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ON CENTRAL Œ-KRULL RINGS AND THEIR CLASS 
GROUPS 

E. JESPERS AND P. WAUTERS 

0. Introduction. The aim of this note is to study the class group of a 
central fi-Krull ring and to determine in some cases whether a twisted 
(semi) group ring is a central Q-Krull ring. In [8] we defined an fi-Krull 
ring as a generalization of a commutative Krull domain. In the 
commutative theory, the class group plays an important role. In the 
second and third section, we generalize some results to the noncommuta-
tive case, in particular the relation between the class group of a central 
fi-Krull ring and the class group of a localization. Some results are 
obtained in case the ring is graded. Theorem 3.2 establishes the relation 
between the class group and the graded class group. In particular, in the 
P.I. case we obtain that the class group is equal to the graded class group. 
As a consequence of a result on direct limits of fi-Krull rings, we are able 
to derive a necessary and sufficient condition in order that a polynomial 
ring R[ (Xj)iŒl] (I may be infinite) is a central 12-Krull ring. We also 
have 
RRR 

CI OR) = C l ( t f [ ( ^ ) z G / ] ) . 

In the final two sections we study twisted (semi) group rings. In this 
case, we deal with torsion free abelian (cancellative) (semi) groups. We 
obtain necessary and sufficient conditions for a twisted (semi) group ring 
to be a symmetric maximal order. Moreover, if G is a torsion free abelian 
group and R*[G] is a P.I. ring (cf. Proposition 5.7), then R'[G] is a P.I. 
£2-Krull ring if and only if R is a P.I. 12-Krull ring and G satisfies the 
ascending chain condition on cyclic subgroups (Theorem 5.9). In the final 
section we obtain some results on twisted semigroup rings generalizing 
results of [1]. 

1. Preliminaries. Throughout this note, R will be a prime ring satisfying 
Formanek's condition, i.e., every nonzero ideal of R has a nontrivial 
intersection with C, the center of R. In this case, 

ÔsymW = {c~lr = rc~l\ 0 ¥= c e C, r e R} 

is a simple ring. If <&2(o) is a multiplicatively closed filter, then 

Qa(R) = {a G Qsym(R)\Ia (Z Randal (Z R for some / <= &\O) } 
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CENTRAL Œ-KRULL RINGS 207 

is a subring of R. Note that Q0(R) need not be a localization of R, since it 
can occur that a is not an idempotent kernel functor. 

In [8] we defined an Q-Krull ring R to be a prime, Formanek ring such 
that 

(1) R = n QR^R) (write Q^R) = *,); 

(2) each ring Rj is a quasi-local Œ-ring, i.e., every nonzero ideal of Rj is a 
power of the unique maximal ideal of R^ 

(3) for all / and for all / G S?2(R\P), IRt = RJ = Rt; 
(4) for all r G R there are only finitely many indices / such that RrR G 

&2(R\Pi). 
We say that R is a geometric (resp. central) Œ-Krull ring if every kernel 

functor a7 is geometric (resp. central) (cf. [7] ). In case R is a central 
£2-Krull ring, we have 

QR\Pt(R) = Qc\Pt (R) = {c~Xr\c G C\ph r G R] 

where pt = Pt n C ( [9] ). R is said to be an fi-ring if every ideal is 
invertible. In particular, an £2-ring is an 12-Krull ring such that all prime 
ideals are maximal (cf. [10] ). The interested reader is referred to [18] and 
[20] for details about localization. 

Recall that a ring S is said to be an extension of a subring R if S = 
R. ZS(R) where 

ZS(R) = {s G 5 | V r G R,sr = rs). 

In particular Z(R) c Z(S) and SI = IS for all ideals of R. 
A ring R is called a symmetric maximal order if each ring £ between i? 

and QSym(R) s u c h that cS o R for some nonzero c G C equals R. Recall 
that a fractional i^-ideal / is a twosided jR-submodule of Qsym(R) s u c h t ^ a t 

ci cz R for some nonzero c G C. H A and 5 are subsets of Qsym(R), w e 

define 

(A:tB) = {? G Qsym(R)\qB G A} and 

04: r£) = {<? G e s y m ( t f ) |5 ? c ^ } . 

LEMMA 1.1. The following conditions are equivalent: 
(\) R is a symmetric maximal order; 
(2) for any ideal I of R, (/://) = (/:,/) = R\ 
(3) for any fractional R-ideal /, (/://) = I:rI)

 = R\ 
(4) let a G Qsym(R); suppose that there exists an element c G C such that 

for all n G N0, c(RaR)n c R, then a G R. 

Proof The equivalences (1) to (3) have been proved in [9]. (3) <̂> (4) may 
be proved in a way similar to the commutative case (cf. [6] ). 
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If R c S c Qsym(R), we say that S is completely integral over R if and 
only if whenever a e S, suppose there exists an element 0 ¥= c G Z(i?) 
such that for all « G N0, c(RaR)n c # , then a e i î . (Compare to Lemma 
1.1 (4) and the commutative case (cf. [6] ).) 

Several authors have tried to generalize the notion of a Krull domain to 
the noncommutative case. In particular, Marubayashi and Chamarie have 
worked on this problem. We refer to [11], [12], [3] and [4] for their 
definitions. The main difference between these concepts and ours is that 
the Krull rings considered in loc. cit. are prime Goldie rings and we deal 
with prime Formanek rings. In case R is a P.I. ring, we prove that these 
three definitions coincide. 

PROPOSITION 1.2. Let R be a prime P.I. ring. Then R is an Q-Krull ring if 
and only if R is Marubayashi-Krull if and only if R is Chamarie-Krull. 

Proof. Since R is a prime P.I. ring, R is Goldie and bounded. In this 
case, Chamarie has proved ( [3] ) that his definition and the one of 
Marubayashi coincide. Suppose R is a P.I. Q-Krull ring, then all Rt = 
QR^R) (PI e XX(R)) are P.I. rings since Rt c gsymCR). Since each Rt 

has ACC on twosided ideals, Rj is also left and right Noetherian. This 
follows from a theorem of Cauchon (see e.g. [16] ). Since R is also a prime 
Goldie ring, we conclude that R is Marubayashi-Krull ( [11] ). Conversely, 
if R is a P.I. Chamarie-Krull ring, then 

* = n
} Qc^pW, Qc^pW = RC(P) 

p^X\C) 

(cf. [4] ) and therefore R is a central 12-Krull ring. 

In the sequel we will sometimes use the following proposition derived 
from a result due to Chamarie (cf. [4] ). 

PROPOSITION 1.3. A P.I.-ring R is an Q-Krull ring if and only if R is a 
symmetric maximal order and Z(R) is a Krull domain. 

Note that from the proof of Proposition 1.2 we have that a P.I. Q-Krull 
ring is a central S-Krull ring. 

Let S be a semigroup with 1. A ring R is said to be an ^-graded ring if 
there exist additive subgroups Rs indexed by the elements of S such that 

R = © Rs and RsRt c Rst for all s, t e S. 

Throughout this note, S will be abelian, cancellative and torsion free, i.e., 
if 5, t G S and sn = f for some n G N0, then s = t. In particular, S is 
embeddable in its quotient group G which is torsion free abelian. Since S 
is abelian, the center C of R is also an S-graded ring. The elements h(R) = 
Us(=s Rs are called the homogeneous elements of R. If / is an ideal of R, 
denote by Ig the ideal of R generated by the homogeneous elements in / . / 
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is said to be graded if / = Ig. Since S is a torsion free abelian cancellative 
semigroup, S is an ordered semigroup (because G is ordered). Then it is 
easy to check that if P is a prime ideal of R, Pg is also a prime ideal of R. 
Therefore, if P is a prime ideal of R of height one, then Pg = 0 or P = 
P8. 

2. Class group and Picard group of a central S2-Krull ring. Let R be a 
central 12-Krull ring. We recall some definitions and notations (cf. [9] ). 
¥(R) is the set of nonzero fractional P-ideals. T>(R) is the group of 
divisorial ideals, i.e., those fractional P-ideals / such that R:(R:I) = I. 
Recall that T>(R) is a free abelian group generated by the prime ideals of 
height one. l(R) is the group of invertible ideals, i.e., those fractional 
P-ideals / such that there exists a fractional P-ideal / and / . / = / . / = R. 
The group of principal ideals, i.e., those fractional P-ideals / such that / = 
Re for some c e K\{0} (K is the field of fractions of C = Z(R) ), is 
denoted by P(R). The class group CI (R) of R is defined by D ( J R ) / P W and 
the Picard group Pic (R) = l(R)/P(Ry 

Let A and B be central 12-Krull rings, A a subring of B and B an 
extension of A. Write 

A = Pi At, At = AA\P.(A) andp t e Xl(A), 
i 

B = n B„ Bt = QB\Pi(B) and Pi e XX(B). 
i 

Denote by/?- (resp. P\) the unique maximal ideal of At (resp. Bt). Suppose 
p (resp. P) is a prime ideal of yl (resp. B). We say that P lies over p if P n 
A = p and in this case we write P\p. Define <j>: D(A) —» D(B) by sending/? 
e X 1 ^ ) to 

*oo = n p^-^ 

and e(Ph /? ) is the natural number such that 

B,P = (Pi)
e(P"p). 

