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Abstract
We prove a full measurable version of Vizing’s theorem for bounded degree Borel graphs, that is, we show that
every Borel graph G of degree uniformly bounded by Δ ∈ N defined on a standard probability space (𝑋, 𝜇) admits
a 𝜇-measurable proper edge coloring with (Δ + 1)-many colors. This answers a question of Marks [Question 4.9,
J. Amer. Math. Soc. 29 (2016)] also stated in Kechris and Marks as a part of [Problem 6.13, survey (2020)], and
extends the result of the author and Pikhurko [Adv. Math. 374, (2020)], who derived the same conclusion under the
additional assumption that the measure 𝜇 is G-invariant.
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1. Introduction

Vizing’s theorem is a fundamental result in graph theory that relates the number of colors needed to
properly color edges of a given graph G, the so-called chromatic index 𝜒′(𝐺) of G, with its maximum
degree; it states that if the maximum degree of G is Δ ∈ N, then 𝜒′(𝐺) ≤ Δ + 1. Together with König’s
line coloring theorem (that states that 𝜒′(𝐺) = Δ under the additional assumption that G is bipartite),
these classical results laid the foundation of edge-coloring, an important and active area of graph theory;
see, for example, the recent book on edge-coloring by Stiebitz, Scheide, Toft and Favrholdt [SSTF12].

In this paper, we study Vizing’s theorem from the perspective of measurable graph combinatorics,
a subfield of descriptive set theory that lies at the intersection of measure theory, random processes,
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dynamics, group theory, combinatorics and distributed computing; a (nonexhaustive) sample of results
related to the field (and to our investigation) includes [Lac90, MU17, GMP17, DF92, MU16, Gab00,
KST99, Mar16, CM17, CJM+23, CGM+17, GP20, Ber23, BCG+24]. In its most abstract form, measur-
able graph combinatorics systematically studies the existence of measurable or definable solutions to
various graph coloring problems defined on so-called Borel graphs, graphs where the vertex set (𝑉,B)
is a standard Borel space, for example, the unit interval, and the edge relation E is a Borel subset of
[𝑉]2, where [𝑉]2 denotes the set of unordered pairs endowed with the canonical Borel structure coming
from V. This study originated in the seminal paper of Kechris, Solecki and Todorčević [KST99] and
since then found many applications in various areas of central mathematics; see the surveys of Kechris
and Marks [KM20] and Pikhurko [Pik21].

Basic questions about vertex colorings of bounded degree Borel graphs are well understood. Recall
that the Borel chromatic number 𝜒B (G) of a Borel graph G = (𝑉,B, 𝐸) is the smallest 𝑘 ∈ N such
that there is a decomposition 𝑉 = 𝑉1 � · · · � 𝑉𝑘 , where 𝑉𝑖 is a Borel subset of V that does not span
any edge of G for every 𝑖 ∈ [𝑘]. In the paper [KST99], Kechris, Solecki and Todorčević showed that
there is a Borel measurable version of the classical greedy algorithm for proper vertex coloring, thus
proved that 𝜒B (G) ≤ Δ + 1 for every Borel graph G = (𝑉,B, 𝐸) of maximum degree Δ ∈ N. In the
groundbreaking paper [Mar16], Marks found an example of acylic Δ-regular Borel graph G such that
𝜒B (G) = Δ +1 for every Δ ∈ N, thus concluding that there is no Borel analogue of the classical Brooks’
theorem from finite combinatorics. On the other hand, Conley, Marks and Tucker-Drob [CMTD16]
proved that Brooks’ theorem holds once Borel measurability is relaxed either in the sense of measure
theory or topology. For example, if G = (𝑉,B, 𝐸) is a Borel graph of degree bounded by Δ ≥ 3 that
does not contain a clique on Δ + 1 vertices and 𝜇 is a Borel probability measure on (𝑉,B), then there is
a 𝜇-null Borel set Y such that 𝜒B (G � (𝑉 \𝑌 )) = Δ . Recently, these results were refined by Bernshteyn
[Ber23] and Brandt, Chang, the author, Grunau, Rozhoň and Vidnyánszky [BCG+24] using ideas from
the theory of distributed computing.

In contrast, similar questions about edge colorings are not yet fully understood. A Borel matching
of a Borel graph G = (𝑉,B, 𝐸) is a Borel subset 𝑀 ⊆ 𝐸 that is a matching, that is, every two edges
𝑒, 𝑓 ∈ 𝑀 are either equal (as unordered pairs) or do not share a vertex. The Borel chromatic index 𝜒′

𝐵 (G)
is defined to be the smallest 𝑘 ∈ N such that there is a decomposition 𝐸 = 𝐸1 � · · · � 𝐸𝑘 , where 𝐸𝑖 is a
Borel matching for every 𝑖 ∈ [𝑘]. Equivalently, this can be stated in the language of edge colorings as
finding the smallest 𝑘 ∈ N such that there is a Borel map 𝑐 : 𝐸 → [𝑘] that is a proper edge coloring,
i.e., 𝑐(𝑒) ≠ 𝑐( 𝑓 ) whenever 𝑒 ≠ 𝑓 ∈ 𝐸 share a vertex. The greedy upper bound [KST99] implies that
𝜒′
𝐵 (G) ≤ 2Δ − 1 for every Borel graph G of maximum degree bounded by Δ ∈ N. In the same paper

[Mar16], Marks found an example of acylic Δ-regular Borel graph G such that 𝜒′
𝐵 (G) = 2Δ − 1 for

every Δ ∈ N. This shows that Borel analogue of Vizing’s theorem does not hold. Similarly as in the
case of vertex colorings, it is natural to ask if Vizing’s theorem hold once Borel measurability is relaxed
either in the sense of measure theory or topology. This question (for both measure and topology) is
explicitly stated in the survey of Kechris and Marks [KM20, Problem 6.13]. Marks asked about the
measurable relaxation for regular graphs [Mar16, Question 4.9], and, in fact, the same question for
invariant measures, so-called graphings, was raised earlier by Abért [Abe10].

In this paper, we completely resolve the measurable case; see Theorem 1.1. Before we state the result,
we formalize the definitions and discuss relevant results from recent years. Recall that we always assume
that the Borel graph G = (𝑉,B, 𝐸) in question has degree uniformly bounded by Δ ∈ N. Given a Borel
probability measure 𝜇 on (𝑉,B), we define the 𝜇-chromatic index of G, 𝜒′

𝜇 (G), to be the minimal 𝑘 ∈ N
such that there is a Borel map 𝑐 : 𝐸 → [𝑘] that satisfies

𝜇({𝑣 ∈ 𝑉 : 𝑐 is not proper at 𝑣}) = 0,

where c is not proper at 𝑣 ∈ 𝑉 if there are edges 𝑒 ≠ 𝑓 ∈ 𝐸 that are adjacent to v and 𝑐(𝑒) = 𝑐( 𝑓 ). In
another words, c is a proper edge coloring at 𝜇-almost every vertex 𝑣 ∈ 𝑉 . We say that 𝜇 is G-invariant,
if 𝜇(𝑔(𝐶)) = 𝜇(𝐶) for every 𝐶 ∈ B and every Borel injection 𝑔 : 𝐶 → 𝑉 that satisfies that x and 𝑔(𝑥)
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are in the same connected component of G for every 𝑥 ∈ 𝐶. In that case, the quadruple G = (𝑉,B, 𝜇, 𝐸)
is called a graphing.

Csóka, Lippner and Pikhurko [CLP16] showed that 𝜒′
𝜇 (G) ≤ Δ + 1 for a graphing G = (𝑉,B, 𝜇, 𝐸)

that does not contain odd cycles and proved an upper bound ofΔ+𝑂 (
√
Δ) colors for graphings in general.

In a related result, Bernshteyn [Ber19, Theorem 1.3] proved that Δ + 𝑜(Δ) colors are enough (even for
the so-called list-coloring version) provided that the graphing factors to the shift action Γ � [0, 1]Γ
of a finitely generated group Γ. Answering the question of Abért, the author and Pikhurko [GP20]
proved a measurable version of Vizing’s theorem for graphings, that is, 𝜒′

𝜇 (G) ≤ Δ + 1 for any graphing
G = (𝑉,B, 𝜇, 𝐸). Interestingly, the technique developed in [GP20] was greatly extended by Bernshteyn
[Ber22] who found striking applications to the LOCAL model of distributed computing; see [Ber22,
Chr23, BD23] for a current development in that direction.

Bernshteyn [Ber19], the author and Pikhurko [GP20], Tóth [T2́1] and the author [Gre22] investigated
weaker notion of approximate edge colorings. In this setting, we require to find for each probability
measure 𝜇 and 𝜖 > 0 a coloring of edges that is not correct or undefined for at most 𝜖 fraction of
all edges. Here, the analogues of Vizing’s theorem as well as König’s line coloring theorem hold; see
[GP20] and [Gre22].

Bowen and Weilacher [BW23] investigated Vizing’s theorem in the context of (Borel) asymptotic
dimension introduced in [CJM+23]. As an application they derived that Δ +1 colors are enough for edge
colorings of bipartite graphs in the topological relaxation sense and for measures that are hyperfinite.
Stronger results in the special case of free Borel Z𝑑-actions, that is, Borel edge coloring with 2𝑑 colors
which is the analogue of König’s line coloring theorem in this setting, were obtained independently
around the same time in [BHT24, CU22, GR23, Wei21].

Recently, Qian and Weilacher [QW22] found connections of the topological relaxation to computable
combinatorics which allowed them to derive an upper bound of Δ + 2 colors for the Baire measurable
analogue of Vizing’s theorem, the full topological analogue, that is, Δ + 1 colors only, remains an
interesting open problem.

Next, we state our main result, which is the full analogue of Vizing’s theorem in the measurable
setting.
Theorem 1.1. Let (𝑉,B) be a standard Borel space,Δ ∈ N, G = (𝑉,B, 𝐸) be a Borel graph of uniformly
bounded degree by Δ ∈ N and 𝜇 be a Borel probability measure on (𝑉,B). Then 𝜒′

𝜇 (G) ≤ Δ + 1, that
is, there is a Borel map 𝑐 : 𝐸 → [Δ + 1] that is a proper edge coloring at 𝜇-almost every vertex 𝑣 ∈ 𝑉 .

In the proof, we combine the technique of augmenting iterated Vizing chains introduced by the
author and Pikhurko in [GP20] together with the following result, Theorem 1.2, that is interesting in
its own right and might be useful for other applications as well.1 Before we state the result, we need
several definitions. Let G = (𝑉,B, 𝐸) be a Borel graph and 𝜇 be a Borel probability measure on (𝑉,B).
Recall that 𝜇 is called G-quasi-invariant if 𝜇([𝐴]G) = 0, whenever 𝜇(𝐴) = 0, where [𝐴]G is the union
of all connected component of G that have a nonempty intersection with A. It is a standard fact (see,
e.g., [KM04, Chapter II, Section 8], that if 𝜇 is G-quasi-invariant, then there is a function 𝜌𝜇, called the
Radon–Nikodym cocycle of G that takes values in (0, +∞), is defined for every ordered pair of points
𝑥, 𝑦 ∈ 𝑉 that are in the same connected component of G and satisfies the following mass transport
principle:

𝜇(𝑔(𝐶)) =
∫
𝐶

𝜌𝜇 (𝑥, 𝑔(𝑥)) 𝑑𝜇

for every 𝐶 ⊆ 𝑉 and an injective Borel map 𝑔 : 𝐶 → 𝑋 that satisfies for every 𝑥 ∈ 𝐶 that 𝑔(𝑥) is in the
same connected component of G as x. While in general 𝜌𝜇 can behave chaotically, the next result shows
that one can always pass to an equivalent measure 𝜈 such that 𝜌𝜈 is bounded on edges of G.

1After the first version of this paper appeared on arXiv, we were informed by Gábor Elek that Gabriella Kuhn [Kuh94, Lemma
1] proved the same result in the context of group actions; see Remark 1.3.
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Theorem 1.2 (see also [Kuh94] Lemma 1). Let (𝑉,B) be a standard Borel space, Δ ∈ N, G = (𝑉,B, 𝐸)
be a Borel graph of uniformly bounded degree by Δ ∈ N and 𝜇 be a Borel probability measure on (𝑉,B)
that is G-quasi-invariant. Then there is an equivalent Borel probability measure 𝜈 on (𝑉,B) such that

1
4Δ

≤ 𝜌𝜈 (𝑥, 𝑦) ≤ 4Δ

for every edge (𝑥, 𝑦) ∈ 𝐸 .
In particular, if distG (𝑥, 𝑦) = 𝑘 ∈ N, then 𝜌𝜈 (𝑥, 𝑦) ≤ (4Δ)𝑘 , where distG is the graph distance on G.

Remark 1.3. Kuhn [Kuh94, Lemma 1] showed that if a countable group Γ acts in a quasi-invariant
fashion on a standard probability space (𝑋, 𝜇), then there is an equivalent measure 𝜈 such that the
cocycle 𝜌𝜈 (−, 𝛾 · −) (as a function 𝑋 → (0,∞)) is bounded for every fixed 𝛾 ∈ Γ. This result combined
with the fact that every Borel graph G of degree bounded by Δ (G) < +∞ can be generated by 2Δ (G) −1
involutions (which follows from the Lusin–Novikov uniformization theorem [Kec95, Theorem 18.10])
implies Theorem 1.2 possibly with a constant larger than 4Δ .

Similar, stronger conditions on the cocycle was used by Conley and Tamuz [CT21]. They designed a
procedure for solving the unfriendly coloring problem on graphs of degree bounded by Δ and showed
that this procedure terminates off of a 𝜇-null set for every quasi-invariant Borel probability measure
𝜇 under the assumption that 1 − 1/Δ ≤ 𝜌𝜇 (𝑥, 𝑦) ≤ 1 + 1/Δ for every edge {𝑥, 𝑦} (this includes, for
example, the case when 𝜇 is invariant). Finding a measurable unfriendly coloring for a general Borel
probability measure remains an interesting open problem. In general, it would be nice to investigate if
our condition has another applications in the context of local graph coloring problems.

The paper is structured as follows: In Section 2, we set the notation and recall basic results; in
Section 3, we define the augmenting chains that we consider in this paper, so-called 3-step Vizing
chains, and estimate how many of them can be attached to an uncolored edge; in Section 4, we describe
an infinite procedure that improves a given coloring so that it does not contain augmenting chains of
small weight; in Section 5, we prove Theorem 1.2, that is, we show how to modify a given quasi-invariant
measure to an equivalent measure that has bounded cocycle on edges; in Section 6, we describe the
double counting argument that estimates the number of uncolored edges; and finally in Section 7, we
combine all the results to prove Theorem 1.1.

