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Semi-classical Asymptotics for the
Schrodinger Operator with Oscillating
Decaying Potential

Mouez Dimassi

Abstract. 'We study the distribution of the discrete spectrum of the Schrodinger operator perturbed
by a fast oscillating decaying potential depending on a small parameter h.

1 Introduction

This note is devoted to the study of the discrete spectrum of the operator
H(h):=-A,+V(hy,y),

where A, is the usual Laplacian with respect to y € R"” and h > 0. The function
(x,y) = V(x,y) is smooth, real-valued, and T'- periodic on y. Suppose in addition
that V is bounded with all its derivatives and satisfies

(1D lim sup |V(x,y)|=0.

[x]—>+o0 yeR*/T

The operator H := —A in L*(R") with domain H?(R") is self-adjoint; its discrete
spectrum is empty, while the essential one coincides with [0, +co[. Under the above
hypothesis, the operator H( ) admits a unique self-adjoint realization in L? (R") with
domain H*(R™). Moreover, the essential spectrum of H(h) and H are the same. In
]-00, 0[ we have a discrete spectrum caused by the potential V.

There are many works on the location of the absolutely continuous spectrum of
the Schrodinger operator with oscillating decaying potential (see [1,2,7-9,23,24,33]
and the references given there).

The asymptotic behaviour of the discrete spectrum of H(1) = -A + V(y, y) near
the origin was studied in [25].

In the one-dimensional case, the existence and the asymptotic behaviour of the
eigenvalues of the operator Q(h) = —9% + Vy(x) + V(x, ¥), tending to the border
of the essential spectrum as i . 0, were established in [5] for Vy = 0, and in [15]
for periodic potential V; (see also [4,5,14,16,17]). Our problem here is different. In
fact, the scaling of H(h) is that of semiclassical analysis. In particular, the number
of discrete eigenvalues grows as i \ 0 and satisfies a Weyl type asymptotics. To our
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best knowledge, there has been no work so far treating the semiclassical asymptotics
of the Schrodinger operator with oscillating decaying potential.

In this paper, for f € Cg°(]—o0,0[;R), we give a complete asymptotic expansion
of the trace of f(H(h)) in powers of h. We also establish a Weyl-type asymptotics
formula with optimal remainder estimate. Our results depend on the Floquet eigen-
values of a periodic Schrédinger operator depending on the variable “x” (see (2.1)).
The proof is similar in spirit to the one in [11] and based on the effective Hamiltonian
method (see Subsection 2.2).

The paper is organized as follows: In the next section, we formulate our main re-
sults and draw conclusions and comments on it. We give an outline of the proofs in
Subsection 2.2. We introduce a class of symbols and the corresponding h-Weyl opera-
tors (see Subsection 3.2). In Subsections 3.1and 3.3 we recall the effective Hamiltonian
method. The proofs of the main results are given in Section 4.

Notation We employ the following standard notations. Given a complex function
f»n depending on a small positive parameter h, the relation f;, = O(h") means that
there exists Cy, hy > 0 such that |f;,| < Cyh" for all h € ]0, hy[. The relation f, =
O(h*°) means that, for all N € N = {0,1,2,...}, we have f;, = O(hY). We write
fu ~ X720 ajh? if, for each N € N, we have fj, - Z;V:O ajh/ = O(hN*).

Let H be a Hilbert space. The scalar product in H will be denoted by (-, - ). The
set of linear bounded operators from H; to H, is denoted by £ (H;, H,) and £(Hj)
in the case where H; = H,.

2 Preliminaries and Results

LetT = @, Ze; be a lattice generated by the basis e, e,, . . ., e, € R". The reciprocal
lattice ' is defined as the lattice generated by the dual basis {e;, ..., e} } determined
bye;-ef =2nd;j,i,j=1,...,n. Let E and E* be fundamental domains for I and I'*,
respectively. If we identify opposite edges of E (resp. E*), then it becomes a flat torus
denoted by T = R”/T (resp. T* = R"/T*).

Le V be as above. For (x, £) fixed in R*", we define

2.1) P(x,&) = (Dy + &)* + V(x,y): L*(T) — L*(T)

as unbounded operator with domain H?(T). The Hamiltonian P(x, &) is semiboun-
ded and self-adjoint. Since the resolvent of (D, + £)? is compact, the resolvent of
P(x,£&) is also compact, and therefore P(x, &) has a complete set of (normalized)
eigenfunctions @, (-,x,&) € H*(T), n € N, called Bloch functions. The corre-
sponding eigenvalues accumulate at infinity, and we enumerate them according to
their multiplicities,

(2.2) A(x, &) < Ap(x,8) <-ov.