Extend <j> to D(A ) by linearity. Define 

^:D(A) -> D(P) : / M> (5/)* = B:(B:BI). 

The next proposition shows when ^ = <£>. Analogous to the commutative 
case, we say that the condition (PDE) is satisfied if and only if for all P e 
X\B), 

ht (P n A) ^ 1. 
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PROPOSITION 2.1. With the foregoing notations, the following three 
conditions are equivalent: 

( ! )<?> = </<; 
(2) V x G Z(A\ <f>(Ax) = Bx; 
(3) condition (PDE) is satisfied. 

Proof. (1) =̂> (2): This is obvious since 

<t>(Ax) = xP(Ax) = (Bx)* = Bx. 

(2) =» (3): Suppose P G X*(P) and ht (P n A) > 1. Choose a nonzero 
element x G P n Z (^ ) . Then 

Bx = <t>(Ax) = P"1 * . . . * Pn
k
k 

and for all / G {1 , . . , A:}, Pz ^ P since ht (P n i ) > 1. On the other 
hand 

Bx = xP(Ax) = PT * . . . * P™k 

and here P will occur since Bx c P and ht (P) = 1. This is a 
contradiction. 

(3) =̂> (1): Suppose 

/ = p"] *...*p"k
k G D(^). 

Then Y4ZP = /?•"'. We compute 

m = o Bii. 
i 

Consider such a ring Pz = QB\P,(B) and Pz G X ](P). Suppose first that Pz 

n A = Pl ^ X](A). Then 

At = QA\PI(A) C PZ, 

Therefore 

BJ = BtAtI = Bip?* = (P?(pi>Pi))\ 

In the other case, Pt n A = 0. Then BI Ç Pz and hence BI G J ^ 2 ( P \ P Z ) 

and PZP = Pz. 

«/) = ^(pif1 * • •. * <KPkTk = n ( p ^ - ^ r» * . . . 
Pi\Pi 

yielding that (BI)* = <j>(I). 

If condition (PDE) is satisfied, then \p is a homomorphism. Note that in 
this case \p(P(A) ) c P (P) and if: CI (>4) -> Cl (P) is a homomorphism. In 
general, \p need not be a homomorphism, even in the commutative case (cf. 
[1] ). However, if we restrict *// to 1(^4), then this restriction is always a 
homomorphism from 1(̂ 4) to 1(B). 
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We now give a few special cases in which the homomorphism <J> is 
interesting. Let A = C = Z(R) c B = R and R a central fi-Krull ring. 
For all P G Xl(R), ht (P n A) = 1 and moreover, if p G X\C) there is 
exactly one P ^ X\R) lying over p. Therefore 

*:D(C) -> D(#):7 = pV * . . . * p"k
k ^ (RI)* 

_ T>e(P\,P\>\ j>e(Pk,pk)nk 

~ r \ * . . . * r fc 

We claim that the homomorphism 

*:Cl(C)->Cl(R):[I]^[(Rir] 

is injective. Let [I] G Cl (C) and suppose <H [/] ) - [R], i.e., (# / )* = #x 
for some x e I Hence 7^7 = Rt for all z G A. But each Q is a discrete 
valuation ring yielding that CJ = C^i for some at G K. Therefore 

CJ = CM = Qx and I = n Cz7 - Cx. 
z 

This proves that CI (C) is embedded in CI (7?). 
Another important example is the case where R is a central Œ-Krull ring 

and B is a subintersection of i?. Recall from [7] that B is a subintersection 
of 7? if and only if B = QG(R) and a is a multiplicatively closed symmetric 
filter; if i? = n / e A 4 then 

J? = C\ Rt for some A 0 c A. 
i e A 0 

In particular, if P G X\B\ then P = P- n B where / G A 0 and P\ is the 
unique maximal ideal of Rt. Therefore 

P n R = P\ n R G X 1 ^ ) 

and condition (PDE) is satisfied. Hence 

^:D(#) -> D(£):7 = n # z / h-> (BI)* = n #,/. 
i e A / e A 0 

In this case, we can compute the kernel of \p explicitly. Let P G Xl(R), we 
consider two cases: if / G A0, then 

xKP) = n Rf = B n P\ G X 1 ^ ) ; 

if i G A \ A 0 , then 

xP(P) = n #,/> = 5. 
; e A 0 

Hence, if P G X 1 ^ ) , then \p(P) is either 5 or a height one prime ideal of 
B. If 

/ = P?1 * . . . * i>£* e= ker ^ 

then 
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W) = WiP * . . . * M?kTk = B-

Since D(P) is free on XX(B\ all \P(Pt) = B. Therefore ker ^ is the free 
group generated by the prime ideals Pt with z G A \ A0 . Note that \p is a 
surjection in this case. 

THEOREM 2.2. Suppose that R is a central Q-Krull ring and let B be a 
subintersection of R and an extension of R, say 

R = n R, and B = n PZ(A0 c A). 
z'eA / ' e A 0 

Then if>:Cl (P) —> Cl (B) is onto and ker \p is generated by the classes of 
prime ideals Pt G Xl(R) such that z G A \ A0 . 

Proof Since ip is onto, the same is true for ty. For the second assertion it 
suffices to prove that 

, - ker xP*P(R) 
ker \b = . 

P(R) 
Let [/] G ker \p, then \p(I) = Be for some c G K (K is the field of fractions 
of C = Z(P) ). But i/<^c) = 5c and hence 

iK/Mc" 1) = 5 . 

Therefore P M c - 1 G ker ^ and [/] = [I*Ac~x]. 

COROLLARY 2.3. Let R be a central Q-Krull ring and o a kernelfunctor 
satisfying property (T) such that Qa is an extension of R. Put 

£C1 (tf)-» Cl (&,(*) ). 
Then ker \p is generated by the classes of those prime ideals Pt G Xl(R) such 
that P G Se\o). 

Proof. In view of the preceding theorem (and with the same notations) it 
suffices to prove that P G ££\O) if and only if z G A \ A0 . If P G &\o), 
then BP = B because a has property (T). Therefore i// (P) = (BP)* = B 
and P G ker ^ entailing that i £ A0 . If P £ S£2{p), we claim that 

B c Ô^Xp (R) = R'. 

Indeed, if x G 5 , then Ix a R for some / G ^ 2 ( a ) . So / £ P„ for if / c 
P„ then Pj G o^2(a), a contradiction. Hence x ^ R'. Since 

P = n Rt 
/ e = A 0 

P ' has to be a ring of type P, (cf. [7] ) and z G A0 . 

A sufficient condition for having (PDE) is given in 
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PROPOSITION 2.4. Let A ^ B be an extension of central iï-Krull rings. 
Then (PDE) holds if B is a left or right flat A-module. 

Proof. This is as in the commutative case (cf. [17], Theorem 6.2). 

3. Class group of graded fi-Krull rings. Let R be an 5-graded ring and 
let R also be a central 12-Krull ring. Recall that we only consider 
semigroups S with 1 which are cancellative, abelian and torsion free. 
Consider the symmetric filter of ideals ^2(o) = {7|7 an ideal of R 
containing a nonzero homogeneous central element.} It is clear thato£?2(a) 
is multiplicatively closed. Then 

Ql(R) = Qa(R) 

= {« G OsymWI^x c R for some 7 e Se\o) } 

= {c"1 r|r e P, 0 ^ c e h(C) } c Qsym(R) 

and we denote this ring Qa(R) by (?fym(P) = Qg. Remark that 
ôfymCR) is a ^-graded ring, where G is the quotient group of S. In 
particular, Qg is a subintersection of R. For more details about graded 
localization, we refer to [14]. 

LEMMA 3.1. 

ÔfymW = H QR\Pi(R). 
Pjf=X\R) 

pf = 0 

Proof. Recall from [7] that we have to prove that 

Qg c
 QR\P,(R) if and only if Pg = 0. 