2. Preliminaries

Our basic descriptive set theory reference is [Kec95]; see also [KM20, Pik21]. We mostly follow the
notation developed in [GP20]. Let us point out that N contains 0. If 𝑘 ∈ N \ {0}, then we write
[𝑘] = {1, 2, . . . , 𝑘}. If S is a set, then we write [𝑆]𝑘 for the set of k-element subsets of S. In particular,
[𝑆]2 is the set of unordered pairs of S. We follow a standard graph theoretic notation, that is, a graph is
a pair 𝐺 = (𝑉, 𝐸), where 𝑉 ⊆ [𝐸]2, deg𝐺 (𝑥) is the number of neighbors of x in G, dist𝐺 (𝑥, 𝑦) denotes
the graph distance of 𝑥, 𝑦 ∈ 𝑉 in G, and 𝑁𝐺 (𝑥) denotes the set of all edges of G that are adjacent to x,
that is, 𝑁𝐺 (𝑥) = {𝑒 ∈ 𝐸 : 𝑥 ∈ 𝑒}.

Borel graphs. A Borel graph is a triplet G = (𝑉,B, 𝐸), where (𝑉,B) is a standard Borel space,
(𝑉, 𝐸) is a graph and E is a Borel subset of [𝑉]2 (endowed with the natural 𝜎-algebra inherited from
the product 𝜎-algebra B × B on 𝑉 × 𝑉). We say that G is of bounded maximum degree if there is
Δ ∈ N such that degG (𝑥) ≤ Δ for every 𝑥 ∈ 𝑉 . We write Δ (G) for smallest such Δ . We denote the
connectedness relation of G as 𝐹G . That is, 𝐹G is an equivalence relation on X, and we write [𝑥]G for
the G-connectivity component of 𝑥 ∈ 𝑉 . If Δ (G) < ∞, then 𝐹G is a Borel subset of 𝑉 × 𝑉 and | [𝑥]G | is
at most countable. Recall that an equivalence relation F on a standard Borel space (𝑋,D) that is Borel
as a subset of 𝑋 × 𝑋 and each F-equivalence class is at most countable is called a countable Borel
equvialence relation (CBER) on X; see [Kec24]. In particular, if Δ (G) < ∞, then 𝐹G is a CBER on V.
Given 𝐴 ⊆ 𝑋 , we write [𝐴]𝐹 for the F-saturation of A in F, that is, the smallest F-invariant subset of X
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that contains A. If [𝐴]𝐹 = 𝐴, then we say that A is F-invariant. In case 𝐹 = 𝐹G , we write simply [𝐴]G
and say that A is G-invariant if it is 𝐹G-invariant. Observe that if A is a Borel set, then so is [𝐴]𝐹 .

The line graph of a Borel graph G = (𝑉,B, 𝐸) is the Borel graph E = (𝐸, C, 𝐼G), where C is the
𝜎-algebra on E inherited form [𝑉]2 and (𝐸, 𝐼G) is the line graph of (𝑉, 𝐸), that is, {𝑒, 𝑓 } ∈ 𝐼G if and
only if e and f share exactly one vertex. Observe that if Δ (G) < ∞, then Δ (E) ≤ 2Δ (G) − 2. Similarly
as above, 𝐹E is the CBER on E induced by the connectivity components of E .

A Borel chromatic number 𝜒B (G) of a Borel graph G is the minimal 𝑘 ∈ N such that there is a
Borel proper vertex coloring 𝑑 : 𝑉 → [𝑘] of G. Note that the subscript 𝜒B refers to the corresponding
𝜎-algebra. A Borel chromatic index 𝜒′

B (G) is defined as 𝜒C (E). That is 𝜒′
B (G) = 𝑘 if there is a Borel

proper vertex coloring 𝑐 : 𝐸 → [𝑘] of E .

Measures. The set of all Borel probability measures on a standard Borel space (𝑋,B) is denoted
as P (𝑋). Let F be a CBER on X and 𝜇 ∈ P (𝑋). We say that 𝜇 is F-quasi invariant if 𝜇([𝐴]𝐹 ) = 0,
whenever 𝜇(𝐴) = 0. If G = (𝑉,B, 𝐸) is a Borel graph, then we say that 𝜇 ∈ P (𝑉) is G-quasi-invariant
if it is 𝐹G-quasi-invariant

Proposition 2.1 (Propositions 3.1 and 3.2 in [GP20]). Let G = (𝑉,B, 𝐸) be a Borel graph such that
Δ (G) < ∞, E = (𝐸, C, 𝐼G) be its line graph and 𝜇 ∈ P (𝑉). Then there is 𝜇̂ ∈ P (𝐸) that is E-quasi-
invariant and satisfies

𝜇({𝑥 ∈ 𝑉 : ∃𝑒 ∈ 𝐴 𝑥 ∈ 𝑒}) = 0

for every 𝐴 ⊆ 𝐸 that satisfy 𝜇̂(𝐴) = 0.

Proof. By [GP20, Proposition 3.2], we find 𝜇̃ ∈ P (𝑉) that is G-quasi invariant and satisfies 𝜇([𝐴]G) =
𝜇̃([𝐴]G) for every 𝐴 ⊆ 𝑉 . By [GP20, Proposition 3.1], we find 𝜇̂ ∈ P (𝐸) that is E-quasi invariant and
satisfies

𝜇̃({𝑥 ∈ 𝑉 : ∃𝑒 ∈ 𝐴 𝑥 ∈ 𝑒}) < Δ (G)𝜖

for every 𝐴 ⊆ 𝐸 that satisfies 𝜇̂(𝐴) < 𝜖 . In particular, if 𝜇̂(𝐴) = 0, then

𝜇({𝑥 ∈ 𝑉 : ∃𝑒 ∈ 𝐴 𝑥 ∈ 𝑒}) ≤ 𝜇
(
[{𝑥 ∈ 𝑉 : ∃𝑒 ∈ 𝐴 𝑥 ∈ 𝑒}]G

)
= 𝜇̃

(
[{𝑥 ∈ 𝑉 : ∃𝑒 ∈ 𝐴 𝑥 ∈ 𝑒}]G

)
= 0

as 𝜇̃({𝑥 ∈ 𝑉 : ∃𝑒 ∈ 𝐴 𝑥 ∈ 𝑒}) = 0. �

A fundamental tool in the study of quasi-invariant measures is the Radon–Nikodym cocycle. Let
(𝑋,B) be a standard Borel space, F be a CBER on X and 𝜇 ∈ P (𝑋) be F-quasi-invariant. Then the
Radon–Nikodym cocycle (of 𝜇 with respect to F) is a Borel function 𝜌𝜇,𝐹 : 𝐹 → R>0 with the property
that

𝜇(𝑔(𝐶)) =
∫
𝐶

𝜌𝜇,𝐹 (𝑥, 𝑔(𝑥)) 𝑑𝜇(𝑥)

for every 𝐶 ∈ B and injective Borel map 𝑔 : 𝐶 → 𝑋 such that (𝑥, 𝑔(𝑥)) ∈ 𝐹. It is a standard fact that
the Radon–Nikodym cocycle exists, and it is unique up to null-sets, that is, if 𝜌 and 𝜌′ are two Radon–
Nikodym cocycles of 𝜇 with respect to F, then there is a 𝜇-conull F-invariant set 𝐴 ⊆ 𝑋 such that

𝜌 � (𝐹 ∩ (𝐴 × 𝐴)) = 𝜌′ � (𝐹 ∩ (𝐴 × 𝐴));

see [KM04]. The following statement summarizes the properties of cocycles that we need.

Proposition 2.2 (Chapter II, Section 8 in [KM04]). Let (𝑋,B) be a standard Borel space, F be a CBER
on X and 𝜇 ∈ P (𝑋) be F-quasi-invariant. Then the Radon–Nikodym cocycle 𝜌𝜇,𝐹 : 𝐹 → R>0 satisfies:
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1. there is a 𝜇-conull F-invariant set 𝐴 ∈ B such that 𝜌𝜇,𝐹 (𝑥, 𝑦)𝜌𝜇,𝐹 (𝑦, 𝑧) = 𝜌𝜇,𝐹 (𝑥, 𝑧) for any
𝑥, 𝑦, 𝑧 ∈ 𝐴 such that 𝑦, 𝑧 ∈ [𝑥]𝐹 ,

2. (mass transport) we have∫
𝑋

∑
𝑥∈[𝑦 ]𝐹

F(𝑥, 𝑦) 𝑑𝜇(𝑦) =
∫
𝑋

∑
𝑦∈[𝑥 ]𝐹

F(𝑥, 𝑦)𝜌𝜇,𝐹 (𝑥, 𝑦) 𝑑𝜇(𝑥)

for any function F : 𝐹 → [0,∞].

In case that 𝐹 = 𝐹G , we write 𝜌𝜇,G instead of 𝜌𝜇,𝐹G . If F is clear from context, then we write
simply 𝜌𝜇.

Definition 2.3. Let G = (𝑉,B, 𝐸) be a Borel graph such that Δ (G) < ∞ and 𝜇 ∈ P (𝑉) be G-quasi-
invariant. We say that 𝜇 is G-bounded if

1
4Δ

≤ 𝜌𝜇 (𝑥, 𝑦) ≤ 4Δ

for every {𝑥, 𝑦} ∈ 𝐸 .

We show in Theorem 5.1 that every G-quasi-invariant 𝜇 ∈ P (𝑉) is equivalent with a G-bounded
measure 𝜈 ∈ P (𝑉).

3. Edge colorings

Let G = (𝑉,B, 𝐸) be a Borel graph such that Δ (G) < ∞. A partial (Borel proper edge) coloring of G is
a partial Borel (with respect to the 𝜎-algebra C on E, in particular, dom(𝑐) ∈ C) map 𝑐; 𝐸 → [Δ (G) +1]
that assigns different colors to different edges that share a vertex. Usually we use lower case Greek
letters for colors,for example, 𝛼, 𝛽 ∈ [Δ (G) + 1]. Given a partial coloring c, we define 𝑚𝑐 (𝑥) to be the
set of missing colors at 𝑥 ∈ 𝑉 , that is, 𝑚𝑐 (𝑥) = [Δ (G) + 1] \ {𝑐(𝑒) : 𝑒 ∈ 𝑁G (𝑥)}. We also write 𝑈𝑐 for
the set of uncolored edges, that is, 𝑈𝑐 = 𝐸 \ dom(𝑐).

In order to improve a given partial coloring c, we utilize an idea from the proof of Vizing’s theorem,
so-called Vizing chains. In general, given an uncolored edge 𝑒 ∈ 𝑈𝑐 , we want to find an injective
augmenting sequence of edges 𝑊𝑐 (𝑒) = (𝑒𝑖)𝑖≤𝑘 such that 𝑒0 = 𝑒, 𝑒𝑖 ∩ 𝑒𝑖+1 ≠ ∅ for 𝑖 ≤ 𝑘 and 𝑒𝑖 ∉ 𝑈𝑐 for
every 1 ≤ 𝑖 ≤ 𝑘 with the property that keeping the colors outside of 𝑊𝑐 (𝑒) intact, but shifting the colors
from 𝑒𝑖+1 to 𝑒𝑖 produces a different partial (proper) coloring 𝑐′ such that 𝑚𝑐′ (𝑧0) ∩ 𝑚𝑐′ (𝑧1) ≠ ∅, where
{𝑧0, 𝑧1} = 𝑒𝑘 is the last edge of 𝑊𝑐 (𝑒). Extending 𝑐′ by assigning any color from 𝑚𝑐′ (𝑧0) ∩ 𝑚𝑐′ (𝑧1) to
𝑒𝑘 then improves c as we decreased the number of uncolored edges. Observe that the difference between
c and 𝑐′ is contained in 𝑊𝑐 (𝑒).

Various types of sequences 𝑊𝑐 (𝑒) have been used in the literature. In order to prove classical Vizing’s
theorem, one chooses 𝑊𝑐 (𝑒) to be a concatenation of a so-called fan and an alternating path, also known
as a Vizing chain. To prove an analogue of Vizing’s theorem for graphings, the author and Pikhurko
[GP20] iterated this process two times. Namely, first we fix a Vizing chain, then truncate it at any edge on
the alternating path, and then grow a second Vizing chain from that place; such a sequence is called an
iterated Vizing chain. In order to devise efficient (both deterministic and randomized) local algorithms
that produce a proper edge colorings with Δ +1 colors on finite graphs, Bernshteyn [Ber22] iterated this
process log(𝑛) times, where n is the number of vertices of the graph. Bernshteyn called the produced
injective sequence a multistep Vizing chain. In this paper, being ideologically more closer to [GP20],
we iterate the process three times. We follow the terminology of Bernshteyn and call this augmenting
chain a 3-step Vizing chain. The estimate for the number of 3-step Vizing chains that can be assigned
to a given uncolored edge follows the computation from [GP20]. It seems plausible that one can get
similar estimate by adapting the results from finite graphs, but we decided to follow the more direct path
of generalizing [GP20].
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3.1. 3-step Vizing chains

We recall the notation from [GP20, Section 2] and refer the reader there for basic results about this
notation. Fix a Borel graph G = (𝑉,B, 𝐸) such that Δ (G) < ∞ and a partial edge coloring 𝑐; 𝐸 →
[Δ (G) + 1]. Set Δ = Δ (G), and fix an ordering of the set of colors [Δ + 1].

A chain is a sequence 𝑃 = (𝑒0, . . . ) of edges of G such that for every index 𝑖 ∈ N with 𝑒𝑖 , 𝑒𝑖+1 being
in P we have 𝑒𝑖 ∩ 𝑒𝑖+1 ≠ ∅, that is, every two consecutive edges in P intersect. Let 𝑙 (𝑃) = |𝑃 | denote
the length of the chain P, that is, the number of edges in P. Note that a chain can be finite (possibly
empty) or infinite; thus, 𝑙 (𝑃) ∈ N ∪ {∞} and, if P is finite, then 𝑃 = (𝑒0, . . . , 𝑒𝑙 (𝑃)−1). The convention
of labeling the first edge as 𝑒0 allows us to write 𝑃 = (𝑒𝑖)𝑖<𝑙 (𝑃) , regardless of whether P is finite or not.
If 𝑙 (𝑃) = ∞, then we define 𝑙 (𝑃) − 1 = ∞ in order to avoid case by case statements in several places.