Since e 7" P(x, &)e™?" = P(x, E+y*), it follows that & — A, (x, &) is T* —periodic.
The function & — A,,(x, &) is called the band function. Standard perturbation theory
shows that A,,(x, £) is real continuous function and analytic in a neighborhood of
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any &, such that A, (x, &) is simple, i.e.,
(23) Am-1(%5€0) < Am(x, &0) < Amar(x, &o).

We are now in a position to state our main results.

Theorem 2.1  Assume (1.1), and let f € C3°(]-00,0[;R). The operator f(H(h)) is
of trace class, and there exists a sequence of real numbers (a;) jen such that

(2.4) tr[ f(H(h))] ~ Za H" h N0,
with

. ap = " A s dxd&.
(25) CORDY/ICE

Let[a, b] c ]—o0, 0] be an h-independent sub-interval, and let N([a, b]; k) denote
the number of eigenvalues of H(h) in [a, b] (counted with their multiplicity).

Corollary 2.2 Under the assumption of Theorem 2.1, we have
(2.6) hm[(27rh) N([a,b];h)] = > vol{ (x, &) € R" x E*; A (x, §) € [a,b]}.

k>1

Under an additional assumption, we shall improve the above corollary. Fix b < 0,
and let

£y = U{ (v, 8) € R" x B A (x,€) = b}
j=1

We make the following assumption :
H : for all (x0, &) € Zp, Aj(x0, &o) satisfies (2.3) and V, ¢1;(x0, o) # 0.

Theorem 2.3  Under the condition stated above, we have

(2nh)"N(] - 00,b];h) = > vol{ (x, &) e R" x E*;A;(x, &) < b} + O(h), (h ~ 0).

S

Notice that if V is positive, then the set of discrete spectrum is empty. In particular,
the leading terms of the above asymptotics are all zero. The following result can be
useful.

Theorem 2.4  We suppose that there exists xo € R" such that [, V(xo,y)dy < 0.
Then M (x9,0) < 0. In particular, for b small enough, the right-hand sides of (2.5) and
(2.6) are strictly positive.

Remark 2.5

(i) Notice that only a finite number of terms in the above sums are non-zero, since
limy—co A (%, §) = +00. On the other hand, since sup . [V (x, y)| - 0 as |x| tends
to infinity, it follows that lim| |, oo Am (x, &) > 0. Thus, we can replace R" x E* in (2.5)
by K x E*, where K is a compact set in R”.
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(ii) Here is another way of stating (2.5). Let p(t, x) be the integrated density of
states corresponding to the operator —A,, + V(x, y) (where x is a parameter), i.e.,

t,x):=(2n)™" f d
p(t,x) = (2m) mZZ:l (6B A (2 E)<E) ¢

Using integration by parts in (2.5), we obtain

aO:—[RzAf’(t)p(t,x)dtdx.

The following result will be useful in the study of the spectral shift function and
can be proved in much the same way as Theorem 2.1.

Theorem 2.6  We assume here that {x € R",V(x,y) # 0} c K, for some compact
K c R" independent of y € T. For f € C°(R;R), the operator (f(H(h)) - f(HO))
is of trace class, and there exists a sequence of real numbers (b;) jen such that

e[ f(H(h)) - f(Ho)] ~ ibjhf-", h\o0,
j=0

with

bo= [ [ F®)]po(0) - plt.0)] drdx.

Here py(t) = c,(2m)™" 12 s the integrated density of states corresponding to — A, where
Cy is the volume of the unit ball in R" and t, = (|t| + t)/2.

2.1 Comments

(a) Our results remain valid for the periodic Schrédinger operator with oscillating
potential. In fact, let y = V,(y) be a real-valued I'-periodic function, and consider
the operator

P(h) =P+ V(hy,y), P=-A,+Vo(y).

The operator P with domain H?(IR") is self-adjoint; its spectrum is the union of finite
or infinite sequence of intervals [«,, B, ] called band that are separated by gaps. Un-
der the assumption (1.1) the essential spectra of P(h) and P are the same. In R~ ¢ (P)
we have a discrete spectrum caused by the potential V. Let [a, b] be a closed interval
such that [a, b] n 0(P) = @. Replacing H(h) by P(h), Theorems 2.1-2.3 and Corol-
lary 2.2 hold provided that we replace Ax(x, &) by px(x, &), where now pi(x, &) are
the eigenvalues of the periodic hamiltonian

Pi(x,§) = (Dy + §)* + Vo(y) + V(x,): L*(T) — L*(T).

(b) Fix n > 3, and assume for simplicity that x ~ sup .y |V (x, y)|"?* e LY(R™)
and that V is negative. By the Cwikel-Lieb-Rozenblum bound (see, for instance,
[22,28]) it is known that

N(]-o00,0[;h) <L,h™" / sup |V (x, y)|["?dx,
R" yeT
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where the constant L, depends only on n. Using the above inequality we can prove
that (2.6) remains true for b = 0. This and more precise results on the discrete spec-
trum of the perturbed periodic Schrédinger operator near the edges of gaps will be
considered in a forthcoming paper with M. Assal.