First, let Pg = 0, then each element c~xr <= Q% belongs to 
QR\PJ(R) since Re ^ Pt (remember that c is homogeneous). Conversely, 
suppose Pf T̂  0, choose a nonzero element c e pf n A(C). We claim 
that 

c"1 « Ô*y>,(*)-

Suppose c - 1 e QR\P.(R)9 then 7c"1 c P for an ideal 7 of R with 7 Ç Pz. 
But 7 c Pc c Pz, a contradiction. Hence 

Ô g Ç ^ ( P ) if Pf = 0. 

Note that Qg is a graded simple ring, i.e., the only graded ideals of Qg 

are 0 and Qg itself. If 7 is a graded ideal of P, then (P:7) is a graded 
fractional P-ideal. Hence, if 7 is a graded ideal, 7* is graded too. The 
graded class group Clg (P) is defined by D g (P ) / P w where Dg(P) is the 
subgroup of Dg(P) of the graded divisorial ideals of P and 

Pg(R) = [Rc\c G h(C)~]C}. 
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It is easy to see that Bg(R) is the subgroup of D(R) generated by the 
graded prime ideals of height of one of R. Similarly 

Picg (R) = I ^ ) / P g W and lg(R) = Dg(R) n l(R). 

THEOREM 3.2. Suppose that R is an S-graded ring and R is a central 
Qi-Krull ring. The following sequences are exact'. 

(1) 1 -> Clg (R) -> CI (R) -> CI (QZ) -> 1 

(2) 1 -> Picg (R) -> Pic (R) -> Pic (Qg). 

Proof. (1) Consider the homomorphism 

$:D(R) -> B(QZ):I = n RJ H> n /?,-/. 
P? = 0 

In the preceding paragraph we computed ker \p. In this case, ker \p is 
generated by the homogeneous prime ideals of height one of R. Let 

£ ci (/i) -> ci (g*). 

Since ^ (P(JR) ) = P(£ g) , we obtain 

, - ker^*P(£) ke r^ 
ker \b = = . 

r P(R) ker xp n P(R) 
Let A <E ker i// n P(R). Then 4̂ = Rx(x e AT) and ,4 is homogeneous. 
Hence QgA = Qgx = g g since yl is homogeneous. Therefore x is invertible 
in QZ. Write 

X — ^ ^ j ^ j ? -

/ • = 1 

and all xg homogeneous. Then there exists an element y e Qg, y = 
2j}L\ y h s u c n that jcy = 1. Since G is torsion free abelian, G is orderable. 
Suppose that g\ < . . . < gn and ^ < . . . < hm. From xy = 1 we then 
deduce that x is homogeneous. Hence 

ker xp n P(R) = Pg(R) and 

ker £ = Dg(tf ) / P g W = Clg (#) . 

(2) Restrict ^ to l(R). Then 

*' = xp \:I(R) ^ I (Qty.I ^ QgI 

is a homomorphism, 

ker *// = Dg(#) n I(i?) = Ig(#) and 

ker ^ n P(R) = Pg(R). 
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Therefore 

k e r f = ?icg(R). 

If R is a P.1.12-Krull ring, then Cl (Qg) is always trivial. To establish this 
we need a proposition proved by F. Van Oystaeyen ( [19], [20] p. 113) in 
the case of Z-graded rings. But in fact the proof only uses the fact that the 
ring is graded by a (torsion free) abelian group. 

PROPOSITION 3.3. IfR is a graded P.I. ring satisfying the identities ofnxn 
matrices {e.g. R is a prime P.I. ring) and such that the center of R is a graded 
field, i.e, every homogeneous element is invertible, then R is an Azumaya 
algebra over its center. 

LEMMA 3.4. If R is a graded simple, prime F.l.-ring, then R is a symmetric 
maximal order. 

Proof Since C is a graded field, R is an Azumaya algebra by Proposition 
3.3. If / is a fractional iMdeal, then / = R(I n K) where K is the field of 
fractions of C (cf. [5] ). Let a e Ôsym(^) a n d a I a I. Then 

(RaR)I c / and ((RaR) n K)(I n K) c (/ n K). 

Therefore (RaR) n K c C because C is completely integrally closed (cf. 
[1] ). Hence 

(RaR) = R((RaR) n K) c R and a ^ R. 

This proves the result. 

In particular, if R is a graded prime P.I.-ring, then Qfym(R) is a sym­
metric maximal order. 

THEOREM 3.5. Let R be an S-graded ring and R a P.I. ti-Krull ring. Then 
Clg (R) = CI (R) and Picg (R) = Pic (R). 

Proof. In view of Theorem 3.2 we only need to prove that CI (Qg) = 1. 
Since R is an O-Krull ring, the same is true for Q8 and therefore Z(Qg) is a 
Krull domain. Because Z(Qg) is a graded field (Qg is graded simple) we 
have 

ci(z(e*)) = i. 
This is a result of Anderson ( [1] ). In particular, if p e Xl(Z(Qg) ) we 
have 

p = Z(Qg)a for some a G Z(Qg). 

Now all ideals of Qg are generated by the center of Qg because Qg is an 
Azumaya algebra (Proposition 3.3). Therefore if P G Xl(Qg), 

P = Qg(P n Z(Qg) ) = Qga 
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since 

P n Z(g*) e X\Z{&)). 

This proves the result. 

LEMMA 3.6. Let ft = © 5 G S RS 6e ÛW S-graded ring, ft an extension of R\ 
and R\ a ring satisfying Formanek's condition. If R is a P.I. Sl-Krull ring, 
then Rx is P.I. Q-Krull. 

Proof Since R\ is a P.I. ring, we only need to prove that R\ is a 
symmetric maximal order and Z(ftj) is a Krull domain (cf. Proposition 
1.3). Now Z(R) is a Krull domain and hence Z(R\) = (Z(R) )\ is a Krull 
domain (cf. [1] ). Let R\ be a ring such that 

R\ C * i C Gsym(*l) 

and cft'i c Rx for some c e Z ^ ) . Since R is an extension of ft1? we have 
ftft'! = R\R and hence ftfti is a ring such that R c ftft^ and cftftj c ft. 
Therefore RR\ = ft, R\ c R and hence Rx = fti. 

PROPOSITION 3.7. Le/ ft 6e <z« S-graded ring, R an extension of R\ and S 
a semigroup no element of which has an inverse. Suppose R and R\ are 
central Sl-Krull rings. Then \p: CI (ftj) —» Cl (R) is injective. 

Proof. In view of Theorem 3.2. it suffices to prove that 

Î-. Cl (*,) -> Cljj (R) 

is an injection. Note that in general \p need not be a homomorphism. If / is 
a graded ideal of ftb then it is easy to check that 

(ft:ft/) n Ôsym(*i) = (f t^/) . 

It follows that if / is a divisorial R\-ideal, then 

(RI)* H Gsym(^l) = /• 

Now let [/], [J] e Cl (Rx) and ^( [/] ) = *K [/] ). We may suppose /, J c 
R\. Hence 

(RI)*x = (RJ)*y for some x, y e A(C). 

We can write 

(ft/)* = ( f t / ) * ^ * - 1 ) . 

Suppose >>.x_1 has degree t. Take an element a of degree 1 in (ft/)*, then a 
- b. (yx~l) and 6 e (ft/)* c ft. Therefore 6 has degree t~\b ^ R and 
hence r 1 G 5. We also have 

(RJ)*= (RI)*(Xy~l) 

and xy~l has degree / _ 1 . A similar reasoning as above yields that t <= S. 
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The hypothesis on S yields that / = 1. From this it is easy to conclude that 
/ = Jyx~] and therefore [I] = [J] in CI (/?,). 

Assume R\ c R = ®sGS Rs satisfies (PDE) and R is an extension of 
R\. Let J?R(O) be a symmetric T-functor of ideals of R\. To &R{O) is 
associated a filter 

£e\o') = {I\I an ideal of R and Ix c J for some ^ G ^ ( a ' ) }. 

Clearly £ a(/*i)c ôa 'W- If ^ G - ^ V ) and Ix c / with / , G JSf^(a'), 
then 

Hence «J^2(ar) is a T-functor. In particular, o' is an idempotent kernel 
functor (cf. [8] ). 

PROPOSITION 3.8. Let R be an S-graded ring, S a semigroup no element of 
which has an inverse, R an extension of R\ satisfying (PDE). Suppose R and 
R\ are central Çl-Krull rings. For each P G X (R\), assume that (RP)* is a 
prime divisorial ideal of R. Let £PR{o) be a symmetric T-functor in R\. 
Then we have the following exact sequence 

1 -> A -> Cl(R) -> CI (&,<*)) -> 1 

where A is the subgroup of CI (R\) generated by the prime ideals P of height 
one of R such that P e J£R(p). 