We call 𝑒𝑖−1 the i-th edge of P. For an edge f that occurs exactly once in P, let its index 𝑖( 𝑓 ) be 𝑖 ≥ 1
such that 𝑓 = 𝑒𝑖−1, that is, the index of the i-th edge is i. Also, for 𝑖 ≤ 𝑙 (𝑃), let 𝑃𝑖 = (𝑒 𝑗 ) 𝑗<𝑖 denote the
i-th prefix of P (which consists of the first i edges from P). We have, for example, that 𝑃𝑙 (𝑃) = 𝑃. For
chains P and Q, we write 𝑃 � 𝑄 if 𝑃 = 𝑄𝑙 (𝑃) , that is, P is a prefix of Q. If P is a finite chain with the
last edge e and Q is a chain with the first edge f and 𝑒 ∩ 𝑓 ≠ ∅, then we write 𝑃⌢𝑄 for the chain that is
the concatenation of P and Q.

Let us call a chain 𝑃 = (𝑒𝑖)𝑖<𝑙 (𝑃) a path if P is empty, or if every vertex 𝑧 ∈ 𝑉 belongs to at most
two edges from P and there is a vertex that belongs only to 𝑒0. (In other words, P is a finite path with
a fixed direction on edges or an infinite one-sided ray, where no self-intersections are allowed.) Also, a
chain P is called a cycle if P is nonempty and every vertex belongs to zero or two edges of P. (These
are just finite cycles, having some edge and direction fixed.)
Definition 3.1 (Definition 2.2 in [GP20]). We say that a chain 𝑃 = (𝑒𝑖)𝑖<𝑙 (𝑃) is
1. edge injective if every edge appears at most once in P, that is, for every 0 ≤ 𝑖 < 𝑗 < 𝑙 (𝑃) we have

that 𝑒𝑖 ≠ 𝑒 𝑗 ,
2. c-shiftable if 𝑙 (𝑃) ≥ 1, P is edge injective, 𝑒0 ∈ 𝑈𝑐 and 𝑒 𝑗 ∈ dom(𝑐) for every 1 ≤ 𝑗 < 𝑙 (𝑃) (that

is, if P is nonempty with no edge repeated and 𝑒0 is the unique uncolored edge of P);
3. c-proper-shiftable if P is c-shiftable and 𝑐𝑃; 𝐸 → [Δ + 1] is a partial coloring, where 𝑐𝑃 is the shift

of c along P (or P-shift of c for short) which is defined as
◦ dom(𝑐𝑃) = dom(𝑐) ∪ {𝑒0} \ {𝑒𝑙 (𝑃)−1} where we put {𝑒𝑙 (𝑃)−1} = ∅ if 𝑙 (𝑃) = ∞,
◦ 𝑐𝑃 (𝑒𝑖) = 𝑐(𝑒𝑖+1) for every 𝑖 + 1 < 𝑙 (𝑃),
◦ 𝑐𝑃 ( 𝑓 ) = 𝑐( 𝑓 ) for every 𝑓 ∈ dom(𝑐) \ 𝑃;

4. c-augmenting if P is c-proper-shiftable and either 𝑙 (𝑃) = ∞ or P is finite with 𝑚𝑐𝑃 (𝑥) ∩𝑚𝑐𝑃 (𝑦) ≠ ∅,
where 𝑥 ≠ 𝑦 are the vertices of the last edge 𝑒𝑙 (𝑃)−1 of P.
Next, we describe the building blocks that will be used to build 3-step Vizing chains:

Alternating path. Let 𝑥 ∈ 𝑉 and 𝛼, 𝛽 ∈ [Δ + 1] be different colors such that 𝛽 ∈ 𝑚𝑐 (𝑥). Then
there is a unique maximal chain 𝑃 = (𝑒𝑖)𝑖<𝑙 (𝑃) such that 𝑥 ∈ 𝑒0 if 𝑙 (𝑃) > 0, 𝑥 ∉ 𝑒1 if 𝑙 (𝑃) > 1, and
𝑐(𝑒𝑖) = 𝛼 (resp. 𝑐(𝑒𝑖) = 𝛽) for every 𝑖 < 𝑙 (𝑃) that is even (resp. odd). We call this unique maximal
chain the (alternating) 𝛼/𝛽-path starting at 𝑥 ∈ 𝑉 and denote it as 𝑃𝑐 (𝑥, 𝛼/𝛽). If 𝑃𝑐 (𝑥, 𝛼/𝛽) is finite
and nonempty, then we call the unique 𝑦 ∈ 𝑉 such that |{ 𝑓 ∈ 𝑃𝑐 (𝑥, 𝛼/𝛽) : 𝑦 ∈ 𝑓 }| = 1 and 𝑦 ≠ 𝑥 the
last vertex of 𝑃𝑐 (𝑥, 𝛼/𝛽). If 𝑃𝑐 (𝑥, 𝛼/𝛽) is empty (which happens exactly when 𝛼 ∈ 𝑚𝑐 (𝑥)), then the
last vertex is x. Whenever we write 𝑃𝑐 (𝑥, 𝛼/𝛽), we always assume that the condition that 𝛽 ∈ 𝑚𝑐 (𝑥) is
satisfied. Observe that the colors on the chain alternate between 𝛼 and 𝛽 (starting with 𝛼) and we never
return to a vertex we have previously visited (and thus the edges in P form a path).

Fan. Let 𝑒 ∈ 𝑈𝑐 and 𝑥 ∈ 𝑒. We define the maximal fan around x starting at e, in symbols 𝐹𝑐 (𝑥, 𝑒),
as a (finite) chain 𝑃 = (𝑒0, 𝑒1, . . . , 𝑒𝑘 ) such that 𝑥 ∈ 𝑒𝑖 for every 𝑖 ≤ 𝑘 and if we denote the other vertex
in 𝑒𝑖 by 𝑣𝑖 , then the following statements are satisfied
1. 𝑒0 = 𝑒,
2. P is edge injective,
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3. 𝑐(𝑒𝑖+1) ∈ 𝑚𝑐 (𝑣𝑖) for every 𝑖 < 𝑘 and 𝑐(𝑒𝑖+1) is the minimal color available in the i-th step, where
we say that a color 𝛼 is available in the i-th step if 𝛼 ∈ 𝑚𝑐 (𝑣𝑖),

4. (𝑒0, . . . , 𝑒𝑘 ) is maximal with these properties.

Conditional fan. We generalize, but only formally, the following definition from [GP20, Section
2.5]. Take 𝑃𝑐 (𝑥, 𝛼/𝛽) for some 𝑥 ∈ 𝑉 . Let 𝑓 ∈ 𝑃𝑐 (𝑥, 𝛼/𝛽) be a an edge that is not first nor last in
𝑃𝑐 (𝑥, 𝛼/𝛽) and 𝑦 ∈ 𝑉 be the last vertex of 𝑃𝑐 (𝑥, 𝑒)𝑖 ( 𝑓 ) . We define the maximal 𝛼/𝛽-conditional fan
starting at f, denoted as 𝐹𝑐 (𝑥, 𝛼/𝛽, 𝑦), as a chain 𝑃 = (𝑔0, . . . , 𝑔𝑚) such that 𝑦 ∈ 𝑔𝑖 for every 𝑖 ≤ 𝑚
and, if we denote the other vertex of 𝑔𝑖 by 𝑢𝑖 , then the following is satisfied

1. 𝑔0 = 𝑓 ,
2. P is edge injective,
3. 𝑐(𝑔𝑖+1) ∈ 𝑚𝑐 (𝑢𝑖) and it is the minimal available color,
4. 𝛼, 𝛽 ∉ 𝑚𝑐 (𝑢𝑖) for every 𝑖 < 𝑚,
5. if 𝛼, 𝛽 ∉ 𝑚𝑐 (𝑢𝑚), then (𝑔0, . . . , 𝑔𝑚) is maximal with the properties above.

Note that we should rather write 𝑢
𝑓
𝑖 , 𝑔

𝑓
𝑖 and 𝑦 𝑓 to stress that those objects depend on the choice of f.

This will be, however, omitted in the cases when we work with only one f.
Now, we are ready to for the main definition.

Definition 3.2 (3-step Vizing chain). Let G = (𝑉,B, 𝐸) be a Borel graph such that Δ (G) < ∞,
𝑐; 𝐸 → [Δ (G) + 1] be a partial edge coloring and 𝑒 ∈ 𝑈𝑐 . We say that a c-augmenting chain 𝑊𝑐 (𝑒) =
(𝑒𝑖)𝑖<𝑙 (𝑊𝑐 (𝑒)) , where 𝑙 (𝑊𝑐 (𝑒)) ∈ N ∪ {∞}, is a 3-step Vizing chain (at e) if there are pairwise different
vertices 𝑦1, 𝑦2, 𝑦3, 𝑧1, 𝑧2, 𝑧3 ∈ 𝑉 , and colors 𝛼𝑖 , 𝛽𝑖 ∈ [Δ (G) + 1] for 𝑖 ∈ {1, 2, 3} such that

𝑊𝑐 (𝑒) =
(
𝐹1
𝑐

)⌢ (
𝑃1
𝑐

)⌢ (
𝐹2
𝑐

)⌢ (
𝑃2
𝑐

)⌢ (
𝐹3
𝑐

)⌢ (
𝑃3
𝑐

)
,

where

1. 𝐹1
𝑐 � 𝐹𝑐 (𝑦1, 𝑒), 𝐹2

𝑐 � 𝐹𝑐 (𝑧1, 𝛼1/𝛽1, 𝑦2) and 𝐹3
𝑐 � 𝐹𝑐 (𝑧2, 𝛼2/𝛽2, 𝑦3),

2. 𝑃𝑖𝑐 � 𝑃𝑐 (𝑧𝑖 , 𝛼𝑖/𝛽𝑖) for every 𝑖 ∈ {1, 2, 3},
3. if 𝑇 ∈ {𝐹𝑖𝑐}3

𝑖=1 ∪ {𝑃𝑖𝑐}3
𝑖=1 satisfies 𝑇 = ∅, then every S to the right from T in the definition of 𝑊𝑐 (𝑒)

is empty as well, that is, 𝑊𝑐 (𝑒) is built by at most three iterations of the ‘Vizing chain’ construction,

3.2. Construction of 3-step Vizing chains

Let 𝑒 ∈ 𝑈𝑐 and 𝑥 ∈ 𝑒 be fixed. First, we describe a process that produces many chains of the form

𝑊𝑐 (𝑒) =
(
𝐹1
𝑐

)⌢ (
𝑃1
𝑐

)⌢ (
𝐹2
𝑐

)⌢ (
𝑃2
𝑐

)⌢ (
𝐹3
𝑐

)⌢ (
𝑃3
𝑐

)
that satisfies (1)–(3) in Definition 3.2, then we investigate how many of these chains are 3-step Vizing
chains, that is, which ones are c-augmenting. We handle each iteration separately.

Iteration I. We start with [GP20, Section 2.4]. Recall that the Vizing chain 𝑉𝑐 (𝑥, 𝑒) either consists
of the fan 𝐹𝑐 (𝑥, 𝑒), in case it is augmenting, or we have

𝑉𝑐 (𝑥, 𝑒) = 𝐹𝑐 (𝑥, 𝑒)𝑖+1
⌢𝑃𝑐 (𝑣𝑖 , 𝛼/𝛽),

where 𝑖 < 𝑙 (𝐹𝑐 (𝑥, 𝑒)) (so-called first critical index) and {𝑥, 𝑣𝑖} is the last edge of the truncated fan
𝐹𝑐 (𝑥, 𝑒)𝑖1+1.

Claim 3.3 (Proposition 2.9 in [GP20]). If 𝐹𝑐 (𝑥, 𝑒) is not c-augmenting, then there is 𝑖 < 𝑙 (𝐹𝑐 (𝑥, 𝑒))
such that 𝐹𝑐 (𝑥, 𝑒)𝑖+1

⌢𝑃𝑐 (𝑣𝑖 , 𝛼/𝛽) is c-augmenting, where (𝑥, 𝑣𝑖) is the last edge of the truncated fan
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𝐹𝑐 (𝑥, 𝑒)𝑖+1 and 𝛽 is the smallest missing color at 𝑣𝑖 . In particular, the Vizing chain 𝑉𝑐 (𝑥, 𝑒) is a 3-step
Vizing chain.

Moreover, if nonempty, then 𝑃𝑐 (𝑣𝑖 , 𝛼/𝛽) does not use the vertex x.

Suppose that 𝑃𝑐 (𝑣𝑖 , 𝛼/𝛽) is nonempty. Define 𝐹1
𝑐 = 𝐹𝑐 (𝑥, 𝑒)𝑖1+1, 𝑦1 = 𝑥, 𝑧1 = 𝑣𝑖 and 𝛼1 = 𝛼, 𝛽1 = 𝛽.

This concludes the first iteration of the construction.

Iteration II. Recall that 𝑓 1 ∈ 𝑃𝑐 (𝑧1, 𝛼1/𝛽1) is suitable [GP20, Definition 2.10] if it is of graph
distance ≥ 3 from 𝐹1

𝑐 , it is not the last edge of 𝑃𝑐 (𝑧1, 𝛼1/𝛽1) and 𝑐( 𝑓 1) = 𝛼1 (we remark that the
last condition only helps with the notation and is otherwise irrelevant). Let 𝑦2 be the last vertex of
𝑃𝑐 (𝑧1, 𝛼1/𝛽1)𝑖 ( 𝑓 1) , and set 𝐹𝑐 (𝑥, 𝑒 � 𝑓 1) = 𝐹𝑐 (𝑧1, 𝛼1/𝛽1, 𝑦2), where 𝐹𝑐 (𝑧1, 𝛼1/𝛽1, 𝑦2) is the maximal
𝛼1/𝛽1-conditional fan starting at 𝑓 1.

Claim 3.4 (Proposition 2.12 in [GP20]). Let 𝑓 1 ∈ 𝑃𝑐 (𝑧1, 𝛼/𝛽) be suitable. Then

𝑃 = 𝑉𝑐 (𝑥, 𝑒)𝑖 ( 𝑓 1)−1
⌢𝐹𝑐 (𝑥, 𝑒 � 𝑓 1)

is c-proper-shiftable.

According to the type of 𝑓 1, as defined in [GP20, Section 2.5], it is possible to assign an injective
sequence of edges Q such that either 𝑄 = 𝐹𝑐 (𝑥, 𝑒 � 𝑓 1), or

𝑄 = 𝐹𝑐 (𝑥, 𝑒 � 𝑓 1)𝑚+1
⌢

𝑃𝑐 (𝑢𝑚, 𝛾/𝛿),

where 𝑚 < 𝑙 (𝐹𝑐 (𝑥, 𝑒 � 𝑓 1)) (the so-called second critical index), {𝑦2, 𝑢𝑚} is the last edge of the
truncated fan 𝐹𝑐 (𝑥, 𝑒 � 𝑓 1)𝑚+1 and {𝛾, 𝛿} is either equal to or disjoint from {𝛼1, 𝛽1}. Using the
technical notion of superb edges, the following, again adapted to our terminology, is shown in [GP20].