2.2 Outline of the Proofs

By the change of variable x = hz, the operator H(h) is unitarily equivalent to
~ _ 2 E
2.7) H(h) =-n*A. +V(z, h).

In the case where V(x,y) = V(x) is independent of the periodic variable y, the
operator H(h) is still the semiclassical Schrodinger one, and all our results are well
known in this case (see [13,27] and the references given there).

However, there are two spatial scales in the potential V (hx, x), namely x and
y = hx, which are completely different when h tends to zero. So H(h) cannot be
identified with the semiclassical Schrodinger operator method, which allows us to
reduce the spectral study of H(h) to the one of a system of h-pseudodifferential op-
erators E_, (z, h), acting on L?(T*;CN) (see Proposition 3.2). Thus, we establish a
trace formula involving the effective Hamiltonian E_. (z, h) (see (4.6)). Now, using
some standard results on h-pseudodifferential calculus, we prove our results.

3 Effective Hamiltonian Method

3.1 Grushin Problem: Brief Description

In this paragraph we review some of the standard facts on the Grushin problem. Let
Hi, H, and Hj; be three Hilbert spaces, and let P € £(H;, H3). Assume that there
exists R, € L(H;, Hy) and R_ € £(H;, H3) such that the operator

P-z R_
CP(Z):(R+ 0):H1><H2—>H3><H2

is bijective for z € Q. Here, Q) is an open bounded set in C. Let

te) - (5(8) 51(8))

be its inverse. We refer to the problem P(z) as a Grushin problem and the operator
E_.(z) is called effective Hamiltonian. The following properties are consequence of
the identities Eo P =Tand Po € = I

(3.1) (P - z) is invertible if and only if E_,(z) is invertible,
(3.2) dimker(P - z) = dimker(E_,(z)),

(3.3) (P-2)"=E(z) - E.(2)E_} (2)E_(2),

(3.4) El(z) =R,(z-P)"'R_.
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On the other hand, since z — (P - z) is holomorphic, it follows that the operators
E(z),E+(2z), E_1(z) are also holomorphic in z € Q). Moreover, we have

(3.5) 0:E_(z) = E_(2)E+(2).

This identity comes from the fact that R, are independent of z.
3.2 Classes of Symbols and Notations

For N € N, we denote by S(R*"; My (C)) the space of P € C“(Rif‘E;MN((C)) such
that for all & and B in N” there exists C, g > 0 such that

(3.6) 10295 P(x, &) Iaty(c) < Caops

where My (C) is the set of N x N-matrices.

If P depends on a semiclassical parameter & €]0, hg | and possibly on other param-
eters as well, we require (3.6) to hold uniformly with respect to these parameters. For
h-dependent symbols, we say that P(x, & h) has an asymptotic expansion in powers
of h, and we write

P(x, Eh) ~ Y Py(x, )W
j=0
if for every m e N,
B (P Y Pk ) € S(R¥ My (C)).
j=0

For P € S(R?*"; My (C)), the h-Weyl operator P = P*(x, hD,; h) is defined by
PY(x,hDy; h)u(x) = (2nh)™" fR f ei("_)’)'EP( ¥, f;h) u(y)dydé.

Here, D, = 1 %. Assume now that P(x, & h) is T*-periodic in x. Then P* (x, hDy; h)
is well defined and bounded from L*(T*) into L*(T*). In particular, we have a global
h-pseudodifferential calculus on the torus in analogy to the one in Euclidean space. In
an appendix, we recall some well-known results on the h-pseudodifferential calculus.

3.3 Reduction to a Semiclassical Problem

In this subsection, we recall some results on the effective Hamiltonian method of the
perturbed periodic Schrodinger operator. For the convenience of the reader we re-
peat the relevant material from [18] without proofs, thus making our exposition self-
contained. We will only point out the main ideas of the proofs.

In the sequel we fix a compact interval I = [a,b] c R, and we denote by Tt the
distribution in 8'(R*") defined by Tr(x, y) = ¥ per 8(x — hy — hf3). For m € N, we
introduce the following Hilbert space with its natural norm

L™= {u(x)Tr(x,y) ; 05u e L*(R"), Va,|a| < m}.
Using that

[(th +D,)* + V(x,y)] (u(x)Tr(x,y)) = [(—thx + V(x, %) ) u(x)] Tr(x, )
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and (2.7), it follows easily that the operator H(h) acting on L?(R") with domain
H?(R™) is unitary equivalent to

(3.7) P(h):= (Dy +hDy)” + V(x, y):L® — L°

with domain IL2. The advantage of using (3.7) lies in the fact that P(h) is the semi-
classical Schrodinger operator with respect to x with symbol P(x, §) = (D, + &) +

Vi(x,y).
First, we work on the symbolic level. Using the Floquet theory, we construct the
following Grushin problem for the symbol P(x, ).