Proof We have the following commutative diagram 

1 

0(2*0 = D , X D2 

D2 

1 > k e r \ >D(R) >D(QAR)) • ! 

where /^(resp. D2) is the subgroup of T>(R\) generated by the prime ideals 
P e Xl(Rx) such that P £ &\x(6) (resp. P e &\{p) ). Ker X is the sub­
group of D(i?) generated by the prime ideals P e. Xl(R) such that P <E 
J^2(a'). Recall that the homomorphism JU, from D2 to D(#) is defined by 
sending / to (RI)*. Note that by the construction of the filter J£2(&), [x 
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sends D2 to ker A. If P e XX(R) and P G se\a') (i.e., i> e ker A), then P 
n /?! ¥= 0. Therefore ht (P n i?i) = 1 since (PDE) is satisfied. Moreover 
we have 

P = (R(P n # , ) ) * 

yielding that 

Z>2 "^ ker A 

is an isomorphism. We can now write a commutative diagram concerning 
the class group. 

£2*P(*i) 

P(*i) 

1 >ker A >C1 (R) >C1 (Q&(R) ) >1 

ker A*P(#) 

P(*) 

Since ^ ( P ^ ) ) c P(i?), /I is a well defined homomorphism. Note that jû is 
a surjection, since [i is a surjection. The fact that /x is injective is proved in 
a similar way as in Proposition 3.6. For this purpose the condition that S 
does not contain inverse elements is needed. 

COROLLARY 3.9. Under the same conditions as in the preceding 
proposition, except that J£ R{(o) is the filter of all ideals of R\ in this case, we 
have an exact sequence 

1 -> CI (Rx) -* CI (R) -> CI (QAR) ) -> 1. 

In particular, CI (R{) = CI (R) if and only if CI (£></(#) ) = 1. 

4. Direct limits of central £2-Krull rings. The first proposition of this 
section is a generalization of a commutative result of [6]. 

PROPOSITION 4.1. Let {Ra}a^i be a filtered family of central ti-Krull 
rings such that, for a = fi, the embedding Ra ^ Rp is an extension which 
satisfies (PDE) and (RpP)* is a prime divisorial ideal for each P in X](Ra). 
Then U a G / Ra is a central Çl-Krull ring. Furthermore, l ' ( U a e / Ra) is the 
direct limit of the system 

{X\Ra), iap:X\Ra) -> X\Rp):P i-> (RpP)*; a, 0 e / and a ^ j8}, 

notation lim X](Ra). 

a 
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Proof. Since Z(Ra) c Z(Rp) if a ^ j8, it is clear that 

<2sym( U #«) = U fisym(^«)-
« G / flË/ 

Let S = U a G / #a . We first prove that S satisfies Formanek's condition. 
Let J be a nonzero ideal of S, then / O i?a is a nonzero ideal of Ra, for 
some a ^ J. Therefore 

{0} ^ j n z(Pa) c / n Z(S). 

So it is also clear that S is a prime ring. 
For a fixed a in /, let 

/ a = {jB e 7|j8 ^ a }. 

Let Sa denote the ring Ua€E/ Rp. Then S = Sa for each a. Suppose P G 
^ ( P ^ ) . For each ft i^ a, there is a unique prime ideal Pp in X\Rp) such 
that Pp n Ra = P9 namely P^ = (P^ P)*. So, since 

Ôsym(^a) C 0 s y m ( f y ) for a ^ /?, 

it follows easily that 

(R<x)Ra\P
 C (Rp)Rp\Pfi> 

(We denote by (Ra)Ra\p the quotient ring QRa\p(Ra)-) Let 

LP = U (Rp)Rp\Pp. 

We will now prove that LP is a quasi-local £2-ring. To this end consider a 
nonzero ideal / of LP, then 

J = u ( (RP)R0\P0 n / ) , 

where (Rp)RfJ\p(i n J is an ideal (eventually zero) of (Rp)Rp\pp and 

(RfÙRp\PpPp = ^ (RfÙR^Pp = Pfi 

is the unique maximal ideal of (Rp)Rfi\pfi. Because Py? = (RpP)* is 
divisorial, we obtain that 

^8 = (Rp)Rp\PpP = (Rp)Rfi\PfiP(Rfi)Rp\pfi-

Thus, 

where «^ is a natural number for /? = a. Let 

iVa = inf { « ^ ^ a}, 
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then 

J= U {Rph^PeP"' u (Rp)R,\PlsP (LPPf°. 

It follows that LP is a quasi-local fi-ring. Because LpP n Ra = P it is clear 
that 

X](S) = lim X\Ra) 

in case 5 is a central O-Krull ring. 
Secondly, we prove that LP is a central localization of S. Indeed, let 

7> = Z(Rp)\Pp 

and let 

T = U TV 

Since (Rp)R(i\p„ = Tp Rp and since 7^ c 7^ for /?' ê /?, it is clear that 

LP = T~]S. 

We show now that 

n LP = S. 

Certainly . S e n LP. On the other hand, if x e n Lp, then 

x G Qsym(Rp) n (n LP) for some /? in 7. 

Thus x = c - 1 r, with c <= Z(Rp), r e ify. Now Z(Rp)c <£ P for almost all 
P e X 1 ^ ) . So JC = c"V e (Rp)Rp\P for almost all P G Xx(Rfi). Let 
{ P b . . . , Pn) be the finite subset of lC(Rp) such that c e Pf-, 1 ^ * ^ w. 
Because x G n LP there is a y G /, y ^ j8, such that 

If Py is another minimal prime of P y then PDE yields 

Py n Z(fy) = {0}; 

therefore c e Z(Ry)\Py. Thus 

x G n (p y )^ A / , = * 

i.e., x G S. So 

n LP = s. 
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It remains to prove that 

n LP = S 

PeX\Ra) 

has the finite character property. Let x G S, i.e., x G Ify for some ] 8 e l 
Because P̂ g is a central Œ-Krull ring, RpxRp <£. P for all P G 7, where 7 
c A^/fy) and Xx(Rp)\Y is a finite set. So LP(SxS) = LP, for all P G 
X 1 ^ ) with y ^ j S a n d P n ^ G 7. If y ^ 0 and g G X\Ry) such that 
g n Rp = P G Xl(Rp), resp. Q n Rp = {0}, then LP - Lg, resp. 
LQ(SXS) = LQ because in this case 

Z(Rpr
xZ(Rp) c (*y)*A<? 

and because 

SxS n z(/fy) * {0}. 

So it follows immediately that S satisfies the finite character property. 

With the notations and assumptions as in Proposition 4.1 we have 

COROLLARY 4.2. 

(1) lim CI (Ra) = CI ( U Ra) 
—> a e / 
a 

(2) lim Pic (R) = Pic ( U Ra). 

a 

Proof. (1) As follows from the proof of the proposition, the minimal 
nonzero prime ideals of S = U a e j Ra are of the form 

P« = U Pp, 

where Pp G Xl(Rp) and Pp n Ra = Ra. Since 

^pftP« = (SPa)s\pa 

we have e(Pa, Pa) = 1. So it is clear that the extension 

Ra^ U Ra 

satisfies condition (PDE). Consequently, by Proposition 2.1, we obtain 
that 

lim CI (Ra) = CI ( U Ra). 
—> a(El 
a 
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(2) Because of the assumptions on the extensions Ra ^ Rp, a ^ /?, there 
is a bijection between Xl(Ra) and a subset Y of Xl(Rp). If Pp G 
X\Rp)\Y, i.e., Pp D Ra = {0}, then 

Z(*«)\{0} c Z(Rp)\Pp. 

Therefore, if X is an ideal of Ra, then 

(£«*)* c ( fy*)* for a S /?. 

To prove statement (2) we first need the following. Let X c S be a 
divisorial 5-ideal, so X = P} * . . . * P^, where Pz- e ^ ( S ) for 1 ^ i â k 
(we allow Pz - Py- for / ^ y). Let P b . . . , Pk e ^ ( P J such that 

P, = U P(z) 

P^a 

and where the union is taken over all Py] e Xl(Rp) with 

P ^ n Rd = Pf, 

If X = ? , * . . . * P* G D(PJ , then X = (SX)*- We claim: 

X = u ( P ^ ) * . 

Indeed, 

X =Pl*...*Pk= U ( P ^ ) * * . . . * U ( fyP*)* 
P^a fi^a 

= ( u (fypo* •... • u (fyP*)*)* 

= ( u [ ( / t^ ) * ' • • • ' ( V * ) * ] )* 

PeX\Rs) P^8 f ' 
S^a Pp\P 

= n ( u (P^)*)( u z(Rp)\ppr
l. 

