup
n→∞

1

n
log P {B(µ(·), δ)} ≤ −Iµ(µ(·)),

where B(µ(·), δ) = {ds(ν(·), µ(·)) < δ}.
Proof. It follows by direct calculation that, for any g in De(A),

E(exp{n(lµ(ηn(0), g))}) = 1.

This combined with Lemma 3.2 implies that

E(exp{nH(µ, ηn(·), g)}) = 1. (3.11)

Since the functional H(µ, ν(·), g) is continuous in ν(·), for any ε > 0 and any µ(·) in
D([0, 1], M1(S)), there exists δ > 0 such that

|H(µ, ν(·), g) − H(µ, µ(·), g)| < ε on B(µ(·), δ).
This combined with Chebyshev’s inequality and (3.11) implies that

Pn{B(µ(·), δ)} ≤ E(exp{nH(µ, ηn(·), g)})
inf{ν(·)∈D([0,1],M1(S))} exp{nH(µ, ν(·), g)}

≤ exp {−n(H(µ), µ(·), g) − ε)}.
The lemma follows from the fact that g is arbitrary.

Theorem 3.4. For any closed subset F of D([0, 1], M1(S)),

lim sup
n→∞

1

n
log Pn{F } ≤ − inf

µ(·)∈D([0,1],M1(S))
Iµ(µ(·)). (3.12)

Proof. The local estimate obtained in Lemma 3.5 guarantees that (3.12) holds for compact
subset F . This combined with exponential tightness implies (3.12).
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4. Comparison with the Fleming–Viot process

If the sampling rate β(n) ≡ γ is a constant in the Moran particle system then the empirical
process ηn(t) is known to converge to the Fleming–Viot process with sampling rate γ when n

goes to ∞. Thus, the results considered in Section 3 are related to the asymptotic behavior of
the Fleming–Viot process when the sampling rate approaches 0. In case A, the large deviation
principle in Theorem 3.3 has speed 1/n, while β(n) = o(1/n). It is thus reasonable to expect
a large deviation principle for the Fleming–Viot process with speed ε when the sampling rate
is of the form εb(ε) with b(ε) converging to 0 as ε goes to 0. Next we show that the large
deviation principle thus obtained has a trivial rate function which is essentially different from
the particle model.

In the remainder of this section, S is assumed to be a compact set. Let the sampling rate be
εb(ε), and let the corresponding Fleming–Viot process starting at µ be denoted by µε(t). The
law of µε(t) is denoted by P ε

µ. The next theorem establishes the exponential tightness of the
family {P ε

µ : ε > 0}.
Theorem 4.1. For any M > 0, there exists a compact subset K of C([0, 1], M1(S)) such that

lim sup
ε→0

εb(ε) log P ε
µ(Kc) ≤ −M. (4.1)

Proof. Since supε>0, t∈[0,T ] |〈µε(t), g〉| is uniformly bounded for each g in D(A), by [4]
Schied’s criterion for exponential tightness, to prove the exponential tightness of the family
{〈µε(·), g〉}, it suffices to verify that there exist constants α > 0 and β > 0 such that

sup
[s,t]⊂[0,T ]

E

(
exp

{
α

ε
√

t − s
|〈µε(t), g〉 − 〈µε(s), g〉|

})
≤ β1/εb(ε). (4.2)

For any constant θ , we have

E(exp{θ |〈µε(t), g〉 − 〈µε(s), g〉|})
= E(exp{θ(〈µε(t), g〉 − 〈µε(s), g〉)} : 〈µε(t), g〉 − 〈µε(s), g〉 ≥ 0)

+ E(exp{−θ(〈µε(t), g〉 − 〈µε(s), g〉)} : 〈µε(t), g〉 − 〈µε(s), g〉 < 0)

≤ [E(exp{2θ(〈µε(t), g〉 − 〈µε(s), g〉)})]1/2

+ [E(exp{−2θ(〈µε(t), g〉 − 〈µε(s), g〉)})]1/2.

Define

Mθ(s, t; g) = exp

{
θ

[
〈µε(t), g〉 − 〈µε(s), g〉 −

∫ t

s

〈µε(u), g〉 du

]

− εb(ε)θ2

2

∫ t

s

varµε(u)(g) du

}
.

Then Mθ(s, t; g) is a P ε
µ local martingale, and thus a supermartingale. By direct calculation,

E(exp{θ [〈µε(t), g〉 − 〈µε(s), g〉]}) ≤ E(Mθ(s, t; g)) exp

{
(t − s)

(
c1θ + c2

εb(ε)θ2

2

)}

≤ exp

{
(t − s)

(
c1|θ | + c2

εb(ε)θ2

2

)}
,
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where c1 = supx |Ag(x)| and c2 = 2 supx g2(x). Choosing θ = α/εb(ε)
√

t − s and θ =
−α/εb(ε)

√
t − s, we respectively obtain

E

(
exp

{
α

εb(ε)
√

t − s
(〈µε(t), g〉 − 〈µε(s), g〉)

})
≤ C1/εb(ε),

E

(
exp

{
− α

εb(ε)
√

t − s
(〈µε(t), g〉 − 〈µε(s), g〉)

})
≤ C1/εb(ε),

where C = exp{c1α
√

T + α2c2/2}. Now, by choosing β = 2
√

C, we obtain (4.2).
Finally, for any M > 0, and a countable dense subset {gn} of D(A), there exist compact

sets Kgn in C([0, T ], S) such that

P{〈ξε· , gn〉 ∈ Kc
gn

} ≤ exp

{
−M

n

εb(ε)

}
.

Now set K = {µ(·) ∈ C([0, T ], M1(S)) : 〈µ(·), gn〉 ∈ Kgn}. Then it is clear that K is compact
in C([0, T ], M1(S)) and

lim sup
ε→0

εb(ε) log P ε
µ{µε(·) ∈ Kc} ≤ −M.

By a result in [17], every subsequence of P ε
µ has a subsequence that satisfies a large

deviation principle with certain rate function. Focusing on a particular subsequence that has
rate function J (x), it follows that, for every µ(·) in C([0, T ], M1(E)),

lim
δ→0

lim inf
ε→0

εb(ε) log P ε
µ{d(µ(·), ν(·)) < δ} = lim

δ→0
lim sup

ε→0
εb(ε) log P ε

µ{d(µ(·), ν(·)) ≤ δ}
= −J (µ(·)),

which implies that, for every µ(·) satisfying J (µ(·)) > 0,

lim
δ→0

lim inf
ε→0

ε log P ε
µ{d(µ(·), ν(·)) < δ} = lim

δ→0
lim sup

ε→0
ε log P ε

µ{d(µ(·), ν(·)) ≤ δ} = −∞.

It follows from (4.1) that

lim sup
ε→0

ε log P ε
µ{µε(·) ∈ Kc} ≤ −∞.

It is known (cf. [18]) that a full large deviation principle holds for the Fleming–Viot process
with zero motion (A = 0). The calculation above shows that in this case large deviations hold
for P ε

µ with speed ε and a rate function taking values 0 or ∞.
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