Proposition 3.1 ([18, Proposition 2.1])  There exist N € N, a complex neighborhood Q)
of I, and a bounded operator r, in £( L*(T); (CN) such that forallz € Qand0 < h < hg
small enough, the operator

P(x,&,2) := (P(x,ri) —Z Tg') :H*(T) x CN — L*(T) x C",

is bijective with bounded two-sided inverse

_[ex&2)  ei(x82)
£(x,8,2) = (e<x, ) e(n {Z)) |

Here, e_, € S(Rff s My (C)) is T*-periodic in &.

We now turn to the quantization of P(x, &, z) and €(x, &, z). According to Propo-
sitions A.1 and A.2, we have

PY(x,hDy,z) 0 & (x,hDy,z) =1+ hR"(x, hDy, z; h),
with |[R"] = O(1). By Proposition A.4, the right-hand side of the above equality is

invertible for & small enough. Consequently, we have the following proposition.

Proposition 3.2 ([18, Theorem 3.7, Remark 3.9])  There exist N € N, a complex neigh-
borhood Q of I, and a bounded operator R, in L(LO;LZ(T*;CN)) such that for all
ze€ Qand 0 < h < hg small enough, the operator

P(z,h) = (P(%}i—z RO+) L2 L2(T5CY) — L0 x LA(T*CY)

is bijective with bounded two-sided inverse

_(E(zh)  E(zh)
&(z,h) = (E_(Zz,h) E_+(Zz,h))'

Here, E_, := E”, (x, hDy, z; h) is an h-pseudodifferential operator with symbol I'* -pe-
riodic in x and

E_.(x,&zh) ~ Y E o (x,&2) h,

1>0

where Eog . (x, &,2) = e_ (&, —x, z) is given in Proposition 3.1.
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For simplicity of notation we ignore the dependence of E, E,, E_, on (z, k). From
(2.1), (2.2), (3.2), (3.1), (3.3), (3.4), (3.5), and the above propositions, it follows that

(3.8) (z-P(h)) " =-E+E,E\E.,
(3.9) Bl =R, (z2-P(h)) R,
and

(3.10) 9,E_, = E_E,,

det(e_+(x, f,z)) =0 iff 3k € N such that z = A¢(x; ),

_ C
(3.11) [(e-s(x,€,2)) M camtn(oy) < 0z’
dimker(P(x, &) — z) = dimker(e_, (x, &, 2)).

Remark 3.3 Letzy € R, d = dimker(e_.(x,&,2)) for a fixed (x,£). By ordi-
nary perturbation theory (see Kato [21]) we can reorder the eigenvalues (1;(2) )1<j<n
of e_,(x, &, z) to be holomorphic in a neighborhood of zy € R and A;(zp) = -+- =
Ai(z0) = 0. Using (3.11) we see that [1;(z)| > C;|Jz|, so Ai(zo) # 0 forall1< j < N.
Hence, z — dete_. (x, £, z) has a root zy of multiplicity d.

4 Proof of the Results

4.1 Proof of Theorem 2.1

Fix a < b < 0 such that supp f c ]Ja,b[ =: I. Let ¢(x) € C*(R%;[0,1]) be equal to
one for |x| > 2R and ¢(x) = 0 for |x| < R. We fix R large enough such that

b
(4.1) sup |e(x)V(x,y)| < %
(x,y)eR2"
Let e_,(x, &, z) be the effective Hamiltonian given by Proposition 3.1 associated with
P(x,§) = (Dy + O+ o(x)V(x,y),
and put
(42) E_+(X, f, Zs h) = ,e\—+(£) —X, Z) + E—+(-x> 5) Z; h) - E2+(x> fa Z)-
e (& -x,2)+ Y WE;_.(x,&2).

j1

By (4.1), we have
(P(x,8) ~2)u,u) > %Hul\z) Vu e Cg (T CY),
uniformly on z € [a, b]. Combining this with (3.10), we deduce that
|dete_.(x, &, 2)| > é uniformly on (x, £, z) e R x T* x [a, ],
which together with (4.2) yield, for h small enough,

(4.3) |detE_, (x,& 2 h)| > % uniformly on (x, &,z) € T* x R" x [a, b].
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On the other hand, from the properties of ¢, we have
E_.(x,&2zh) = E_,(x, &z h) for large &.