PeX\Rs) P^8 p^8 
8^a 

It follows: 

U (P/?X')* C X 

Conversely, let x e X Then, there is a j8 e / such that 

i.e., JC = c _ 1 r with r G (RpX)* and c G Z(Rp)\Pp. Let ( P b . . . , Pn} be 
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the finite subset of X](Rp) such that c G Ph 1 = i = n. From the above 

equality it follows that there are yl: G I, 1 ^ i ^ «, yz- ^ /?, such that 

x G (ny/ r ) * Z ( W y / and py/ n p r pf. 

We obtain that for some 8 = yn \ = i = n, 

x e (/W*z(K8)y>Y for all P5 G Xl(R8) 

with P8 n Rp ^ Xl(Rp). As before we obtain 

x G n (R8 X)Z{Rs)\P8 = (R8X')*. 

This shows 

X= u ( P ^ ) * ; 

then also 

* = u (Rpjcr 

for any divisorial S-ideal X, when X' is such that X = (SX')*. 
If X' is an invertible ideal in R, for some a G /, then SX' is an invertible 

ideal of S. Therefore, by (1) lim Pic (Ra) is embedded in Pic ( U a G / Ra). 

a 

On the other hand if X is an invertible ideal of S, then X • Y = S for some 
fractional S-ideal Y of S. By the foregoing we have 

U (RpXT • U (RpY')* = S, 

where X and Y' are such that X = (SX')* and 7 = (SY')*. So there is a p 
^ a such that 

n 

1 = 2 A:̂ -, 
/ = l 

where xt G (RpX)* and j z G (/tyY7)* for 1 ^ j S «. It follows that 

Rp c (RpJC)*(RfiYr c ( V F ) * c fy, 

i.e., 

fy = (i^X')* • ( f y l T and (RpX')* G Pic fy. 

From X = (S(RpX')*)* we obtain 

lim Pic (Ra) = Pic ( U P t t). 
—> « e l 
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It is known (cf. [9] ) that a polynomial ring R[Xh . . . , Xn] is a central 
Œ-Krull ring if and only if R is a central S2-Krull ring such that for all P e 
X\R)Q(Z(R/P) ) is an algebraic field extension of Q(Z(R)/Z(R) n P), 
where Q{Z(R/P)\ resp. Q(Z(R)/Z(R) n P), denotes the field of 
fractions of Z(R/P), resp. Z(R)/Z(R) n P. From Proposition 4.1 it 
follows that we can extend this result to polynomial rings over an arbitrary 
set of indeterminates, say X = {Xz}z G / . 

COROLLARY 4.3. A polynomial ring R[X] is a central Q-Krull ring if and 
only if R is a central Q-Krull ring such that Q(Z(R/P) ) is an algebraic field 
extension of Q(Z(R)/Z(R) H P). In particular, if R is a P.I. ring, then 
R[X] is a central Q-Krull ring if and only if R is such a ring. 

Proof. If R[X) is a central fl-Krull ring then it is proved as in 
Proposition 3.8 of [9] that R is a central B-Krull ring with the properties 
listed in the statement. The converse follows immediately from Proposi­
tion 4.1. We obtain the last statement by combining Theorem 5.4 with 
[11], Theorem 3.7 in [9] and Proposition 1.2. 

If R satisfies a polynomial identity, this result coincides with Theorem 

3.7 in [13]. 

PROPOSITION 4.4. Suppose R and R[X] are central iï-Krull rings. Then 
CI (R) = CI (R[X] ) and Pic (R) = Pic (R[X] ) . 

Proof. First we prove that C1(P) = C\(R[X]). Consider the 
morphism 

D(R[X])^D(Q[X]) 

mentioned in Section 2. Note that Q means ôsym(^)- I n Section 2 we 
computed that ker <£ is the group freely generated by the prime ideals P G 
Xl(R[X] ) such that P n R ¥= {0}. Therefore 

P = (P n R)[X] and ker <j> = P(P). 

We also have 

1 -» ker <£ -> CI (R[X] ) -> CI (Q[X] ) -> 1 and 

ker ^ = ker <j**P(R[X] )/P(R[X] ) = ker <f>/ ker <f> n P(R[X] ). 

Here we needed that P(P[X] ) —» P(g[X] ) is a surjection. This is satisfied 
since D(Q[X] ) = P(Q[X] ) (recall that all ideals of Q[X] are generated by 
a central element). Suppose now 

I[X] G ker <$> n P[R[X]). 

Then 

I[X] = fi[I]a, a e Z(8ff l ) . 
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Choose 0 # c G I n Z(R) and c = fia, fi G #[X]. Since a is a central 
element, all coefficients of a are central and hence non zero divisors. By 
writing out the equation c = fia and looking at the terms of highest and 
lowest degree, one concludes that a is a homogeneous element belonging 
to R, yielding that 

I = Ra and ker <j> n P(R[X] ) = P(R). 

Therefore ker <f> = CI (R) and C\(R) = Cl(R[X]) since 
Cl(Q[X}) = 1. 

So cp: CI (i? -> CI (R[X] ) with <p( [/] ) = [I[X] ], [/] G Cl (fl), is an 
isomorphism. Restrict <p to Pic (R). Then 

«PI: Pic (R) -> Pic (/*[*]) 

is clearly an injection. It remains to prove that <p\ is surjective. Let [A] G 
Pic (#[X] ), then there is exactly one [B] in CI (R) such that [A ] = [£[*] ], 
and hence 

,4 = B[X]R[X]a 

for some central element a G Â'(Ar). Therefore B[X] is invertible since the 
same is true for A and Z?[X]a. We can write 

C . B[X] = B[X] . C = R[X], 

where C is an invertible i^A^-ideal. We can conclude that 

C = (R[X]:B[X]) = (R:B)[X] 

so that B(R:B) = (R:B)B = R and [B] G Pic (R). 

COROLLARY 4.5. Suppose R and R[X] are central 0,-Krull rings. Then 
CI (R) = CI (R[X] ) and Pic (R) = Pic (R[X] ). 

Proof. R[X] is a central fi-Krull ring by Corollary 4.3. The rest follows 
from Corollary 4.2. 

Consider the following category C: the objects are prime rings satisfying 
Formanek's condition;/ G Horn (R, S)(R, S G Ob C) iff:R -> S is a ring 
homomorphism,/(Z(^) ) c Z(S) and 5/(7) = f(I)S for all ideals / of R. 
For example, when R c £ is a ring-extension, the inclusion map is such a 
homomorphism. It is easy to check that this is indeed a category. In 
Section 2 the Picard group Pic (R) of an fi-Krull ring was defined. It is 
clear from the construction that Pic (R) can be defined in the same way 
for prime, Formanek rings: l(R) is the group of fractional i^-ideals which 
are invertible. P(R) is the group of principal JR-ideals (i.e., Rx for some x 
G K (K is the field of fractions of Z(R) ). Then 

P(R) <3l(R) and Pic (R) = l(R)/P(R). 
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Moreover, Pic is a functor from the category C to the category of 
groups. 

The proof of the following proposition is the same as in the Proposition 
6.1 of [1]. 

PROPOSITION 4.6. Let S be a semigroup no element of which has an 
inverse. Let R = ©s^s Rs be an S-graded ring and F a functor on rings. If R 
*-> R[S] induces an isomorphism F(R) —> i7'(/£[S'] ), then #i ^ R induces an 
isomorphism F(R\) —» F(R). 

Note that all subsemigroups of free semigroups satisfy the condition 
that no element has an inverse. 

PROPOSITION 4.7. Suppose S is a subsemigroup (with I) of a free 
semigroup T, R an S-graded ring, R an extension of R\, R and R\ central 
U-Krull rings and for all P e XX(R)Z(R/P) is algebraic over C/(P D C). 
Then 

Pic (Rx) = Pic (R). 

Proof It is clear that R is also a T-graded ring by taking Rt = Rs if t = s 
e S and Rt = 0 if t e T\S. Since T is a free semigroup 

R[T] = RKXÙei] 

for some index set /. By the hypothesis on Xl(R), R[T] is an B-Krull ring 
(Corollary 4.3). Since 

Pic (R) = Pic (R[T]) 

(Corollary 4.5), the preceding proposition yields the desired result. 

COROLLARY 4.8. Suppose S is a subsemigroup (with 1) of a free semigroup 
T, R an S-graded ring such that R is an extension of R\. If R is a P.I. Sl-Krull 
ring, then 

Pic (Rx) = Pic (R). 

Proof. The fact that R is a P.I. S2-Krull ring implies that R} is a P.I. 
Œ-Krull ring (Lemma 3.6) and R[T] is a P.I. £2-Krull ring by Corollary 4.3. 
The result is clear now from Proposition 4.7. 

The following lemma generalizes Lemma 14.1 in [6]; the proof is 
similar. 