Claim 3.5 (Propositions 2.15 and 2.17 in [GP20]). Let 𝑓 1 ∈ 𝑃𝑐 (𝑧1, 𝛼1/𝛽1) be suitable and superb. The
chain

(𝐹1
𝑐 )⌢(𝑃𝑐 (𝑧1, 𝛼1/𝛽1)𝑖 ( 𝑓 1)−1)⌢𝑄

is a 3-step Vizing chain.

Suppose that 𝑃𝑐 (𝑢𝑚, 𝛾/𝛿) is nonempty. Define 𝑃1
𝑐 = 𝑃𝑐 (𝑧1, 𝛼1/𝛽1)𝑖 ( 𝑓 1)−1, 𝐹2

𝑐 = 𝐹𝑐 (𝑥, 𝑒 � 𝑓 1)𝑚+1,
𝑧2 = 𝑢𝑚 and 𝛼2 = 𝛾, 𝛽2 = 𝛿. This concludes the second iteration of the construction.

Iteration III. We say that 𝑓 2 ∈ 𝑃𝑐 (𝑧2, 𝛼2/𝛽2) is 2-suitable if

◦ the graph distance of f and 𝑓 2 is at least 3 for every 𝑓 ∈ (𝐹1
𝑐 )⌢(𝑃1

𝑐)⌢(𝐹2
𝑐 ),

◦ it is not the last edge of 𝑃𝑐 (𝑧2, 𝛼2/𝛽2),
◦ 𝑐( 𝑓 2) = 𝛼2.

Let 𝑦3 be the last vertex of 𝑃𝑐 (𝑧2, 𝛼2/𝛽2)𝑖 ( 𝑓 2) , and set

𝐹𝑐 (𝑥, 𝑒 � 𝑓 1 � 𝑓 2) = 𝐹𝑐 (𝑧2, 𝛼2/𝛽2, 𝑦3),

where 𝐹𝑐 (𝑧2, 𝛼2/𝛽2, 𝑦3) is the maximal 𝛼2/𝛽2-conditional fan starting at 𝑓 2.

Proposition 3.6. Let 𝑓 2 ∈ 𝑃𝑐 (𝑧2, 𝛼2/𝛽2) be 2-suitable. Then

𝑃 = (𝐹1
𝑐 )⌢(𝑃1

𝑐)⌢(𝐹2
𝑐 )⌢(𝑃𝑐 (𝑧2, 𝛼2/𝛽2)𝑖 ( 𝑓 2)−1)⌢𝐹𝑐 (𝑥, 𝑒 � 𝑓 1 � 𝑓 2)

is c-proper-shiftable.
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Proof. Suppose that 𝑐𝑃 is not a partial coloring. By the definition, we find a vertex 𝑣 ∈ 𝑉 such that 𝑐𝑃 �
𝑁G (𝑣) is not proper. By the fact that 𝑓 2 is 2-suitable together with [GP20, Proposition 2.12], we see that
𝑣 ∉ 𝑓 for any 𝑓 ∈ (𝐹1

𝑐 )⌢(𝑃1
𝑐)⌢(𝐹2

𝑐 ). Moreover, we must have 𝑣 ∈ 𝑓 for some 𝑓 ∈ 𝐹𝑐 (𝑥, 𝑒 � 𝑓 1 � 𝑓 2)
as the colors used around vertices that lie only on the path 𝑃𝑐 (𝑧2, 𝛼2/𝛽2)𝑖 ( 𝑓 2)−1 do not change. Now,
the definition of 𝐹𝑐 (𝑥, 𝑒 � 𝑓 1 � 𝑓 2), as the maximal 𝛼2/𝛽2-conditional fan starting at 𝑓 2, shows that
no such 𝑣 ∈ 𝑉 can exist, the argument is literally the same as in [GP20, Proposition 2.12]. �

Suppose that 𝑓 2 is 2-suitable and set 𝑃2
𝑐 = 𝑃𝑐 (𝑧2, 𝛼2/𝛽2)𝑖 ( 𝑓 2)−1. Next, we define various types of 2-

suitable edges and the notion of an amazing edge. This is inspired by similar notions in [GP20, Section
2.5].

We say that a 2-suitable edge 𝑓 2 ∈ 𝑃𝑐 (𝑧2, 𝛼2/𝛽2) is of type (a) if

𝑃 = (𝐹1
𝑐 )⌢(𝑃1

𝑐)⌢(𝐹2
𝑐 )⌢(𝑃2

𝑐)⌢𝐹𝑐 (𝑥, 𝑒 � 𝑓 1 � 𝑓 2)

is c-augmenting. Every edge of type (a) is said to be amazing. Define 𝐹3
𝑐 = 𝐹𝑐 (𝑥, 𝑒 � 𝑓 1 � 𝑓 2), and set

𝑊𝑐 (𝑒, 𝑓 1, 𝑓 2) = (𝐹1
𝑐 )⌢(𝑃1

𝑐)⌢(𝐹2
𝑐 )⌢(𝑃2

𝑐)⌢(𝐹3
𝑐 ).

Then the following is immediate from the definitions.

Proposition 3.7. Let 𝑓 2 be of type (a). Then 𝑊𝑐 (𝑒, 𝑓 1, 𝑓 2) is a 3-step Vizing chain.

We say that a 2-suitable edge 𝑓 2 ∈ 𝑃𝑐 (𝑧2, 𝛼2/𝛽2) is of type (b) if it is not of type (a) and in the
construction of the conditional fan 𝐹𝑐 (𝑥, 𝑒 � 𝑓 1 � 𝑓 2) we encountered 𝛼2 or 𝛽2. Observe that as 𝑓 2

is not of type (a), we must have 𝛽2 ∈ 𝑚𝑐 (𝑤𝑛), where {𝑦3, 𝑤𝑛} is the last edge in 𝐹𝑐 (𝑥, 𝑒 � 𝑓 1 � 𝑓 2).
Following the previous notation, we say that n is the third critical index. Define 𝐹3

𝑐 = 𝐹𝑐 (𝑥, 𝑒 � 𝑓 1 �
𝑓 2), 𝑦3 = 𝑤𝑛, 𝛼3 = 𝛼2, 𝛽3 = 𝛽2 and 𝑃3

𝑐 = 𝑃𝑐 (𝑧3, 𝛼3/𝛽3). We say that 𝑓 2 of type (b) is amazing, if

◦ 𝑃𝑐𝑄 (𝑧3, 𝛼3/𝛽3) = 𝑃𝑐 (𝑧3, 𝛼3/𝛽3), where 𝑄 = (𝐹1
𝑐 )⌢(𝑃1

𝑐)⌢(𝐹2
𝑐 )⌢(𝑃2

𝑐)⌢(𝐹3
𝑐 ).

Proposition 3.8. Let 𝑓 2 be of type (b) and amazing. Then

𝑊𝑐 (𝑒, 𝑓 1, 𝑓 2) = (𝐹1
𝑐 )⌢(𝑃1

𝑐)⌢(𝐹2
𝑐 )⌢(𝑃2

𝑐)⌢(𝐹3
𝑐 )⌢(𝑃3

𝑐)

is a 3-step Vizing chain.

Proof. It follows directly from the definitions that 𝑊𝑐 (𝑒, 𝑓 1, 𝑓 2) satisfies (1)–(3) in Definition 3.2. It
remains to show that 𝑊𝑐 (𝑒, 𝑓 1, 𝑓 2) is c-augmenting. This can be done by the same argument as in
[GP20, Proposition 2.15]. Namely, first observe that 𝑐𝑄, where

𝑄 = (𝐹1
𝑐 )⌢(𝑃1

𝑐)⌢(𝐹2
𝑐 )⌢(𝑃2

𝑐)⌢(𝐹3
𝑐 ),

is a proper coloring by the same reasoning as in Proposition 3.6. Moreover, by the definition of 2-suitable
edge, we must have 𝛼2 ∈ 𝑚𝑐𝑄 (𝑦3). As 𝑃𝑐𝑄 (𝑧3, 𝛼3/𝛽3) = 𝑃𝑐 (𝑧3, 𝛼3/𝛽3), we have that 𝑊𝑐 (𝑒, 𝑓 1, 𝑓 2)
is edge injective and 𝛽2 ∈ 𝑚𝑐𝑄 (𝑧3) . This shows that {𝑦3, 𝑧3}⌢𝑃3

𝑐 is 𝑐𝑄-augmenting as 𝑦3 cannot be
the last vertex of 𝑃3

𝑐 (if it were, then 𝑃𝑐𝑄 (𝑧3, 𝛼3/𝛽3) ≠ 𝑃𝑐 (𝑧3, 𝛼3/𝛽3) as 𝛼2, 𝛽2 ∉ 𝑚𝑐 (𝑦3)). Hence,
𝑊𝑐 (𝑒, 𝑓 1, 𝑓 2) is c-augmenting as desired. �

We say that a 2-suitable edge 𝑓 2 ∈ 𝑃𝑐 (𝑧2, 𝛼2/𝛽2) is of type (c) if it is not of type (a), or (b). Let 𝛾 be
the smallest color in 𝑚𝑐 (𝑦3). The reason why we cannot extend 𝐹𝑐 (𝑥, 𝑒 � 𝑓 1 � 𝑓 2) is the same as
when we build the standard Vizing chain; see [GP20, Proposition 2.8], or [GP20, Section2.5: Type II
edge]. Namely, there is a color 𝛿 and index

𝑗 < 𝑛 = 𝑙 (𝐹𝑐 (𝑥, 𝑒 � 𝑓 1 � 𝑓 2)) − 1
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such that 𝛿 is the minimal color available in both 𝑚𝑐 (𝑤 𝑗 ) and 𝑚𝑐 (𝑤𝑛). It is clear that 𝛾 ≠ 𝛿 because 𝑓 2

is not of Type (a) and {𝛼2, 𝛽2} ∩ {𝛾, 𝛿} = ∅ because f is not of Type (b).
Consider now the alternating 𝛾/𝛿-paths 𝑃𝑐 (𝑤 𝑗 , 𝛾/𝛿) and 𝑃𝑐 (𝑤𝑛, 𝛾/𝛿). Our aim is to choose one of

them, call it Q, and then define

𝑊𝑐 (𝑒, 𝑓 1, 𝑓 2) = (𝐹1
𝑐 )⌢(𝑃1

𝑐)⌢(𝐹2
𝑐 )⌢(𝑃2

𝑐)⌢(𝐹𝑐 (𝑥, 𝑒 � 𝑓 1 � 𝑓 2)ℓ+1)⌢𝑄,

where ℓ ∈ {𝑖, 𝑚}, depending on the choice of Q, is such that 𝑊𝑐 (𝑥, 𝑓 1, 𝑓 2) is c-augmenting. As in the
case of type (b), we need to rule out some edges. We say that a 2-suitable 𝑓 2 ∈ 𝑃𝑐 (𝑧2, 𝛼2/𝛽2) of type
(c) is amazing if, in the above notation, both of the following equalities hold
◦ 𝑃𝑐 (𝑤 𝑗 , 𝛾/𝛿) = 𝑃𝑐𝑅 (𝑤 𝑗 , 𝛾/𝛿),
◦ 𝑃𝑐 (𝑤𝑛, 𝛾/𝛿) = 𝑃𝑐𝑅 (𝑤 𝑗 , 𝛾/𝛿),
where 𝑅 = (𝐹1

𝑐 )⌢(𝑃1
𝑐)⌢(𝐹2

𝑐 )⌢(𝑃2
𝑐).

Let 𝑓 2 ∈ 𝑃𝑐 (𝑧2, 𝛼2/𝛽2) be of type (c) and amazing. We take ℓ ∈ { 𝑗 , 𝑛} to be the index for which
there is no ℎ ∈ 𝑃𝑐 (𝑢 𝑗 , 𝛿/𝜖) such that 𝑦3 ∈ ℎ; see [GP20, Proposition 2.9]. If both indices j and n
satisfy this, then we put ℓ = 𝑗 for definiteness. We call this index ℓ the third critical index. We define
𝐹3
𝑐 = 𝐹𝑐 (𝑥, 𝑒 � 𝑓 1 � 𝑓 2)ℓ+1, 𝑧3 = 𝑤ℓ , 𝛼3 = 𝛾, 𝛽3 = 𝛿 and 𝑃3

𝑐 = 𝑃𝑐 (𝑤ℓ , 𝛼3/𝛽3).
Proposition 3.9. Let 𝑓 2 be of type (c) and amazing. Then

𝑊𝑐 (𝑒, 𝑓 1, 𝑓 2) = (𝑃1
𝑐)⌢(𝐹2

𝑐 )⌢(𝑃2
𝑐)⌢(𝐹3

𝑐 )⌢(𝑃3
𝑐)

is a 3-step Vizing chain.
Proof. It follows directly from the definitions that 𝑊𝑐 (𝑒, 𝑓 1, 𝑓 2) satisfies (1)–(3) in Definition 3.2. It
remains to show that 𝑊𝑐 (𝑒, 𝑓 1, 𝑓 2) is c-augmenting. This can be done by the same argument as in
[GP20, Proposition 2.17]. Namely, first observe that 𝑐𝑄, where

𝑄 = (𝐹1
𝑐 )⌢(𝑃1

𝑐)⌢(𝐹2
𝑐 )⌢(𝑃2

𝑐)⌢(𝐹3
𝑐 ),

is c-proper shiftable by the same reasoning as in Proposition 3.6. In particular, Q is edge injective. As
𝑦3 ∉ 𝑓 for any 𝑓 ∈ 𝑃3

𝑐 by the definition of the third critical index and 𝑃𝑐𝑅 (𝑧3, 𝛼3/𝛽3) = 𝑃𝑐 (𝑧3, 𝛼3/𝛽3),
we infer that 𝑊𝑐 (𝑒, 𝑓 1, 𝑓 2) is edge injective. Similar argument shows that 𝑃𝑐𝑄 (𝑧3, 𝛼3/𝛽3) =
𝑃𝑐𝑅 (𝑧3, 𝛼3/𝛽3) = 𝑃𝑐 (𝑧3, 𝛼3/𝛽3). Moreover, by the definition of 2-suitable edge, we must have
𝛼3 ∈ 𝑚𝑐𝑄 (𝑦3). This shows that {𝑦3, 𝑧3}⌢𝑃3

𝑐 is 𝑐𝑄-augmenting. Hence, 𝑊𝑐 (𝑒, 𝑓 1, 𝑓 2) is c-augmenting
as desired. �

Altogether, we just proved the following statement.
Theorem 3.10. Let 𝑒 ∈ 𝑈𝑐 , 𝑥 ∈ 𝑒, 𝑓 1 be superb and 𝑓 2 be amazing as defined above. Then 𝑊𝑐 (𝑒, 𝑓 1, 𝑓 2)
is a 3-step Vizing chain.