It follows from (4.3) and Proposition A.4 that for & small enough, (E\_Jr)_1 is well
defined and holomorphic for z near [a, b] and

[CE=) e zzcreseny) = O(1).

Let f: € C3°((a,b) + i[-1,1]) be an almost analytic extension of f, i.e., f=fonR
and 9. f vanishes on R to infinite order, i.e., 9, f(z) = On(|Jz|N) for all N € N. Then
the functional calculus due to Helffer-Sjostrand (see e.g., [13, Chapter 8]) yields

1®) =~ [ P) L),

Here L(dz) = dxdy is the Lebesgue measure on the complex plane C ~ Ri,y. The

identity

B, =E, -EL(E., -E)E,
combined with (3.8) and the fact that E-L, E, E., E_ are holomorphic in z near [a, b],
give

@) )= 8@ (BELE - E)ELE ) L(d).

In the above equality we have used the fact that [ 9.f(2)K(z)L(dz) = 0 provided
that K(z) is holomorphic in a neighborhood of supp .

By Proposition A.3, (E_, — E_) is of trace class and we can take the trace and
permute integration and the operator tr in (4.4). The identity d,E_, = E_E, shows
that for Jz # 0,

45)  tw(EEN(E, -E)ELE) =u(EL(E, -E_,)ELa,E_.).
Let x € C3° (R}) be equal to 1 in a neighborhood of
Mg (supp(E°, (x, & 2) — &, (£ -x,2))),
and denote by ¥ = x* (hD,) the corresponding operator on L*(T*; CN). Since
Hg( supp(Eo,—+(x,&,2) =€, (& -x,2))) nsupp(l- ) = &,
it follows from Proposition A.5 that
[ (E;r - E—+)E\jrazE—+(1 =0l = O(h™).
On the other hand, (3.9) yields |EZL | = O(|Jz|™). Hence
|EZL(E-s = B )EZL0.E_. (1~ Dl = O(h> 32 ).

Combining this equality with (4.4) and (4.5) we obtain

w[F(P)] = —% w [BFEL(E - B ELaE FL(d2)] + O(h).
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Splitting the integral into two terms and using the fact that E-1 9, E_, is holomorphic
in z, we get

46)  w[f(P)] = —%tr[ [ 55 (@) E L 0.E F(d2) | + O(h).

The proof of the following lemma is similar to the one in [11].

Lemma 4.1  There exists r(x, & h) € S(R*", My(C)) such that
r(x, &h) ~ 3 Wri(x, §)
20

and

Opy (r(x, &) =~ [ 3F(@)(E-0) 8- L(d).

Moreover, r; is T*-periodic in x for all j > 0 with:
1 = - _
ro(x,8) = - f 0.f(2)(Eo,—+(x, &,2)) "0, Eo -+ (x, & 2) L(dz).

If we restrict the integral in the right-hand side of (4.6) to the domain |Jz| < ke,
then we get a term O(h*) in trace norm. Here we have used the fact that 9, f(z) =
On(|32|N) for all N € N. If we restrict our attention to the domain |Jz| > h, then by
Lemma 4.1 and Proposition A.3 we get (2.4). To finish the proof let us compute a,.
We have

ag = /f tr[ro(x, &)]dxdé = f/ tr[ro(x, &)]dxd&
, f/ (= f 3. J(2) [ (Eo - (x,£,2)) 0. E0 . (x, & 2) | L(d2) ) dxdE.

Here tr denotes the trace in the set of square matrices. Thanks to Liouville’s formula

(ie, tr(9,A(z) A7 (2)) = adjf;‘?z()z) in the sense of matrices), we get

~ 1 == 0:detEl (x,§2)
ﬂo—ff*an( n[azf(z) detE% (x,¢&,2) L(dz))dxd?.

To prove (2.5) we use Remark 3.3 and the following lemma.

Lemma 4.2 Let g be an analytic function. Let (zx)k»1 be the roots (counted with
their multiplicity) of g in supp(f). We have:

-1 == g(2) _
— [aje o(z) L(42) = LS (z0).

) k1

Proof This follows from the formula % (2

) = 8(- — z) and the fact that

z—2¢

g() => L +k(2),

g(Z) k1%~ %k

where k is holomorphic for z in a small neighborhood of supp . ]
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4.2 Proof of Corollary 2.2
For every small € > 0, choose ]TG,E € C5°(R;[0,1]) with

1[a+e,b—e] < E < l[a,b] < ﬁ < 1[a—e,h+e]~
It then suffices to observe that
tr[ fe(H(h))] < N([a,b];h) <tr[ fe(H(h))],
which yields

ygg%((znh) tr[ fo(H(R))]) < lim (27h)" N([a, bJ; 1)
<lim lim (@) e [f(H(R)]),
and to apply Theorem 2.1.
4.3 Proof of Theorem 2.3