LEMMA 4.9. Let R be a prime Formanek ring and a and b central elements 
ofR such that aR n bR = abR, thus anR n bR = anbRfor all n G N. Then 
R[X](bX - a) is a prime ideal in R[X]. 
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PROPOSITION 4.10. Let Rbe a central 0,-Krull ring such that Q(Z(R/P) ) 
is algebraic over Q(Z(R)/Z(R) n P)for all P e Xl(R). Then there is aflat 
ring-extension R ^ T satisfying the properties: 

(a) T is an iï-ring; 
(b) T is a global Zariski-extension (cfr. [20] ) of its center; 
(c) Cl (R) = Cl ( D ; 
(d) Z(T) is a Dedekind domain and CI (Z(T) ) = CI (Z(R) ). 

Proof Since Z(R) is a Krull domain (cfr. [8] ), we know (cf. [6] ) that 
there is a flat extension Z(R)C^ T', T is a commutative ring, such that T 
is a Dedekind domain and CI (Tr) = CI (Z(R) ). If one goes through the 
proof of this result, then one sees that T' is obtained by taking first a 
polynomial extension of countable degree and then a localization to a 
multiplicatively closed set, say M: 

Z(R) c> Z(R)[Xh . . . , Xm . . . ] c> M^ZORXX1 , . . . , * „ , . . . ] . 

Moreover by the foregoing lemma and the construction of the elements of 
M, M is generated by elements that generate a prime ideal of 
TO,...,*,,,...]. Let 

T = M ^ T O , . . . , * , , , . . . ] , 

then R ^ T is a flat ring-extension and 7 is a central 12-Krull ring 
(Corollary 4.3 and Corollary 2.5 in [7] ) the center of which is a Dedekind 
domain. Therefore all the minimal nonzero prime ideals of T are maximal 
and T is a global Zariski extension of its center. It follows (cf. [7] ) that T 
has property (a). By Corollary 2.3 and Corollary 4.5 we obtain 

CI (R) = CI (7*), CI (Z(R) ) ^ CI (Z(T) ). 

5. Twisted group rings. Let R be a ring with unity, S an abelian 
semigroup with unity and y a two-cocycle of S into the central invertible 
elements of R, i.e., 

y G H2(S, <%(R) n Z(R)) 

where <%(R) is the set of invertible elements of R. Then the twisted 
semigroup ring R*[S] (cfr. [15] ) is the set of all formal sums 

a = 2 W, 

where rs G R and almost all rs are zero. By supp a we denote the finite set 
of all s e S such that rs ¥= 0. Multiplication and addition are defined as 
follows: 
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2* ass + ZJ bss = ZJ (as + ^s)^> 
5 Ê 5 S ^ S 5 ^ 5 

5> = rs~, 

s.t = y(s, t)st, 

where r, as, bs <E R and s, f e S. The ring ^ [ S ] has an identity element, 
namely 1 = y(l, 1)_11 and without loss of generality we will assume 
throughout that 1 = 1. Let Sf be» the set of those elements s ^ S such that 
y(s, t) = y(/, 5) for all t G S. Clearly Syis a subsemigroup of S and 

Z(fl '[S]) - {a = 2 rsI |supp a c S/-and r5 G Z (# ) }. 

We say that a cocycle y o n 5 has property (SF) if for all s e S there exists 
a / <E 5 such that st e Sy. 

PROPOSITION 5.1. Let S be a torsion free abelian semigroup and R a ring. 
Then, a twisted semigroup ring R*[S] is a prime Formanek ring if and only if 
R is prime Formanek and y has property (SF). In particular, if S is a group 
then R*[S] is prime Formanek if and only if R is prime Formanek. 

Proof Suppose R'[S] is prime Formanek. Then, clearly, R is a prime 
Formanek ring and for all s e S the ideal £/£'[£] intersects the center 
non-trivially. Therefore, there is a t <E S such that st e Sf. 

Conversely, let 

n m 

a = 2 ciiSj and ft = 2 b,tj 
1=1 j=\ 

be two elements of R'[S] with at ¥= 0, bj ^ 0 for all 1 ^ / ^ w, 1 ^j^m 
and a i^S] /? = 0. Since 5" is an ordered semigroup we can assume sf < Sj 
and tk < tf for i < j and k < I. Then sntm is a uniquely presented element 
in the set {sjtj\l ^ i ^ «, 1 ^ 7 ^ m}, so 

ans ni\Dmt m = ani\Dmsntm = u. 

In particular anRbm = 0, a contradiction. Therefore R'[S] is a prime ring. 
Let / be a non-trivial ideal of R*[S] and let 

n 

a = 2a a fit 
i=\ 

be an element of minimal length in / \ { 0 } , i.e., supp a has a minimal 
number of elements for 0 ¥* a e / . Because R is Formanek and y has 
property (SF) we may suppose that an e Z(R) and 5„ G Sf. A 
straightforward calculation shows that a e Z(/£'[£] ), in particular 

/ n Z(#r[S] ) * {0}. 

https://doi.org/10.4153/CJM-1984-014-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1984-014-1


CENTRAL Œ-KRULL RINGS 229 

Therefore R*[S] is Formanek. 

If R is a prime Formanek ring and o an automorphism of R, then 
we denote by Ra[Z] the skew polynomial ring R[X, X~\ o] in 
the indeterminate X and its inverse X~\ Of course we can extend a to 
an automorphism of <2symW = Q\ w e will a l s o denote this automorphism 
by o. 

LEMMA 5.2. L ^ / be an ideal of Ra[Z], then IQ is an ideal of Q°[Z]. 

Proof It is enough to prove that IQ z> QI. Let a e / and 0 ^ c e 
Z(7£), then we must show that c~xa e IQ. Suppose this is not the case 
and suppose 

m 

a = 2 cijX, at e i? 

is of minimal positive degree such that c~la £ IQ for some 0 ¥= c e 
Z(R). Because aa~m(c) — ca is of lower degree than a, we obtain 

c~\ao~m(c) - ca) = fi <= /£>. 

Thus 

c~xa = (a + i S X a - ^ c ) ) " 1 e / g , 

a contradiction. So QI c / g . 

LEMMA 5.3. Let R be a prime Formanek ring which is a sym­
metric maximal order. If R°[Z] is prime Formanek, then R°[Z] is a 
symmetric maximal order. 

Proof We have to prove that (/://) = R°[Z] for every ideal of R°[Z] 
(Lemrna 1.1). Because Q°[Z] is a localization at an Ore set of Q°[X, o] and 
because in this last ring every ideal is generated by a normalizing element 
(a result of [2] ) we have IQ = Qfi, where ft is a normalizing element of 
Qa[Z]. Suppose 

al c /, a G Qsym(R°[Z] ), 

then afi e Q°[Z]fr i.e., 

m 

« = 2 a * e e»[Z]. 
/ = — n 

Let C(7) be the ideal of all the elements of R which occur as the leading 
coefficient of an element of / . Then qmC(I) c C(I). Since R is a 
symmetric maximal order, qm e i£. By induction we obtain that a e 
R°[Z\. This completes the proof. 
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We will now establish when a twisted group ring over a torsion free 
abelian group is a symmetric maximal order. In case the group is not 
abelian, this problem is open, even in the P.I. case. 

LEMMA 5.4. Let G be a finitely generated free abelian group and suppose R 
is a prime Formanek ring which is a symmetric maximal order. Then Rl[G] is 
prime Formanek and a symmetric maximal order. 

Proof. It follows from Proposition 5.1 that Rl[G] is prime Formanek. 
Let 

G = Z X . . . X Z, 

with n factors, and let 

y G H2(G, Z(R) n <%(R)) 

be the defining 2-cocycle for R*[G]. We will prove by induction on n that 
R*[G] is a symmetric maximal order. For n = 1 the result follows from 
Lemma 5.3 because R*[Z] = R[Z]. Suppose now the result is true for all 
m < n, m e NQ. Let 

G* = Z X . . . X Z, 

n— 1 factors, so G = G* X Z. Let R{[G*] be the twisted group ring with 
defining 2-cocycle y restricted to G*. Because, for (0, z) G G* X Z, 

R'[G]($1) = (ÔT7)*'[G] 

one easily checks that 

i?r[G*](ÔTz") = (Ô~Ô#'[G*]. 

In particular 

(Ô7ï)^/[G*](ÔT^)_1 - #r[G*] 

and (0, z) induces a conjugation on R*[G*], say <p. If yr is the 2-cocycle y 
restricted to {0} X Z, it follows that 

R'[G] = (*'[G*])[{0} X Z , v , y ' ] 

is a crossed product (cfr. [15] ). Because 

//2(Z, Z(R) n #( /*)) = 0 

we obtain that 

R'[G] = (R'[G*] MZ], 

i.e., a skew group ring over Z. By the induction hypothesis R*[G*] is a 
prime Formanek ring which is a symmetric maximal order. Therefore, by 
Lemma 5.3, R^G] is a symmetric maximal order. 
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Before proving the statement of Lemma 5.4 for arbitrary torsion free 
abelian groups we need the following. 