3.3. How many 3-step Vizing chains are there

Let 𝑒 ∈ 𝑈𝑐 and 𝑥 ∈ 𝑒. We say that e is K-bad for c, where 𝐾 ∈ N, if every 3-step Vizing chain 𝑊𝑐 (𝑒) at
e satisfies 𝑙 (𝑊𝑐 (𝑒))) ≥ 2𝐾 + 2Δ . In the following claims, we use the notation from previous section.
Proposition 3.11. Let 𝐾 ∈ N, 𝑒 ∈ 𝑈𝑐 be K-bad for c and 𝑥 ∈ 𝑒. Then
◦ 𝑙 (𝑃𝑐 (𝑣𝑖 , 𝛼/𝛽)) ≥ 𝐾 , where 𝑃𝑐 (𝑣𝑖 , 𝛼/𝛽) is the alternating path from the first iteration,
◦ 𝑙 (𝑃𝑐 (𝑢𝑚, 𝛾/𝛿)) ≥ 𝐾

2 for every superb edge 𝑓 1 such that 𝑖( 𝑓 1) ≤ 𝐾
2 , where 𝑃𝑐 (𝑢𝑚, 𝛾/𝛿) is the

alternating path in the second iteration that corresponds to 𝑓 1.
Proof. Both chains from Claim 3.3 and Claim 3.5 are 3-step Vizing chains. As e is K-bad
for c and both chains contain at most two fans that each contain at most Δ edges, we conclude that
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𝑙 (𝑃𝑐 (𝑣𝑖 , 𝛼/𝛽)) ≥ 𝐾 and 𝑙 (𝑃𝑐 (𝑢𝑚, 𝛾/𝛿)) ≥ 𝐾
2 under the assumption that 𝑓 1 is superb and satisfies

𝑖( 𝑓 1) ≤ 𝐾
2 . �

Claim 3.12 (Proposition 2.20 in [GP20]). Let 𝐾 ∈ N, 𝑒 ∈ 𝑈𝑐 be K-bad for c and 𝑥 ∈ 𝑒. Then there are
colors {𝛾, 𝛿} ⊆ [Δ + 1] and at least

1
3(Δ + 1)2

(
𝐾

4
− Δ5 − 1

)
− 2Δ3

many superb edges 𝑓 1 ∈ 𝑃𝑐 (𝑣𝑖 , 𝛼/𝛽) such that 𝑖( 𝑓 1) ≤ 𝐾
2 and the alternating path in the second

iteration that corresponds to 𝑓 1 is a 𝛾/𝛿-path.

Definition 3.13. Let 𝐾 ∈ N, 𝑒 ∈ 𝑈𝑐 be K-bad for c, 𝑥 ∈ 𝑒 and {𝛾, 𝛿} ⊆ [Δ + 1] be as in Claim 3.12.
Define V𝑐 (𝑒) to be the set of pairs ( 𝑓 1, 𝑓 2) such that 𝑓 1 ∈ 𝑃𝑐 (𝑣𝑖 , 𝛼/𝛽) is superb and satisfies 𝑖( 𝑓 1) ≤ 𝐾

2
and 𝑓 2 ∈ 𝑃𝑐 (𝑢𝑚, 𝛾/𝛿) is amazing and satisfies 𝑖( 𝑓 2) ≤ 𝐾

2 (where the index 𝑖( 𝑓 2) is taken with respect to
𝑃𝑐 (𝑢𝑚, 𝛾/𝛿)), where 𝑃𝑐 (𝑢𝑚, 𝛾/𝛿) is the alternating path in the second iteration that corresponds to 𝑓 1.

Our aim is to estimate the cardinality of V𝑐 (𝑒) as this gives a lower bound on the cardinality of the
set of all 3-step Vizing chains at e. In fact, we bound the cardinality of the projection of V𝑐 (𝑒) to the
second coordinate as this clearly gives a lower bound for the cardinality of V𝑐 (𝑒).

The following proposition gives a sufficient condition for an edge to be amazing.

Proposition 3.14. Let 𝐾 ∈ N, 𝑒 ∈ 𝑈𝑐 be K-bad for c, 𝑥 ∈ 𝑒 and {𝛾, 𝛿} ⊆ [Δ + 1] be as in Claim
3.12. Suppose that 𝑓 1 ∈ 𝑃𝑐 (𝑣𝑖 , 𝛼/𝛽) is superb, 𝑖( 𝑓 1) ≤ 𝐾

2 , and pick 𝑓 2 on the the alternating path
𝑃𝑐 (𝑢𝑚, 𝛾/𝛿) (that corresponds to 𝑓 1 in the second iteration). Assume that

1. 𝑓 2 is 2-suitable,
2. there is no alternating path 𝑃𝑐 (𝑤, 𝜄/𝜅) such that, simultaneously, 𝑤 ∈ 𝑉 is of G-distance 1 from

𝑦3 ∈ 𝑓 2 and 𝑃𝑐 (𝑤, 𝜄/𝜅) is of distance at most 3 from (𝐹1
𝑐 )⌢(𝑃1

𝑐)⌢(𝐹2
𝑐 ), where 𝑓 1 is the first edge

of 𝐹2
𝑐 .

Then 𝑓 2 is amazing. In particular, ( 𝑓 1, 𝑓 2) ∈ V𝑐 (𝑒).
Proof. Suppose that the conditions are satisfied. If 𝑓 2 is of type (a), then it is amazing.

If 𝑓 2 is of type (b), then we need to verify that 𝑃𝑐𝑄 (𝑧3, 𝛼3/𝛽3) = 𝑃𝑐 (𝑧3, 𝛼3/𝛽3), where
𝑄 = (𝐹1

𝑐 )⌢(𝑃1
𝑐)⌢(𝐹2

𝑐 )⌢(𝑃2
𝑐)⌢(𝐹3

𝑐 ). As distG (𝑦3, 𝑧3) = 1, we have that 𝑃𝑐 (𝑧3, 𝛼3/𝛽3) avoids
(𝐹1
𝑐 )⌢(𝑃1

𝑐)⌢(𝐹2
𝑐 ). Hence, if 𝑃𝑐𝑄 (𝑧3, 𝛼3/𝛽3) ≠ 𝑃𝑐 (𝑧3, 𝛼3/𝛽3) it must be the case that 𝑦3 is covered by

𝑃𝑐 (𝑧3, 𝛼3/𝛽3). This can only happen if 𝑃𝑐 (𝑧3, 𝛼3/𝛽3) contains 𝑃2
𝑐 as 𝛼3 = 𝛼2 and 𝛽3 = 𝛽2. But that is

not possible as 𝑃2
𝑐 is of distance 1 from (𝐹1

𝑐 )⌢(𝑃1
𝑐)⌢(𝐹2

𝑐 ).
If 𝑓 2 is of type (c), then we need to verify that 𝑃𝑐 (𝑤 𝑗 , 𝛾/𝛿) = 𝑃𝑐𝑅 (𝑤 𝑗 , 𝛾/𝛿) and 𝑃𝑐 (𝑤𝑛, 𝛾/𝛿) =

𝑃𝑐𝑅 (𝑤 𝑗 , 𝛾/𝛿). This follows easily as {𝛾, 𝛿} ∩ {𝛼2, 𝛽2} = ∅ and both 𝑃𝑐 (𝑤 𝑗 , 𝛾/𝛿), 𝑃𝑐 (𝑤𝑛, 𝛾/𝛿) avoid
(𝐹1
𝑐 )⌢(𝑃1

𝑐)⌢(𝐹2
𝑐 ). �

Proposition 3.15. Let 𝐾 ∈ N, 𝑒 ∈ 𝑈𝑐 be K-bad for c, 𝑥 ∈ 𝑒 and {𝛾, 𝛿} ⊆ [Δ + 1] be as in Claim 3.12.
Define 𝑓 2 ∈ S𝑐 (𝑒) if 𝑐( 𝑓 2) = 𝛾, and there is 𝑓 1 ∈ 𝑃𝑐 (𝑣𝑖 , 𝛼/𝛽) such that 𝑓 1 is superb, 𝑖( 𝑓 1) ≤ 𝐾

2 ,
𝑓 2 ∈ 𝑃𝑐 (𝑢𝑚, 𝛾/𝛿) and 𝑖( 𝑓 2) ≤ 𝐾

2 (the index is taken with respect to 𝑃𝑐 (𝑢𝑚, 𝛾/𝛿) and 𝑃𝑐 (𝑢𝑚, 𝛾/𝛿)
corresponds to 𝑓 1 in the second iteration), and at least one of the items from Proposition 3.14 is not
satisfied. Then we have

|S𝑐 (𝑒) | ≤ 4(Δ + 1)4
4∑
𝑟=0

(2Δ)𝑟
(
𝐾

2
+ Δ

)
.

Proof. Let 𝑓 1 and 𝑓 2 are as above and assume that item (1) from Proposition 3.14 is not satisfied. As
𝑐( 𝑓 2) = 𝛾, we know that either 𝑓 2 is the last edge on 𝑃𝑐 (𝑢𝑚, 𝛾/𝛿) or it is of distance at most 4 from
(𝐹1
𝑐 )⌢𝑃𝑐 (𝑣𝑖 , 𝛼/𝛽)𝐾

2 +1. There are at most 𝐾2 many edges that satisfy the former condition, and we have
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{ 𝑓 ∈ 𝐸 : distE ( 𝑓 , (𝐹1
𝑐 )⌢𝑃𝑐 (𝑣𝑖 , 𝛼/𝛽)𝐾

2 +1) ≤ 4
}


 ≤ 4∑

𝑟=0
(2Δ)𝑟

(
𝐾

2
+ Δ

)
(3.1)

which gives upper bound on the latter condition.
Suppose that (2) from Proposition 3.14 is not satisfied. That means that there is a path 𝑃𝑐 (𝑤, 𝜄/𝜅),

where w is of distance one from 𝑦3, that intersect

𝐵 =
{
𝑓 ∈ 𝐸 : distE ( 𝑓 , (𝐹1

𝑐 )⌢𝑃𝑐 (𝑣𝑖 , 𝛼/𝛽)𝐾
2 +1) ≤ 4

}
.

Every edge from B is an element of 2(Δ + 1)2 many such paths. Together with Equation (3.1), we
conclude that there are at most

2(Δ + 1)4
4∑
𝑟=0

(2Δ)𝑟
(
𝐾

2
+ Δ

)
edges 𝑓 2 that do not satisfy (2) from Proposition 3.14.

Summing these three bounds gives the desired estimate. �

Proposition 3.16. Let 𝐾 ∈ N, 𝑒 ∈ 𝑈𝑐 be K-bad for c, 𝑥 ∈ 𝑒 and {𝛾, 𝛿} ⊆ [Δ + 1] be as in Claim 3.12.
Define 𝑓 2 ∈ T𝑐 (𝑒) if 𝑐( 𝑓 2) = 𝛾, and there is 𝑓 1 ∈ 𝑃𝑐 (𝑣𝑖 , 𝛼/𝛽) such that 𝑓 1 is superb, 𝑖( 𝑓 1) ≤ 𝐾

2 ,
𝑓 2 ∈ 𝑃𝑐 (𝑢𝑚, 𝛾/𝛿) and 𝑖( 𝑓 2) ≤ 𝐾

2 (the index is taken with respect to 𝑃𝑐 (𝑢𝑚, 𝛾/𝛿) and 𝑃𝑐 (𝑢𝑚, 𝛾/𝛿)
corresponds to 𝑓 1 in the second iteration). Then we have

|T𝑐 (𝑒) | ≥
𝐾

4Δ2

(
1

3(Δ + 1)2

(
𝐾

4
− Δ5 − 1

)
− 2Δ3

)
.

Proof. By Claim 3.12, there is {𝛾, 𝛿} ⊆ [Δ + 1] and at least

1
3(Δ + 1)2

(
𝐾

4
− Δ5 − 1

)
− 2Δ3

many superb edges 𝑓 1 ∈ 𝑃𝑐 (𝑣𝑖 , 𝛼/𝛽) such that 𝑖( 𝑓 1) ≤ 𝐾
2 and the alternating path in the second iteration

that corresponds to 𝑓 1 is a 𝛾/𝛿-path. For each such 𝑓 1, there are at least 𝐾4 edges of the corresponding
𝑃𝑐 (𝑢𝑚, 𝛾/𝛿) that have color 𝛾. This shows that there are at least

𝐾

4

(
1

3(Δ + 1)2

(
𝐾

4
− Δ5 − 1

)
− 2Δ3

)
pairs ( 𝑓 1, 𝑓 2) that satisfy the conditions above. To estimate the size of T𝑐 (𝑒), we need to compute the
number of pairs ( 𝑓 1, 𝑓 2) to which a given edge 𝑓 2 contributes.

Every 𝑓 2 can reach 𝑓1 by following the 𝛾/𝛿 path in one of its two directions, and then there are Δ2

many choices for 𝑓 1. Altogether,

|T𝑐 (𝑒) | ≥
𝐾

4Δ2

(
1

3(Δ + 1)2

(
𝐾

4
− Δ5 − 1

)
− 2Δ3

)
as needed. �

Finally, observe that the projection of V𝑐 (𝑒) to the second coordinate contains T𝑐 (𝑒) \ S𝑐 (𝑒) by
Proposition 3.14. Hence, the combination of Propositions 3.15 and 3.16, together with a trivial modifi-
cation gives the main estimate.
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Theorem 3.17. Let 𝐾 ∈ N, 𝑒 ∈ 𝑈𝑐 be K-bad for c and 𝑥 ∈ 𝑒. Then we have

|V𝑐 (𝑒) | ≥
𝐾2

(8Δ)4 − (16Δ)5𝐾.

In particular, for every 𝑒 ∈ 𝑈𝑐 that is K-bad and 𝑥 ∈ 𝑒 there are at least
(
𝐾 2

(8Δ)4 − (16Δ)5𝐾
)

many
pairs ( 𝑓 1, 𝑓 2) such that 𝑊𝑐 (𝑒, 𝑓 1, 𝑓 2) is a 3-step Vizing chain.

4. Improving colorings

In this section, we describe one step of the algorithm that will, in Section 7, produce the desired Δ (G) +1
edge coloring 𝜇-almost everywhere. The step, and therefore the whole algorithm, can be run on any
Borel graph G = (𝑉,B, 𝐸) of degree bounded by Δ (G) < ∞ endowed with an E-quasi-invariant Borel
probability measure 𝜈 ∈ P (𝐸), where E = (𝐸, C, 𝐼G) is the corresponding line graph. However, in order
to show that the algorithm terminates 𝜈-almost everywhere, we need to assume additionally that 𝜈 is
G-bounded; see Section 5.