To prove this theorem one needs a more precise trace formula than Theorem 2.1. Let
0 € C5°(R), and put

. 1 )
05 (7) := —f itr/hg(t)dt.
(1) h 4 ()
Analysis similar to that in the proof of (4.6) shows that

47) [ f(H(h))0u(t - H(R))] =
tr[ - % [5zf(z)éh(t—Z)(E—+)_lazE—+5C\L(dZ)] +0(h%),

In the first equality we have used the fact that f(z)0):(t — z) is an almost analytic
extension of f(x)0(t — x), since z ~ ),(¢ — z) is analytic. Here, the support of f
is in a small neighborhood of z = b. Trace formulas involving effective Hamiltonians
like (4.7) were studied in [11].

According to the definition of %, and (3.10) we have

2y = {(x, &) e R™; e_,(x,&b) =0}
Fix (x¢, &) € Zj. Under the assumption of Theorem 2.3 we can choose
Ai(x,&) -z 0 - : -0
0 .o : .
el b g - - f
0
where det(g(x, &, 2)) # 0forall (x, &, z) in in a small neighborhood W of (xq, &, b).

The assumption H implies that the principal symbol e_, (&, -x,b) of E_,(b) is
micro-hyperbolic at every point (x, &) € Zy.
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Thus, applying [11, Theorem 1.8] to the left-hand side of (4.7), we obtain
(4.8) tr[ f(H(h))0u(t - H(h))] ~ > B;h™",  (h ~0).
=0

Now Theorem 2.3 follows from Theorem 2.1 and (4.8) by tauberian arguments (see
[27, Theorem V-13]).

4.4 Proof of Theorem 2.4

According to (2.1) and (2.2), 1;(x0, 0) is the first eigenvalue of the operator P(xy,0) :
~A+V(x,y):L*(T) - L*(T). Let yo(y) = 1 be the constant function on the torus.
By the min-max principle, we have

M (x0,0) = infyez (1) (P(x0, 0)¥, ¥) < (P(x0,0) 0, Yo) = /E V(x0,y)dy,

which yields Theorem 2.4.

A Appendix

In this appendix, we recall some well-known results on the h-pseudodifferential cal-
culus. For the proofs we refer to [13].
By X we denote either R*" or T* x R". We recall that

S(T* x R"; My (C)) = {P e S(R*; My (C)); T* - periodic in x}.
Put Y =TI, X (i.e, Y = R” (resp. T*) for X = R?" (resp. T* x R")).

Proposition A.1 (Composition formula) Let a; € S(X;My(C)), i = 1,2. Then
b*(y,hDy;h) = a’(y, hDy) o a¥ (y, hD,) is an h-pseudo-differential operator, and

b(yomsh) ~ 3 by(y ), in S(X; My (C)).

j=0

Proposition A.2 (L*- boundedness) Leta = a(x,&h) € S(X;My(C)). Then
a"(x,hDy;h) is bounded : L*(Y;CN) — L2(Y;CN), and there is a constant C inde-
pendent of h such that

[a" (x, hDy; h)| < C.

Proposition A.3 (trace) Let a = a(x,&h) € S(X;My(C)). We assume that
E);’C‘E)?a € L'(X), for all |a| + |B| < 2n + 2. Then a*(x,hD,;h) is trace class opera-
tor and

tr(a” (x,hDysh)) = ﬁ/fyﬁ(a(x, &h))dxdé,

la”(x, kD h) | < Cub™" S ffy [0%95a(x, &) |acy(cydxdé.

|a|+]Bl<2n+1
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Proposition A.4 (invertibility) Let a = a(x, &h) € S(X; My (C)). We assume that
there exists C > 0 (independent of h) such that

|deta(x, &h)| > C.
Then, for h small enough, the operator a¥ (x, hDy;h):L*(Y) — L*(Y) is invertible

with uniformly bounded inverse.

Proposition A.5 Let Q, Qz, Q3 € S(X; My(C)). We assume that
Q= {{ e R Q(x, &) £ 0}
is compact and T1;Q, N I1;Q3 = @. Then
Q1" (%, hDy) 0 Q) (x, hDy ) © Q¥ (x, hDy) [1r = O(h™).

Acknowledgments The author wishes to thank the Vietnam Institute for Advanced
Study in Mathematics, where the paper was written, for financial support and hospi-
tality. We would like to thank M. Weinstein for giving us some references. We thank
both referees for their constructive comments and suggestions.