LEMMA 5.5. Let {Ra}a^i be a filtered family of prime Formanek rings 
which are symmetric maximal orders. Let R = U a G / Ra and suppose 

K = R H Qsym(Ra) for all a e /. 

If R is a Formanek ring, then R is a prime ring which is a symmetric 
maximal order. 

Proof. Obviously, J? is a prime ring and 

<2sym(*) = u [Ra(Z(R) n « „ ) - ' ] . 

We have to prove that {J.(J) = R if J is an ideal of R. Suppose x e (J-(J), 
then, for some a e /, 

x e Ra(Z(R) n Ra)~
] c Qsym(Ra) and J D Ra ¥= {0}. 

So, 

x(J n Ra) c / n Qsym(Ra) n R = J n Ra. 

Because Ra is a symmetric maximal order we obtain x e Ra, i.e., x G 
R. 

COROLLARY 5.6. Let R be a prime Formanek ring which is a symmetric 
maximal order and let G be a torsion free abelian group. Then every twisted 
group ring R*[G] is a prime Formanek ring and a symmetric maximal 
order. 

Proof. Since 

R'[G] = U *<[G„], 

where Gn are finitely generated free abelian groups, and because 

R'[G] n Qsym(R![G„]) = R'[Gn] 

the result follows from Proposition 5.1, Lemma 5.4 and Lemma 5.5. 

In the last results of this section we consider P.L rings. 

PROPOSITION 5.7. Let R be a ring and G a torsion free abelian group. A 
twisted group ring R*[G] is a prime P.L ring if and only if GI Gj is finite and 
R is a prime P.L ring. 

Proof. By Proposition 5.1 R is prime if and only if R!\G\ is prime. Of 
course 

R'[G] = R®c C[Gl 
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where C = Z(R) and C*[G] is defined by the same cocycle as R*[G]. 
Therefore R'[G] is P.I. if and only if R is P.I. and C[G] is P.I. If K is the 
quotient field of C, we obtain that Rl[G] is P.I. if and only if R is P.I. and 
Kl[G] is P.I. So it remains to prove that Kl[G] is P.I. if and only if G/Gf is 
finite in case AT is a field. 

Suppose K*[G] is P.I. and prime, then by Posner's theorem 

Q = Kt[Gfr
xK[G] 

is finite dimensional over Z(Q) = Kl [Gf]~] K[Gf]. (Note that Z(K<[G] ) = 
Kl[Gf\ ). Let « ! , . . . , an be a basis of Q over Z(Q). Of course we may 
suppose that at G A^[G], 1 = / < «. Suppose 

«/ = 2 flyg//, gy- e G, atj G ^ , «f- G N0. 
7 = 1 

Let g G G, then g = 2 j8_1fta/, where ft ft G £*[G/]. Thus 

P g = 2 ftfliyg^, 

in particular G/g = Gfgtj for some z,y, 1 ^ i ^ n, \ = j = nr Therefore 
G/Gf is finite. 

Conversely, if G/Gf is finite then 

Ôsym(^[G]) = ( ^ [ G / D - ^ I G ] 

is finite dimensional over its center. So it satisfies a polynomial identity 
and the same is true for K?[G]. 

LEMMA 5.8. Let G be an abelian group and G* a subgroup with ACC on 
cyclic subgroups such that G/G* is finite. Then G has ACC on cyclic 
subgroups. 

Proof. Let {g/} /GN() be a subset of G and suppose that 

(g l> C <g2> C . . . C (gn) C . . . , 

where (g7) is the cyclic subgroup generated by gz. Because G/G* is 
finite, 

(gn)G* = (gn+i)G*, 

for some n G N0 and for all / G N. NOW let at G N0 be the smallest 
number such that g"1 G G*, then 

<gl"'> C (g2
a>) C . . . C <g„"-> C . . . . 

Because G* has ACC on cyclic subgroups, 

(gm) n G* = <gin«-> = < g ^ ; > = <gm+;> n G* 
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for some m e N0 and for ail / e N. Of course we can suppose n = m. 
Now let / e N, then gn+i = g" . x with * G G* and a G Z0. So 

* = gn+lgna e <g„+z> n G* = <g„> n G*. 

Therefore x = g„, b e Z0 and thus gw + / e (g„). This proves that (g„ + /) 
= (g„) for ail / G N. 

It is easy to check that the preceding lemma still holds if G/G* is a 
finitely generated (abelian) group. 

THEOREM 5.9. Let Rf[G] be a prime P.I. ring, then R*[G] is an Q-Krull 
ring if G satisfies the ACC on cyclic subgroups and R is an Q-Krull ring. The 
converse holds if the two-cocycle is trivial. 

Proof Suppose R[G] is an Q-Krull ring. By [7], Q[G] is an Q-Krull ring 
and hence k[G] is a Krull domain (k = Z(Q)). Therefore G has ACC on 
cyclic subgroups (cf. [1] ). Conversely, by Corollary 5.6, R*[G] is a 
symmetric maximal order. By [1], k*[Gf] is a Krull domain. Moreover 
Z(R)l[Gf\ is a graded Krull domain in the sense of [0] because Z(R) is a 
Krull domain. Hence Z(R)'[Gf] = Z(R'[G] ) is a Krull domain by [0]. 

PROPOSITION 5.10. IfR'[G] is a P.I. Q-Krull ring, then 

CI (R'[G] ) = CI (R) and Pic (#r[G] ) = Pic (R). 

Proof We have 

Cl (R'[G] ) S Clg(R'[G] ) 

by Theorem 3.4. Every homogeneous ideal / of R*[G] is of the form Al[G], 
where A is an ideal of R*[G]. Moreover, / = Al[G] is a homogeneous 
divisorial (resp. homogeneous principal) if and only iiA is divisorial (resp. 
principal). Therefore 

Cl (R) = Clg (R'[G] ) = Cl (R'[G] ). 

Similarly one proves that 

Pic (R) = Pic (R'[G] ). 

6. Twisted semigroup rings. In the preceding paragraph twisted 
semigroup rings were introduced. When S is a torsion free abelian 
cancellative semigroup, it was proved that R*[S] is prime Formanek if and 
only if R is prime Formanek and for all s G S there is a / e S such that st 
G Sf, i.e., y has property (SF). 
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From now on all semigroups considered will be torsion free abelian 
cancellative and R is a prime ring satisfying Formanek's condition. 

LEMMA 6.1. If y has property (SF), then <2fymCRr[S] ) is isomorphic to a 
twisted semigroup ring Ql[ (S) ], where (S) is the quotient group of S and Q 
= ôsym(^)- Moreover the defining 2-cocycle y for Q*[ (S) ] satisfies: 

(1) Y e H2((S),<t!(R) H Z(R)\ 

(2) Y\s x s = Y-

In particular 

R'[S] c R'[ (S) ], 

where R*[ (S) ] is the twisted semigroup ring defined by y'. 

Proof Every element of (S) can be written as a~xb where a, b <E S. In 
fact, each a~xb is an equivalence class, by the construction of (S). For 
every equivalence class we choose a fixed representative. Moreover, if 
a~xb <E (S), then there exists a / e S such that ta e Sf, and hence 

a~]b = (ta)~xtb. 

Therefore, we may fix a représentant a~xb for every equivalence class such 
that a <= Sf and if s e S then s itself is representing its equivalence class. 
Every element of Qly^R^S] ) is of the form 2 qi s~t Th where Sj e Sy, 
all tt e S and gz e Q, and the ^ tt are the chosen représentants. 

Denote s~t tt by s,- tr It is clear that qt commutes with Sj tj. The only 

thing that remains to be proved is how Sj tj and Sj tj are multiplied. 
Now, 

~lf " l * . - ^ . . . \ ltitj = y(Sj,Si) xy(tn tj)SjSi x •*/ '/ • ^ {/ = yisjSf) tttj = y (sj, st)
 ly(th tj)SjSi ify 

= y(sj9 s^ ly(th tj)y(s'\ tyXtys,-, / " ) ' 

where the s"~xt" is the fixed représentant of the equivalence class of 
(SjSi)~x(t{tj). Hence we can view Q%jm{Rt\S\ ) as a twisted semigroup ring 
Q\ (S) ] a n d t n e defining 2-cocycle satisfies the condition of the 
statement. 

Recall that 

Z(R'[S]) = Z(R)'[Sf]. 