Fix G and 𝜈 as above, and a Radon–Nikodym cocycle 𝜌𝜈 of 𝜈 with respect to E .
Definition 4.1. We say that a partial coloring 𝑐; 𝐸 → [Δ (G) + 1] does not admit an improvement of
weight 𝐿 ∈ N if

𝜈

��
⎧⎪⎪⎨⎪⎪⎩𝑒 ∈ 𝑈𝑐 : ∃ 3 -step Vizing chain 𝑊𝑐 (𝑒) s. t.

∑
𝑓 ∈𝑊𝑐 (𝑒)

𝜌𝜈 (𝑒, 𝑓 ) ≤ 𝐿

⎫⎪⎪⎬⎪⎪⎭��� = 0.

If this condition is not satisfied, then we say that c admits an improvement of weight L.
Theorem 4.2. Let 𝑐; 𝐸 → [Δ (G) + 1] be a partial coloring and 𝐿 ∈ N. Then there is a partial
coloring 𝑐′; 𝐸 → [Δ (G) + 1] that does not admit improvement of weight L with the property that
𝜈(dom(𝑐) \ dom(𝑐′)) = 0 and

𝜈({𝑒 ∈ 𝐸 : 𝑐(𝑒) ≠ 𝑐′(𝑒)}) ≤ 𝐿𝜈(𝑈𝑐),

where 𝑐(𝑒) ≠ 𝑐′(𝑒) also includes the situation when 𝑒 ∈ dom(𝑐′) \ dom(𝑐).
Proof. The strategy of the proof follows closely [GP20, Proof of Proposition 5.4]. For a partial coloring
𝑑; 𝐸 → [Δ (G) + 1], define 𝐴𝑑 to be the set of those 𝑒 ∈ 𝑈𝑑 for which there exists a 3-step Vizing chain
𝑊𝑑 (𝑒) such that ∑

𝑓 ∈𝑊𝑑 (𝑒)
𝜌𝜈 (𝑒, 𝑓 ) ≤ 𝐿.

Clearly, 𝜈(𝐴𝑑) = 0 if and only if d does not admit improvement of weight L. Set 𝑐0 = 𝑐. We use
induction to build a transfinite sequence of partial colorings (𝑐𝛼)𝛼<ℵ1 that satisfy the following:
1. for every 𝛼 < 𝛽 < ℵ1, we have 𝜈(dom(𝑐𝛼) \ dom(𝑐𝛽)) = 0,
2. for every 𝛼 < ℵ1, if 𝜈(𝐴𝑐𝛼 ) ≠ 0, then 𝜈(𝑈𝑐𝛼+1 ) < 𝜈(𝑈𝑐𝛼 ),
3. for every 𝛼 < 𝛽 < ℵ1, if 𝑐𝛼 ≠ 𝑐𝛽 , then 𝜈(𝑈𝑐𝛽 ) < 𝜈(𝑈𝑐𝛼 ),
4. if 𝑐𝛼 = 𝑐𝛼+1 for some 𝛼 < ℵ1, then 𝑐𝛼 = 𝑐𝛽 for every 𝛼 ≤ 𝛽 < ℵ1,
5. for every 𝛼 < 𝛽 < ℵ1,

𝜈({𝑒 ∈ 𝐸 : 𝑐𝛼 (𝑒) ≠ 𝑐𝛽 (𝑒)}) ≤ 𝐿
∑

𝛼≤𝛼′<𝛽

𝜈(𝑆𝛼′ ) = 𝐿𝜈

( ⋃
𝛼≤𝛼′<𝛽

𝑆𝛼′

)
≤ 𝐿𝜈(𝑈𝑐),

where 𝑆𝛼′ = 𝑈𝑐𝛼′ \𝑈𝑐𝛼′+1 .
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Once we build such a sequence, then we are done. Indeed, conditions (3) and (4) guarantee the
existence of 𝛼 < ℵ1 such that 𝑐𝛼 = 𝑐𝛽 for every 𝛼 ≤ 𝛽 < ℵ1 as there are no strictly decreasing
sequences of real numbers of length ℵ1. Define 𝑐′ = 𝑐𝛼0 , where 𝛼0 is the minimal ordinal with
this property. Then (1) (with the choice 0 < 𝛼0) implies 𝜈(dom(𝑐) \ dom(𝑐′)) = 0, (2) implies that
𝑐′ = 𝑐𝛼0 does not admit improvement of weight L and (5) (with the choice 0 < 𝛼0) implies that
𝜈({𝑒 ∈ 𝐸 : 𝑐(𝑒) ≠ 𝑐′(𝑒)}) ≤ 𝐿𝜈(𝑈𝑐).

Successor stage 𝛼 ↦→ 𝛼 + 1. Suppose that we have constructed a sequence of partial colorings
(𝑐𝛽)𝛽≤𝛼 such that the property (1)–(5) hold for every (pair of) ordinal(s) less or equal than 𝛼. If 𝜈(𝐴𝑐𝛼 ) =
0, then setting 𝑐𝛼+1 = 𝑐𝛼 clearly works. Suppose that 𝜈(𝐴𝑐𝛼 ) > 0, and pick any Borel assignemnt
𝑒 ∈ 𝐴𝑐𝛼 ↦→ 𝑊𝑐𝛼 (𝑒) with the property 𝑊𝑐𝛼 (𝑒) is a 3-step Vizing chain and

∑
𝑓 ∈𝑊𝑐 (𝑒) 𝜌𝜈 (𝑒, 𝑓 ) ≤ 𝐿 for

every 𝑒 ∈ 𝐴𝑐𝛼 .
Case I. There is 𝑘 ∈ N such that

𝜈({𝑒 ∈ 𝐴𝑐𝛼 : |𝑊𝑐𝛼 (𝑒) | = 𝑘}) > 0.

By [KST99, Proposition 4.6] (applied on the 2𝑘 + 2 power graph of E that is of bounded degree), there
is a set 𝑆𝛼 ⊆ 𝐴𝑐𝛼 with the property that

(a) 𝜈(𝑆𝛼) > 0,
(b) 𝑒 ≠ 𝑒′ ∈ 𝑆𝛼 are at least 2𝑘 + 2 far apart in the graph distance of E ,
(c) |𝑊𝑐𝛼 (𝑒) | = 𝑘 for every 𝑒 ∈ 𝑆𝛼.

Set 𝑇𝛼 =
⋃
𝑒∈𝑆𝛼 𝑊𝑐𝛼 (𝑒), and observe that

𝜈(𝑇𝛼) =
∫
𝑒∈𝑆𝛼

∑
𝑓 ∈𝑊𝑐𝛼 (𝑒)

𝜌𝜈 (𝑒, 𝑓 ) 𝑑𝜈 ≤ 𝐿𝜈(𝑆𝛼) (*)

by item (2) in Proposition 2.2. As {𝑊𝑐𝛼 (𝑒)}𝑒∈𝑆𝛼 are pairwise of positive distance from each other by
(b) and (c) and each 𝑊𝑐𝛼 (𝑒) is augmenting, there is a partial coloring 𝑐𝛼+1 with the property that

(i) 𝑇𝛼 ⊆ dom(𝑐𝛼+1),
(ii) 𝑐𝛼 � (dom(𝑐𝛼) \ 𝑇𝛼) = 𝑐𝛼+1 � (dom(𝑐𝛼) \ 𝑇𝛼).

We claim that 𝑐𝛼+1 works as required, namely, let 𝛼′ < 𝛼 + 1, then

1. 𝜈(dom(𝑐𝛼′ ) \ dom(𝑐𝛼+1)) = 0 as 𝜈(dom(𝑐𝛼′ ) \ dom(𝑐𝛼)) = 0 and dom(𝑐𝛼+1) = dom(𝑐𝛼) ∪ 𝑆𝛼 by
(i) and (ii),

2. follows from dom(𝑐𝛼+1) = dom(𝑐𝛼) ∪ 𝑆𝛼 together with (a),
3. follows from (2) combined with inductive assumption (3),
4. if 𝑐𝛼′ = 𝑐𝛼′+1 for some 𝛼′ < 𝛼, then 𝜈(𝐴𝑐𝛼 ) = 0 by the inductive assumption (4) and (2),
5. observe that 𝜈

(
𝑆𝛼 ∩ 𝑆𝛽

)
= 0 for every 𝛽 < 𝛼 by the inductive assumption (1); consequently, when

combined with the inductive assumption (5) and (*), we have

𝜈({𝑒 ∈ 𝐸 : 𝑐𝛼′ (𝑒) ≠ 𝑐𝛼+1 (𝑒)}) ≤ 𝜈({𝑒 ∈ 𝐸 : 𝑐𝛼′ (𝑒) ≠ 𝑐𝛼 (𝑒)})
+ 𝜈({𝑒 ∈ 𝐸 : 𝑐𝛼 (𝑒) ≠ 𝑐𝛼+1(𝑒)})

≤ 𝐿
∑

𝛼′ ≤𝛽<𝛼
𝜈(𝑆𝛽) + 𝜈(𝑇𝛼)

≤ 𝐿
∑

𝛼′ ≤𝛽<𝛼+1
𝜈(𝑆𝛽)

= 𝐿𝜈

��

⋃
𝛼′ ≤𝛽<𝛼+1

𝑆𝛼′
��� ≤ 𝐿𝜈(𝑈𝑐).
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Case II. There is no 𝑘 ∈ N such that

𝜈({𝑒 ∈ 𝐴𝑐𝛼 : |𝑊𝑐𝛼 (𝑒) | = 𝑘}) > 0.

In another words, 𝜈-almost every 3-step Vizing chain is infinite. Observe that this can happen if and
only if there is an assignment (defined for 𝜈-almost every 𝑒 ∈ 𝐴𝑐𝛼 ) 𝑒 ∈ 𝐴𝑐𝛼 ↦→ (𝑥𝑒, 𝛼𝑒, 𝛽𝑒), where
𝑥𝑒 ∈ 𝑉 and 𝛼𝑒, 𝛽𝑒 ∈ [Δ + 1] such that 𝑊𝑐𝛼 (𝑒) = 𝑀 (𝑒)⌢𝑃𝑐𝛼 (𝑥𝑒, 𝛼𝑒/𝛽𝑒). Using finite additivity of 𝜈
and [KST99, Proposition 4.6], we find 10 < 𝑘 ∈ N, 𝛼, 𝛽 ∈ [Δ + 1] and 𝑅𝛼 ⊆ 𝐴𝑐𝛼 such that

(a) 𝜈(𝑅𝛼) > 0,
(b) |𝑀 (𝑒) | = 𝑘 , 𝛼𝑒 = 𝛼 and 𝛽𝑒 = 𝛽 for every 𝑒 ∈ 𝑅𝛼,
(c) 𝑒 ≠ 𝑒′ ∈ 𝑅𝛼 are at least 5𝑘 far apart in the graph distance of E .

Note that this implies that if 𝑒 ≠ 𝑒′ ∈ 𝑅𝛼, then

◦ 𝑥𝑒 ≠ 𝑥𝑒′ and consequently 𝑃𝑐𝛼 (𝑥𝑒, 𝛼/𝛽) and 𝑃𝑐𝛼 (𝑥𝑒′ , 𝛼/𝛽) are vertex disjoint,
◦ 𝑀 (𝑒) and 𝑀 (𝑒′) are at least 2𝑘 apart in the graph distance of E .

However, it can happen that 𝑀 (𝑒) ∩ 𝑃𝑐𝛼 (𝑥𝑒′ , 𝛼/𝛽) ≠ ∅.
We address this issue as follows. Define an auxiliary directed graph H on 𝑅𝛼 as follows. For

𝑒 ≠ 𝑒′ ∈ 𝑅𝛼, let (𝑒, 𝑒′) be an oriented edge if 𝑃𝑐𝛼 (𝑥𝑒′ , 𝛼/𝛽) intersect 𝐵E (𝑒, 2𝑘), the ball of radius 2𝑘
around e. Note that as |𝐵E (𝑒, 2𝑘) | ≤ (2Δ)2𝑘 for every 𝑒 ∈ 𝑅𝛼, the graph H has uniformly bounded
outdegree. By [KST99, Proposition 4.5], we can write 𝑅𝛼 =

⋃
𝑛∈N 𝑅𝛼,𝑛, where each 𝑅𝛼,𝑛 is H-

independent. By 𝜎-additivity of 𝜈, we find 𝑛 ∈ N such that 𝜈(𝑅𝛼,𝑛) > 0 and set 𝑆𝛼 = 𝑅𝛼,𝑛.
Let 𝑒 ≠ 𝑒′ ∈ 𝑆𝛼. By the definition, we have that 𝑊𝑐𝛼 (𝑒) and 𝑊𝑐𝛼 (𝑒′) are vertex disjoint. Moreover,

(𝑐𝛼)𝑒 extends 𝑐𝛼 as 𝑒 ∈ dom((𝑐𝛼)𝑒) and dom(𝑐𝛼) ⊆ dom((𝑐𝛼)𝑒). Set 𝑇𝛼 =
⋃
𝑒∈𝑆𝛼 𝑊𝑐𝛼 (𝑒), and define

𝑐𝛼+1( 𝑓 ) =
{
𝑐𝛼 ( 𝑓 ) if 𝑓 ∉ 𝑇𝛼

(𝑐𝛼)𝑒 ( 𝑓 ) if 𝑓 ∈ 𝑊𝑐𝛼 (𝑒), where𝑒 ∈ 𝑆𝛼is the unique such edge.

It follows immediately that

(i) 𝑇𝛼 ⊆ dom(𝑐𝛼+1),
(ii) 𝑐𝛼 � (dom(𝑐𝛼) \ 𝑇𝛼) = 𝑐𝛼+1 � (dom(𝑐𝛼) \ 𝑇𝛼).

Observe that 𝑐𝛼+1 is a partial coloring. Indeed, if 𝑥 ∈ 𝑉 is not covered by any edge of distance 𝑘 + 2
to some 𝑒 ∈ 𝑆𝛼, then 𝑐𝛼+1 � 𝑁G (𝑥) = 𝑐𝛼 � 𝑁G (𝑥) (as the only modification is a shift of some of
the infinite 𝛼/𝛽-paths). On the other hand, if 𝑥 ∈ 𝑉 is of distance at most 𝑘 + 2 to some 𝑒 ∈ 𝑆𝛼, then
𝑐𝛼+1 � 𝑁G (𝑥) = (𝑐𝛼)𝑒 � 𝑁G (𝑥), hence 𝑐𝛼+1 is a partial coloring. The same reasoning as above shows
that

𝜈(𝑇𝛼) =
∫
𝑒∈𝑆𝛼

∑
𝑓 ∈𝑊𝑐𝛼 (𝑒)

𝜌𝜈 (𝑒, 𝑓 ) 𝑑𝜈 ≤ 𝐿𝜈(𝑆𝛼) (**)

by item (2) in Proposition 2.2. Verifying the conditions (1)–(5) can be done mutatis mutandis as in the
Case (I).