References

[1] M. Sh. Birman and M. Solomyak, On the negative discrete spectrum of a periodic elliptic operator
in a waveguide-type domain, perturbed by a decaying potential. J. Anal. Math. 83(2001), 337-391.
http://dx.doi.org/10.1007/BF02790267

[2] M. Sh. Birman, A. Laptev, and T. A. Suslina, Discrete spectrum of the two-dimensional periodic
elliptic second order operator perturbed by a decreasing potential. 1. Semi-infinite gap. St.
Petersburg Math. J. 12(2001), 535-567.

[3] D. I Borisov, The spectrum of the Schrodinger operator perturbed by a rapidly oscillating potential.
J. Math. Sci. (N. Y.) 139(2006), no. 1, 6243-6323.  http://dx.doi.org/10.1007/510958-006-0349-6

[4] D.I.Borisov and R. R. Gadyl'shin, On the spectrum of the Schrodinger operator with a rapidly
oscillating compactly supported potential. (Russian) Teoret. Mat. Fiz. 147(2006), no. 1, 58-63;
translation in Theoret. and Math. Phys. 147(2006), no. 1, 496-500.
http://dx.doi.org/10.4213/tmf2022

, On the spectrum of a selfadjoint differential operator with rapidly oscillating coefficients on

the axis. (Russian) Mat. Sb. 198 (2007), no. 8, 3-34; translation in Sb. Math. 198 (2007), no. 7-8,
1063-1093  http://dx.doi.org/10.4213/sm1986

[6] V.S. Buslaev, Semiclassical approximation for equations with periodic coefficients. (Russian) Math.
Surveys 42 (1987), no. 6, 97-125.

[7] M. Christ and A. Kiselev, Absolutely continuous spectrum for one-dimensional Schrodinger
operators with slowly decaying potentials: some optimal results. J. Amer. Math. Soc. 11(1998), no. 4,
771-797.  http://dx.doi.org/10.1090/S0894-0347-98-00276-8

[8] A. Devinatz and P. Rejto A limiting absorption principle for Schrodinger operators with oscillating
potentials, Part I. ]. Differential Equations 49(1983), no. 1, 29-84.
http://dx.doi.org/10.1016/0022-0396(83)90019-0

[9] S. Denisov, Absolutely continuous spectrum of multidimensional Schrodinger operator. Int. Math.
Res. Not. (2004), no. 74, 3963-3982.  http://dx.doi.org/10.1155/5107379280414141X

[10] M. Dimassi, Développements asymptotiques des perturbations lentes de lopérateur de Schrodinger

périodique. Comm. Partial Differential Equations 18(1993), no. 5-6, 771-803.
http://dx.doi.org/10.1080/03605309308820950

, Trace asymptotics formulas and some applications. Asymptot. Anal. 18(1998), no. 1-2,

(1]

1-32.
[12] , Resonances for a slowly varying perturbation of a periodic Schrodinger operator. Canad. J.
Math. 54(2002), no. 5, 998-1037.  http://dx.doi.org/10.4153/CJM-2002-037-9
[13] M. Dimassi and J. Sjéstrand, Spectral asymptotics in the semi-classical limit. London

Mathematical Society Lecture Note Series, 268, Cambridge University Press, Cambridge, 1999.

https://doi.org/10.4153/CMB-2016-022-8 Published online by Cambridge University Press


http://dx.doi.org/10.1007/BF02790267
http://dx.doi.org/10.1007/s10958-006-0349-6
http://dx.doi.org/10.4213/tmf2022
http://dx.doi.org/10.4213/sm1986
http://dx.doi.org/10.1090/S0894-0347-98-00276-8
http://dx.doi.org/10.1016/0022-0396(83)90019-0
http://dx.doi.org/10.1155/S107379280414141X
http://dx.doi.org/10.1080/03605309308820950
http://dx.doi.org/10.4153/CJM-2002-037-9
https://doi.org/10.4153/CMB-2016-022-8

Semiclassical Asymptotics 747

[14] V. Duchénes, I. Vukicevic, and M. Weinstein, Scattering and localization properties of highly
oscillatory potentials. Commun. Pure Appl. Math. 67(2014), no. 1, 83-128.
http://dx.doi.org/10.1002/cpa.21459

[15] , Oscillatory and localized perturbations of periodic structures and the bifurcation of defect
modes. SIAM J. Math. Anal. 47(2015), no. 5, 3832-3883.  http://dx.doi.org/10.1137/140980302
[16] , Homogenized description of defect modes in periodic structures with localized defects.

Commun. Math. Sci. 13(2015), no. 3, 777-823.  http:/dx.doi.org/10.4310/CMS.2015.v13.n3.29

[17] V. Duchénes and M. Weinstein Scattering, Homogenization, and Interface Effects for Oscillatory
Potentials with Strong Singularities, Multiscale Model. Simul. 9(2011), no. 3, 1017-1063.
http://dx.doi.org/10.1137/100811672

[18] C. Gérard, A. Martinez, and J. Sjostrand, A mathematical approach to the effective hamiltonian in
perturbed periodic problems. Comm. Math. Phys. 142(1991), no. 2, 217-244.
http://dx.doi.org/10.1007/BF02102061

[19] C. Gérard and F. Nier, Scattering theory for the perturbations of periodic Schrodinger operators. J.