Note that we have 

Z(Rl[S]) c Z(R'[(S)]) c Z(Rt[S])~xZ(Rt[S]) 

and therefore Sf c (Sf) and (Sf) = (S)f. 
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LEMMA 6.2. Let R*[S] be a twisted semigroup ring which is prime 
Formanek. The following statements are equivalent: 

(1)* ' [S] W Û P . 1 . ring; 
(2) R<[ (S) ] is a P.I. ring. 

Proof. Since 

R'[S] c * ' [<S>] c Ôsym(tf'[S]) 

and since R*[S] is P.I. if and only if <2sym(^r[S] ) is P.I., because this last 
ring is a central localization of i^[S], the result follows. 

LEMMA 6.3. Let R*[S] be a central ti-Krull ring. Then R is a central 
Q-Krull ring. 

Proof. This is similar to the proof of Proposition 3.10 of [9], 

PROPOSITION 6.4. Suppose that R*[S] is a V.l.-2-Krull ring. Then 
(1) CI (R'[S] ) = CI (R) © CI (Q*[S] ) 
Pic (R'[S] ) = Pic (R) © Pic (Q'[S] ) 
(2) CI (<2'[S] ) and Pic ((2'[S] ) are independent of the simple ring. 

Proof. (1) By Proposition 1.2 and Lemma 6.3 R is a P.I. 12-Krull ring. 
We have an exact sequence 

1 -> ker <t> -» D(£'[S] ) -^ B(Ql[S] ) -> 1 

(cf. Section 2) and ker <f> = D(A) by sending I e D(#) to P[S]. Moreover, 
a similar proof as in Proposition 4.4 yields that 

ker<|> n P ( ^ [ S ] ) = P(R) 

and hence ker <J> = Cl (R). Moreover this sequence splits because 

CI (R) -* CI (R'[S] ) -> CI (R'[ (S) ] ) -> CI (#) 

[ / ] ^ [ / ^ ] ] i ^ [ / ' [ < S > ] ] ^ [ / ] 
and this last map exists because CI (#'[£] ) = Cl (R) (Proposition 5.10). 
Similarly we have an exact sequence 

1 -> Pic (R) -> Pic (R'[S] ) -> Pic (Ql[S] ). 

But 

Pic (Q'[S] ) = Picg (Q<[S] ) 

by Theorem 3.5. If [/] e Picg (g'[S] ), then / = Q'[A], A an ideal of S; 

Z"1 = © Qs. 
S<EG 

sA<zS 

Therefore I n # '[5] - R'[A] and ^ [ ^ ] is an invertible #'[S]-ideal. 
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Therefore 

1 -> Pic (R) -» Pic (R'[S] ) -» Pic (&[S] ) -> 1 

is exact (for more details, see [21] ). The rest of the proof goes as before. 
(2) By Theorem 3.5 

C l ( e ' [ S ] ) = C l g ( e ' [S ] ) . 

A graded divisorial ideal is of the form / = ©h^H & a n d H an ideal of S. 
If Q! is another simple ring such that imy c Q\ then we send / = Qf[H] 
to Q''[H]. This defines an isomorphism between Clg (<2'[S] ) and 
Clg (Q"[S] )• 

Note that when S = N and t is trivial we have 

CI (R[X] ) S Cl (R) © Cl (Q[X] ) = Cl (R) 

since Cl (Q[X] ) = 1. 

LEMMA 6.5. Let R'[S] be a twisted semigroup ring which is prime 
Formanek. If I is an ideal of R'[S], then IR'[ (S) ] = R'[ (S) ]/. 

Proof. We claim that 

IR'[ (S) ] c R'[ (S) ]/ . 

It suffices to prove that 

Ix~] c R'[ (S) ]I for all x e S. 

Let x ^ S. There exists an element x' <E S such that JC'X e 5y 
(Proposition 5.1), in particular x'x e Z ^ ^ S ] ). We have 

x~] = coche'1 x1 where a e Z(i?) n # ( # ) . 

Therefore 

73c"1 = Jx '*" 1 * ' = JC'JC"1/* c # [ (5> ]/ . 

PROPOSITION 6.6. 4̂ twisted semigroup ring R*[S], which is prime 
Formanek, is a symmetric maximal order if and only if: 

(1) R is a symmetric maximal order, 
(2) If h e (S) is such that there exists an element g <E S such that for all n 

e N, ghn e S, then h e S. 

Proof Suppose R'[S] is a symmetric maximal order. It follows easily 
that R is a symmetric maximal order. Let h e (S) , g e S such that g/zw e 
S for all n e N. Then g/z" G ^'[S]- Since g and A are normalizing 
elements, we have 

g(R'[syiR'[S] y c R<[S]. 
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Now there is a g' G S such that g'g G Sf, by Proposition 5.1. Therefore 

It follows from Lemma 1.1 that h ^ S. 
Conversely, suppose that / is an ideal of R*[S], a G Qsymi^iS] ) a n d ^ a 

c /. By Lemma 6.5 R'[ (S) ]I is an ideal of R'[ (S) ] and 

*'[<S>]/« c *'[<<>> ] / . 

Since R*[ (S) ] is a symmetric maximal order (Corollary 5.6), a G 
7^r[ (S) ]. Since (S) is torsion free abelian, (S) is an ordered group. 
Write 

p _ 

a = 2 a/g/, g/ e <S>, 
/ = l 

such that gj < g2 . . . < gp. Choose 

p _ 

P = 2 6/A/ e / n Z(/t ' [S]) 

such that h\ < . . . < hq. From /a" c / c R*[S], we deduce for all n that 
j8aw G /*'[£]. The fact that <S> is ordered yields / ^ G S for all w. 
Therefore gp ^ S by the assumption on S. By induction we obtain that a 
G # '[£] . 

PROPOSITION 6.7. Le/ # '[£] /?<? « P.I. Q-Krull ring, S* a subsemigroup of S 
such that Sf c Sf Let R*[S*\ be the twisted semigroup ring defined by the 
2-cocycle of Rl[S] restricted to S*. 

(1) If S n (S*) = S*, then R'[S*] is a P.I. Q-Krull ring. 
(2) If R'[S] n QsymiR'lS*] ) is completely integral over R'[S*]9 then 

R'[S*] is an Q-Krull ring if and only if S n (S*) = 5*. 

Proof (1) We have 

#'[£*] = R'[S] n £'[<£*> ]. 

First we deduce that i?r[5*] is a symmetric maximal order from 
Proposition 6.6. Let h G (S*), g G S* and for ail « G N, gA" G S*. In 
particular A G (S), g G S and ghn G S. Hence A G S n <S*> = S*. 
Because R*[ (S) ] is a P.I. Œ-Krull ring and since (S*) c (5) we conclude 
from Theorem 5.9 that R'[ (S*) ] is an S2-Krull ring and Z(R'[ (S*) ] ) is a 
Krull domain. Because Sf c Sf we have 

Z(R'[S*] ) = Z(#'[S] ) n Z(# '[ <S*> ] ) 

yielding that Z ^ ^ S * ] ) is a Krull domain. Proposition 1.3 yields us the 
desired result. 
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(2) Let a e R'[S] n QSym(R'[S*] ). There exists an element c e 
Z(R'[S*] ) such that for all n e N 

c^S^aR^S*] )n c R'[S*]. 

Since #'[£*] is a symmetric maximal order we have that a G y?'[S*]. This 
yields that 

R'[S*] = Rl[S] n ô s y j W ] ) 

and therefore S n <S*> = S*. 

PROPOSITION 6.8. Let S be a finitely generated semigroup, such that R*[S] 
is a prime P.I. ring. The following are equivalent: 

(1) R*[S] is a P.I. Q-Krull ring 
(2) for all h G (S), such that there exists g G S such that for all n G N, 

ghn G 5, it follows that h G 5. 

P™O/. fl'[S] = # '[ <5> ] n g'[S]. Suppose ^ [ S ] is an Q-Krull ring. 
Then Proposition 6.6 yields the desired result. Conversely if (2) is satisfied, 
then /£'[£] is a symmetric maximal order. It remains to be checked that 
Z(R'[S] ) is a Krull domain. Now 

Z(R'[S] ) = Z(R'[ (S)])n Z(Q<[S] ), and 

Z(Q*[S]) = Z(fiy[S/]. 

We claim that Sf is a finitely generated semigroup. Let s\, . . . , sn a 
set of generators of S. There exists a fixed m G N such that xm G Sf, 
x G 5 (Proposition 5.7 and Lemma 6.2). Therefore there will be only 
finitely many elements in Sf, which cannot be written as a product of 
s™9 . . . , s™. Hence Sf is generated by s™, . . . , s™ plus finitely many other 
elements. Therefore Z(Q)*[Sf\ is Noetherian and hence a Krull domain. 
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