Limit stage 𝛽 ↗ 𝛼. Suppose that 𝛼 < ℵ1 is a limit ordinal and we have constructed (𝑐𝛽)𝛽<𝛼
such that the property (1)–(5) hold for every (pair of) ordinal(s) strictly less than 𝛼. We claim that
𝑐𝛼 (𝑒) := lim𝛽→𝛼 𝑐𝛽 (𝑒) is defined 𝜈-almost everywhere, that is, the sequence of colors (𝑐𝛽 (𝑒))𝛽<𝛼
eventually stabilizes (in fact the colors in the sequence are changed only finitely many times) for 𝜈-
almost every 𝑒 ∈ 𝐸 . This follows from the Borel–Cantelli lemma as, by the previous paragraph, the
sequence (𝑇𝛽)𝛽<𝛼, where 𝑇𝛽 is the set of edges that changed their color in the 𝛽th step, satisfies
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𝛽<𝛼

𝜈(𝑇𝛽) ≤
∑
𝛽<𝛼

𝐿𝜈(𝑆𝛽) ≤ 𝐿𝜈(𝑈𝑐) < ∞.

Hence, the set of edges 𝑒 ∈ 𝐸 for which {𝛽 < 𝛼 : 𝑒 ∈ 𝑇𝛽} is cofinal in 𝛼 has to be 𝜈-null.
It remains to show that (1)–(5) continuous to hold with 𝛼. Let 𝛼′ < 𝛼, then

1. by the fact that 𝛼 < ℵ1, the inductive assumption and construction of 𝑐𝛼, we have

𝜈({𝑒 ∈ dom(𝑐𝛼′ ) : ∃𝛼′ < 𝛽′ < 𝛼 𝑒 ∉ dom(𝑐𝛽′ ) or lim
𝛽→𝛼

𝑐𝛽 (𝑒) not defined}) = 0,

consequently, 𝜈(dom(𝑐𝛼′ ) \ dom(𝑐𝛼)) = 0,
2. is not relevant in limit stages,
3. if 𝑐𝛼′ ≠ 𝑐𝛼, then 𝑐𝛼′ ≠ 𝑐𝛼′+1 (see (4)); this implies that

𝜈(𝑈𝑐𝛼′ ) > 𝜈(𝑈𝑐𝛼′+1 ) ≥ 𝜈(𝑈𝑐𝛼 )

as 𝜈(dom(𝑐𝛼′+1) \ dom(𝑐𝛼)) = 0 by (1) (where the strict inequality follows from the inductive
assumption (3)),

4. if 𝑐𝛽′ = 𝑐𝛽′′ for some 𝛽′ < 𝛼 and every 𝛽′ ≤ 𝛽′′ < 𝛼, then 𝑐𝛼 (𝑒) = lim𝛽→𝛼 𝑐𝛽 (𝑒) = 𝑐𝛽′ (𝑒), hence
𝑐𝛼 = 𝑐𝛽′ ,

5. if 𝑐𝛼′ (𝑒) ≠ 𝑐𝛼 (𝑒), then there must be 𝛼′ ≤ 𝛽 < 𝛼 such that 𝑒 ∈ 𝑇𝛽 as otherwise 𝑐𝛼 (𝑒) =
lim𝛽→𝛼 𝑐𝛽 (𝑒) = 𝑐𝛼′ (𝑒), consequently, we have

𝜈({𝑒 ∈ 𝐸 : 𝑐𝛼′ (𝑒) ≠ 𝑐𝛼 (𝑒)}) ≤
∑

𝛼′ ≤𝛽<𝛼
𝜈(𝑇𝛽) ≤

∑
𝛼′ ≤𝛽<𝛼

𝐿𝜈(𝑆𝛽)

= 𝐿
∑

𝛼′ ≤𝛽<𝛼
𝜈(𝑆𝛽) = 𝐿𝜈

( ⋃
𝛼′ ≤𝛽<𝛼

𝑆𝛽

)
≤ 𝐿𝜈

(⋃
𝛽<𝛼

𝑆𝛽

)
≤ 𝐿𝜈(𝑈𝑐)

by the definition of 𝑇𝛽 and 𝑆𝛽 combined with the fact that 𝜈(𝑆𝛽 ∩ 𝑆𝛽′ ) = 0 for every 𝛽 < 𝛽′ < 𝛼
which follows by the inductive assumption (1).

This finishes the proof. �

5. Cocycle bounded on edges

Recall that two Borel probablity measures 𝜇, 𝜈 ∈ P (𝑉) are equivalent if 𝜇(𝐴) = 0 if and only if 𝜈(𝐴) = 0
for every 𝐴 ∈ B. We restate Theorem 1.2 in a compact form for the convenience of the reader.

Theorem 5.1. Let Δ ∈ N, G = (𝑉,B, 𝐸) be a Borel graph such that Δ (G) < ∞ and 𝜇 ∈ P (𝑉) be a
G-quasi-invariant. Then there is an equivalent G-bounded Borel probability measure 𝜈 ∈ P (𝑉).

Proof. Let G [𝑘 ] denote the Borel graph on V, where (𝑥, 𝑦) form an edge if and only if distG (𝑥, 𝑦) = 𝑘 .
Then G [1] = G and G [𝑘 ] has degree bounded by Δ 𝑘 . Use repeatedly [KST99, Proposition 4.6] to find
a Borel proper edge coloring {𝐴𝑘𝑖 }2Δ𝑘

𝑖=1 of G [𝑘 ] for each 𝑘 ∈ N \ {0}. Using any Borel linear order on
V, vertices covered by 𝐴𝑘𝑖 can be split into two disjoint Borel sets 𝐴𝑘𝑖,0 ⊆ 𝑉 and 𝐴𝑘𝑖,1 ⊆ 𝑉 together with
Borel isomorphisms 𝑓 𝑘𝑖,0 : 𝐴𝑘𝑖,0 → 𝐴𝑘𝑖,1 and 𝑓 𝑘𝑖,1 : 𝐴𝑘𝑖,1 → 𝐴𝑘𝑖,0 such that {𝑥, 𝑓 𝑘𝑖,0(𝑥)}, {𝑦, 𝑓 𝑘𝑖,1(𝑦)} ∈ 𝐴𝑘𝑖
for every 𝑥 ∈ 𝐴𝑘𝑖,0 and 𝑦 ∈ 𝐴𝑘𝑖,1. We also set 𝐴0

0,0 = 𝑉 and 𝑓 0
0,0 = id𝑉 . Observe that for every (𝑥, 𝑦) ∈ 𝐹G

there is exactly one triplet (𝑘, 𝑖, 𝑗), where 𝑘 = distG (𝑥, 𝑦), 𝑖 ∈ 2ΔdistG (𝑥,𝑦) and 𝑗 ∈ {0, 1} such that
𝑓 𝑘𝑖, 𝑗 (𝑥) = 𝑦.

https://doi.org/10.1017/fms.2024.83 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.83


18 J. Grebík

Denote as 𝜇𝑘𝑖, 𝑗 the push-forward of 𝜇 � 𝐴𝑘𝑖,1− 𝑗 via
(
𝑓 𝑘𝑖, 𝑗

)−1
, where 𝑗 ∈ {0, 1}. We have

𝜇𝑘𝑖, 𝑗 (𝐵) = 𝜇( 𝑓 𝑘𝑖, 𝑗 (𝐵 ∩ 𝐴𝑘𝑖, 𝑗 )) =
∫
𝐵

1𝐴𝑘𝑖, 𝑗 (𝑥)𝜌𝜇 (𝑥, 𝑓 𝑘𝑖, 𝑗 (𝑥)) 𝑑𝜇 (5.1)

for every 𝐵 ∈ B, where 𝜌𝜇 is the Radon–Nikodym cocycle with respect to 𝜇. In particular, 𝜇𝑘𝑖, 𝑗 (𝑉) ≤ 1.
Define

𝜈̃ = 𝜇 +
∑

𝑘∈N\{0}

1
2𝑘


�� 1
2Δ 𝑘

2Δ𝑘∑
𝑖=1

𝜇𝑘𝑖,0 +
1

2Δ 𝑘
2Δ𝑘∑
𝑖=1

𝜇𝑘𝑖,1
���. (5.2)

Claim 5.2. 𝜈̃ is a finite Borel measure on V that is equivalent with 𝜇. The Radon–Nikodym derivative
Ω = 𝑑𝜈̃

𝑑𝜇 can be explicitly written as

Ω(𝑥) = 1 +
∑

𝑘∈N\{0}

1
2𝑘


�� 1
2Δ 𝑘

2Δ𝑘∑
𝑖=1

1𝐴𝑘
𝑖,0
(𝑥)𝜌𝜇 (𝑥, 𝑓 𝑘𝑖,0(𝑥)) +

1
2Δ 𝑘

2Δ𝑘∑
𝑖=1

1𝐴𝑘
𝑖,1
(𝑥)𝜌𝜇 (𝑥, 𝑓 𝑘𝑖,1(𝑥))

���
for 𝜇 (and 𝜈̃) almost every 𝑥 ∈ 𝑉 . In particular, 1

Ω = 𝑑𝜇
𝑑𝜈̃ .

Proof. Let 𝑛 ∈ N, and define

𝜈̃𝑛 = 𝜇 +
𝑛∑
𝑘=1

1
2𝑘


�� 1
2Δ 𝑘

2Δ𝑘∑
𝑖=1

𝜇𝑘𝑖,0 +
1

2Δ 𝑘
2Δ𝑘∑
𝑖=1

𝜇𝑘𝑖,1
���.

As 𝜇𝑘𝑖, 𝑗 (𝑉) ≤ 1, we see that 𝜈̃𝑛 is a finite Borel measure on V that is equivalent with 𝜇. Indeed, if
𝜇(𝐴) = 0, then by the definition of G-quasi-invariance we have that 𝜈̃𝑛 (𝐴) = 0, and if 𝜈̃𝑛 (𝐴) = 0, then
𝜇(𝐴) = 0 as 𝜇(𝐴) ≤ 𝜈̃𝑛 (𝐴) for every 𝐴 ∈ B. Moreover, it is easy to see that the Radon–Nikodym
derivative Ω𝑛 =

𝑑𝜈̃𝑛
𝑑𝜇 satisfies

Ω𝑛 (𝑥) = 1 +
𝑛∑
𝑘=1

1
2𝑘


�� 1
2Δ 𝑘

2Δ𝑘∑
𝑖=1

1𝐴𝑘
𝑖,0
(𝑥)𝜌𝜇 (𝑥, 𝑓 𝑘𝑖,0(𝑥)) +

1
2Δ 𝑘

2Δ𝑘∑
𝑖=1

1𝐴𝑘
𝑖,1
(𝑥)𝜌𝜇 (𝑥, 𝑓 𝑘𝑖,1(𝑥))

���
by Equation (5.1).

Observe that the limit Ω(𝑥) = lim𝑛→∞ Ω𝑛 (𝑥) is defined for every 𝑥 ∈ 𝑉 as {Ω𝑛 (𝑥)}𝑛∈N is increasing,
and we have

lim
𝑛→∞

∫
𝐴
Ω𝑛 (𝑥) 𝑑𝜇 =

∫
𝐴
Ω(𝑥) 𝑑𝜇

for every 𝐴 ∈ B by the monotone convergence theorem. Note that by the definition of Ω𝑛 we have

lim
𝑛→∞

𝜈̃𝑛 (𝐴) =
∫
𝐴
Ω(𝑥) 𝑑𝜇 (5.3)

for every 𝐴 ∈ B.
The sequence {𝜈̃𝑛}𝑛∈N is a Cauchy sequence in the total variation distance ‖.‖𝑇𝑉 . Indeed, we have

‖ 𝜈̃𝑚 − 𝜈̃𝑛‖𝑇𝑉 = (𝜈̃𝑚 − 𝜈̃𝑛) (𝑉) =

��
𝑚∑
𝑘=𝑛

1
2𝑘


�� 1
2Δ 𝑘

2Δ𝑘∑
𝑖=1

𝜇𝑘𝑖,0 +
1

2Δ 𝑘
2Δ𝑘∑
𝑖=1

𝜇𝑘𝑖,1
������(𝑉) ≤ 1

2𝑛−1
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as 𝜈̃𝑚 − 𝜈̃𝑛 is a finite Borel (positive) measure for every 𝑚 > 𝑛 > 1. Consequently, there is a finite Borel
measure 𝜈̃ on (𝑉,B) such that 𝜈̃𝑛

𝑇𝑉−−−→ 𝜈̃. In particular, we have 𝜈̃𝑛 (𝐴) → 𝜈̃(𝐴) < ∞ for every 𝐴 ∈ B.
Combined with Equation (5.3), we see that Ω = 𝑑𝜈̃

𝑑𝜇 as desired.
It remains to show that 𝜇 and 𝜈̃ are equivalent. If 𝜇(𝐴) = 0, then 𝜈̃(𝐴) = lim𝑛→∞ 𝜈̃𝑛 (𝐴) = 0 as in

that case 𝜈̃𝑛 (𝐴) = 0 for every 𝑛 ∈ N. On the other hand, if 𝜈̃(𝐴) = 0, then
∫
𝐴
Ω(𝑥) 𝑑𝜇 = 0 as Ω = 𝑑𝜈̃

𝑑𝜇 .
This can only happen if 𝜇(𝐴) = 0 as Ω ≥ 1. �

Let 𝜈 be a normalization of 𝜈̃, that is, 𝜈 = 𝐾𝜈̃ for some 0 < 𝐾 < ∞. It is easy to see that 𝜈 and 𝜈̃, hence
also 𝜈 and 𝜇, are equivalent. Consequently, 𝜈 is G-quasi-invariant. Write 𝜌𝜈 for the Radon–Nikodym
cocycle of 𝜈 with respect to G.

Claim 5.3. There is a 𝜇-conull G-invariant set 𝐴 ⊆ 𝑉 such that

𝜌𝜈 (𝑥, 𝑦) = 𝜌𝜇 (𝑥, 𝑦)
Ω(𝑦)
Ω(𝑥) (5.4)

for every 𝑥, 𝑦 ∈ 𝐴 such that (𝑥, 𝑦) ∈ 𝐹G .