Math. Kyoto Univ. 38(1998), 595-634.

J-C. Guillot, J. Ralston, and E. Trubowitz, Semiclassical methods in solid state physics. Comm.

Math. Phys. 116(1988), no. 3, 401-415.  http://dx.doi.org/10.1007/BF01229201

[21] T. Kato, Perturbation theory for linear operators. Die Grundlehren der mathematischen
Wissenschaften, 132, Springer-Verlag, New York, 1966.

[22] A. Laptev, Spectral inequalities for Partial Differential Equations and their applications.
Proceedings of ICCM2010 in Beijing, AMS/IP Studies in Advanced Mathematics, 51, pt.2,
American Mathematical Society, Providence, RI, 2012, pp. 629-643.

[23] A.Laptev, S. Naboko, and O. Safronov, Absolutely continuous spectrum of Schrodinger operators
with slowly decaying and oscillating potentials. Comm. Math. Phys. 253(2005), no. 3, 611-631.
http://dx.doi.org/10.1007/s00220-004-1157-9

[24] L. Parnovski and R. Shterenberg, Complete asymptotic expansion of the spectral function of
multidimensional almost-periodic Schrodinger operators. Duke Math. J. Volume 165(2016), no. 3,
509-561. http://dx.doi.org/10.1215/00127094-3166415

[25] G. Raikov, Discrete spectrum for Schrodinger operators with oscillating decaying potentials. .
Math. Anal. Appl. 438(2016), no. 2, 551-564. http:/dx.doi.org/10.1016/j.jmaa.2016.02.005

[26] M. Reed and B. Simon, Methods of modern mathematical physics. IV. Academic Press, New York,
1978.

[27] D. Robert, Autour de lapproximation semi-classique. Progress in Mathematics, 68, Birkhduser
Boston, Inc., Boston, MA., 1987.

[28] G. V. Rozenblum, The distribution of the discrete spectrum of singular differential operators.
English transl.: Sov. Math. Izv. VUZ 20(1976), 63-71.

[29] M. M. Skriganov, The spectrum band structure of the three-dimensional Schrodinger operator with
periodic potential. Invent. Math. 80(1985), no. 1,107-121.  http://dx.doi.org/10.1007/BF01388550

, Geometric and arithmetic methods in the spectral theory of multidimensional periodic
operators. (Russian) Trudy Mat. Inst. Steklov. 171(1985).

[31] J. Sjostrand, Microlocal analysis for the periodic magnetic Schrodinger equation and related
questions. In: Microlocal analysis and applications (Montecatini Terme, 1989), Lecture Notes in
Math., 1495, Springer, Berlin, 1991, pp. 237-332.  http://dx.doi.org/10.1007/BFb0085125

[32] M. A. Shubin, The spectral theory and the index of elliptic operators with almost periodic
coefficients. Russian Math. Surveys 34(1979), no. 2, 109-158.

[33] T. A. Suslina, Discrete spectrum of a two-dimensional periodic elliptic second order operator
perturbed by a decaying potential. II. Internal gaps. Algebra i Analiz 15(2003), no. 2, 128-289; St.
Petersburg Math. J. 15(2004), 249-287.  http://dx.doi.org/10.1090/51061-0022-04-00810-6

[20

(30]

Université Bordeaux I, Institut de Mathématiques de Bordeaux, 351, Cours de la Libération, 33405 Talence,
France
e-mail: mouez.dimassi@math.u-bordeaux1.fr

https://doi.org/10.4153/CMB-2016-022-8 Published online by Cambridge University Press


http://dx.doi.org/10.1002/cpa.21459
http://dx.doi.org/10.1137/140980302
http://dx.doi.org/10.4310/CMS.2015.v13.n3.a9
http://dx.doi.org/10.1137/100811672
http://dx.doi.org/10.1007/BF02102061
http://dx.doi.org/10.1007/BF01229201
http://dx.doi.org/10.1007/s00220-004-1157-9
http://dx.doi.org/10.1215/00127094-3166415
http://dx.doi.org/10.1016/j.jmaa.2016.02.005
http://dx.doi.org/10.1007/BF01388550
http://dx.doi.org/10.1007/BFb0085125
http://dx.doi.org/10.1090/S1061-0022-04-00810-6
mailto:mouez.dimassi@math.u-bordeaux1.fr
https://doi.org/10.4153/CMB-2016-022-8