Proof. Let 𝑔 : 𝐶 → 𝑉 be a Borel injection such that (𝑥, 𝑔(𝑥)) ∈ 𝐹G for every 𝑥 ∈ 𝐶. Set 𝑔(𝐶) = 𝐷,
then 𝑔 : 𝐶 → 𝐷 is a Borel bijection. As 𝜇 and 𝜈 are equivalent, Ω

𝐾 = 𝜈
𝜇 and 𝜌𝜇 (𝑥, 𝑔(𝑥)) Ω(𝑔 (𝑥))

Ω(𝑥) are
nonnegative. We have∫

𝐶
𝜌𝜇 (𝑥, 𝑔(𝑥))

Ω(𝑔(𝑥))
Ω(𝑥) 𝑑𝜈(𝑥) =

∫
𝐶

𝜌𝜇 (𝑥, 𝑔(𝑥))
Ω(𝑔(𝑥))
Ω(𝑥)

Ω(𝑥)
𝐾

𝑑𝜇(𝑥)

=
∫
𝐶

𝜌𝜇 (𝑥, 𝑔(𝑥))
1
𝐾
Ω(𝑔(𝑥)) 𝑑𝜇(𝑥).

By (2) Proposition 2.2 applied to 𝑓 (𝑥, 𝑦) that is defined as 1
𝐾Ω(𝑦) whenever 𝑔(𝑥) = 𝑦 and 0 otherwise,

we have ∫
𝐶

𝜌𝜇 (𝑥, 𝑔(𝑥))
1
𝐾
Ω(𝑔(𝑥)) 𝑑𝜇(𝑥) =

∫
𝐷

1
𝐾
Ω(𝑦) 𝑑𝜇(𝑦)

= 𝜈(𝐷) = 𝜈(𝑔(𝐶))

=
∫
𝐶

𝜌𝜈 (𝑥, 𝑔(𝑥)) 𝑑𝜈(𝑥)

and the claim follows from the uniqueness of the Radon–Nikodym cocycle. �

It remains to show that 𝜌𝜇 (𝑥, 𝑦)Ω(𝑦) ≤ 4ΔΩ(𝑥) for every (𝑥, 𝑦) ∈ 𝐸 , as this clearly implies
𝜌𝜈 (𝑥, 𝑦) = 𝜌𝜇 (𝑥, 𝑦) Ω(𝑦)

Ω(𝑥) ≤ 4Δ . Let (𝑥, 𝑦) ∈ 𝐸 . Suppose that 𝑦 ∈ 𝐴𝑘𝑖, 𝑗 , that is, 𝑧 = 𝑓 𝑘𝑖, 𝑗 (𝑦) is well defined
and satisfies distG (𝑦, 𝑧) = 𝑘 . We already observed that the triplet (𝑘, 𝑖, 𝑗) is unique. As (𝑥, 𝑦) ∈ 𝐹G ,
there is exactly one triplet (𝑘 ′, 𝑖′, 𝑗 ′) such that 𝑥 ∈ 𝐴𝑘

′

𝑖′, 𝑗′ and 𝑓 𝑘
′

𝑖′, 𝑗′ (𝑥) = 𝑧. Moreover, as (𝑥, 𝑦) ∈ 𝐸 we
have that 𝑘 ′ ≤ 𝑘 + 1. Indeed, we have distG (𝑥, 𝑧) = 𝑘 ′ ≤ distG (𝑥, 𝑦) + distG (𝑦, 𝑧) = 𝑘 + 1. The same
reasoning with the roles of y and x interchanged implies that the assignment (𝑘, 𝑖, 𝑗) ↦→ (𝑘 ′, 𝑖′, 𝑗 ′) is a
bijection. Observe that

1
2𝑘+1(2Δ 𝑘+1)

1𝐴𝑘𝑖, 𝑗 (𝑦)𝜌𝜇 (𝑥, 𝑓 𝑘𝑖, 𝑗 (𝑦)) ≤
1

2𝑘′ (2Δ 𝑘′ )
1𝐴𝑘′

𝑖′, 𝑗′
(𝑥)𝜌𝜇 (𝑥, 𝑓 𝑘

′

𝑖′, 𝑗′ (𝑥)) (5.5)
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holds whenever 𝑦 ∈ 𝐴𝑘𝑖, 𝑗 . We have

𝜌𝜇 (𝑥, 𝑦)Ω(𝑦) = 𝜌𝜇 (𝑥, 𝑦)
(
1 +

∑
𝑘∈N\{0}

1
2𝑘

(
1

2Δ 𝑘
2Δ𝑘∑
𝑖=1

1𝐴𝑘
𝑖,0
(𝑦)𝜌𝜇 (𝑦, 𝑓 𝑘𝑖,0(𝑦))

+ 1
2Δ 𝑘

2Δ𝑘∑
𝑖=1

1𝐴𝑘
𝑖,1
(𝑦)𝜌𝜇 (𝑦, 𝑓 𝑘𝑖,1(𝑦))

))
= 𝜌𝜇 (𝑥, 𝑦) +

∑
𝑘∈N\{0}

1
2𝑘

(
1

2Δ 𝑘
2Δ𝑘∑
𝑖=1

1𝐴𝑘
𝑖,0
(𝑦)𝜌𝜇 (𝑥, 𝑓 𝑘𝑖,0(𝑦))

+ 1
2Δ 𝑘

2Δ𝑘∑
𝑖=1

1𝐴𝑘
𝑖,1
(𝑦)𝜌𝜇 (𝑥, 𝑓 𝑘𝑖,1(𝑦))

)
≤ 4Δ

(
1

4Δ
𝜌𝜇 (𝑥, 𝑓 0

0,0 (𝑦)) +
∑

𝑘∈N\{0}

1
2𝑘+1

(
1

2Δ 𝑘+1

2Δ𝑘∑
𝑖=1

1𝐴𝑘
𝑖,0
(𝑦)𝜌𝜇 (𝑥, 𝑓 𝑘𝑖,0(𝑦))

+ 1
2Δ 𝑘+1

2Δ𝑘∑
𝑖=1

1𝐴𝑘
𝑖,1
(𝑦)𝜌𝜇 (𝑥, 𝑓 𝑘𝑖,1(𝑦))

))
≤ 4Δ

(
1 +

∑
𝑘′ ∈N\{0}

1
2𝑘′

(
1

2Δ 𝑘′
2Δ𝑘′∑
𝑖=1

1𝐴𝑘′
𝑖′,0

(𝑥)𝜌𝜇 (𝑥, 𝑓 𝑘
′

𝑖′,0 (𝑥))

+ 1
2Δ 𝑘′

2Δ𝑘′∑
𝑖=1

1𝐴𝑘′
𝑖′,1

(𝑥)𝜌𝜇 (𝑥, 𝑓 𝑘
′

𝑖′,1 (𝑥))
))

= 4ΔΩ(𝑥),

where we used (1) Proposition 2.2 to get the second equality and Equation (5.5) together with the fact
that (𝑘, 𝑖, 𝑗) ↦→ (𝑘 ′, 𝑖′, 𝑗 ′) is a bijection to get the second inequality. �

6. Double counting argument

In this section, we show that if a partial edge coloring c does not admit improvement of weight L, then
the measure of uncolored edges has to be 𝑂

(
1

log2 (𝐿)𝐿

)
under the assumption that 𝜈 is G-bounded.

Theorem 6.1. Let G = (𝑉,B, 𝐸) be a Borel graph such that Δ (G) < ∞, E = (𝐸, C, 𝐼G) be the
corresponding line graph, 𝜈 ∈ P (𝐸) be E-bounded, that is, 𝜈 satisfy 𝜌𝜈 (𝑒, 𝑓 ) ≤ 8Δ for every 𝑒, 𝑓 ∈ 𝐸
such that (𝑒, 𝑓 ) ∈ 𝐼G , and 𝑐; 𝐸 → [Δ (G) + 1] be a partial coloring that does not admit improvement of
weight 𝐿 ∈ N, where log8Δ (𝐿) ≥ (8Δ)20. Then

𝜈(𝑈𝑐) ≤
64(4Δ)7 (Δ!)14

log2
8Δ (𝐿)𝐿

.

Proposition 6.2. Let G = (𝑉,B, 𝐸) be a Borel graph such that Δ (G) < ∞, E = (𝐸, C, 𝐼G) be the
corresponding line graph and 𝜈 ∈ P (𝐸) be E-bounded. Suppose that 𝑐; 𝐸 → [Δ (G) + 1] is a partial
coloring that does not admit improvement of weight 𝐿 ∈ N, where log8Δ (𝐿)

2 − 1 ≥ 2Δ . Then 𝜈-almost
every 𝑒 ∈ 𝑈𝑐 is log8Δ (𝐿)

4 -bad for c.
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Proof. Let 𝑊𝑐 (𝑒) be a 3-step Vizing chain at e. We have

𝐿 ≤
∑

𝑓 ∈𝑊𝑐 (𝑒)
𝜌𝜈 (𝑒, 𝑓 ) ≤

∑
𝑘≤ |𝑊𝑐 (𝑒) |

(8Δ)𝑘 ≤ (8Δ) |𝑊𝑐 (𝑒) |+1.

Consequently, |𝑊𝑐 (𝑒) | ≥ log8Δ (𝐿) − 1 ≥ log8Δ (𝐿)
2 + 2Δ . �

We get an immediate corollary of Theorem 3.17.

Proposition 6.3. Let G = (𝑉,B, 𝐸) be a Borel graph such that Δ (G) < ∞, E = (𝐸, C, 𝐼G) be the
corresponding line graph and 𝜈 ∈ P (𝐸) be E-bounded. Suppose that 𝑐; 𝐸 → [Δ (G) + 1] is a partial
coloring that does not admit improvement of weight 𝐿 ∈ N, where log8Δ (𝐿) ≥ (8Δ)20. Then we have

|V𝑐 (𝑒) | ≥
1

(4Δ)7 log2
8Δ (𝐿)

for 𝜈-almost every 𝑒 ∈ 𝑈𝑐 .

Proposition 6.4. Let G = (𝑉,B, 𝐸) be a Borel graph such that Δ (G) < ∞, E = (𝐸, C, 𝐼G) be the
corresponding line graph and 𝜈 ∈ P (𝐸) be E-bounded. Suppose that 𝑐; 𝐸 → [Δ (G) + 1] is a partial
coloring that does not admit improvement of weight 𝐿 ∈ N, where log8Δ (𝐿) ≥ (8Δ)20. Then for 𝜈-almost
every 𝑒 ∈ 𝑈𝑐 and every ( 𝑓 1, 𝑓 2) ∈ V𝑐 (𝑒), we have∑

𝑓 ∈𝑃3
𝑐

𝜌𝜈 (𝑒, 𝑓 ) ≥ 𝐿

2
,

where 𝑊𝑐 (𝑒, 𝑓 1, 𝑓 2) =
(
𝐹1
𝑐

)⌢ (
𝑃1
𝑐

)⌢ (
𝐹2
𝑐

)⌢ (
𝑃2
𝑐

)⌢ (
𝐹3
𝑐

)⌢ (
𝑃3
𝑐

)
.

Proof. Set 𝑃 =
(
𝐹1
𝑐

)⌢ (
𝑃1
𝑐

)⌢ (
𝐹2
𝑐

)⌢ (
𝑃2
𝑐

)⌢ (
𝐹3
𝑐

)
. It follows from the definition of V𝑐 (𝑒) that 𝑠 = 𝑙 (𝑃) ≤

3Δ + log8Δ (𝐿)
2 . We have

𝐿 ≤
∑

𝑓 ∈𝑊𝑐 (𝑒, 𝑓 1 , 𝑓 2)
𝜌𝜈 (𝑒, 𝑓 ) =

∑
𝑓 ∈𝑃

𝜌𝜈 (𝑒, 𝑓 ) +
∑
𝑓 ∈𝑃3

𝑐

𝜌𝜈 (𝑒, 𝑓 )

≤ (8Δ)3Δ+ log8Δ (𝐿)
2 +2 +

∑
𝑓 ∈𝑃3

𝑐

𝜌𝜈 (𝑒, 𝑓 ).

Consequently, 𝐿2 ≤ 𝐿 − (8Δ)3Δ+2𝐿
1
2 ≤

∑
𝑓 ∈𝑃3

𝑐
𝜌𝜈 (𝑒, 𝑓 ) as needed. �

Define an auxiliary Borel oriented bipartite multigraph H𝑐 with vertex set 𝑈𝑐 � dom(𝑐) such that
(𝑒, 𝑓 ) is an edge if 𝑓 ∈ 𝑃3

𝑐 for some

𝑊𝑐 (𝑒, 𝑓 1, 𝑓 2) =
(
𝐹1
𝑐

)⌢ (
𝑃1
𝑐

)⌢ (
𝐹2
𝑐

)⌢ (
𝑃2
𝑐

)⌢ (
𝐹3
𝑐

)⌢ (
𝑃3
𝑐

)
,

where ( 𝑓 1, 𝑓 2) ∈ V𝑐 (𝑒). Note that H𝑐 is in general a multigraph as there might be different 3-step
Vizing chains at the same edge e for which (𝑒, 𝑓 ) ∈ H𝑐 for the same 𝑓 ∈ dom(𝑐). The following is
the crucial observation for the double counting argument; note that the right-hand side of the inequality
does not depend on L.

Proposition 6.5. degH𝑐
( 𝑓 ) ≤ 32(Δ!)14 for every 𝑓 ∈ dom(𝑐).

Proof. There are at most 2Δ choices for 𝛼3, 𝛽3 and 𝑧3 such that 𝑓 ∈ 𝑃3
𝑐 = 𝑃𝑐 (𝑧3, 𝛼3/𝛽3). There are at

most Δ choices for 𝑦3, and at most Δ!Δ choices for a fan 𝐹3
𝑐 at 𝑥3. For 𝑃2

𝑐 , we deduce that there are

https://doi.org/10.1017/fms.2024.83 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.83


22 J. Grebík

at most 4(Δ + 1)2 choices for 𝑧2 and 𝛼2, 𝛽2 as the last edge of 𝑃2
𝑐 has to intersect the first edge of 𝐹3

𝑐 .
Similar estimates hold for 𝐹2

𝑐 , 𝑃1
𝑐 and 𝐹1

𝑐 . Altogether, we get that

degH𝑐
( 𝑓 ) ≤ 2Δ (Δ!Δ2)3(4(Δ + 1)2)2 ≤ 32(Δ!)14,

as desired. �

Proof of Theorem 6.1. Define a function F(𝑒, 𝑓 ) that counts the number of oriented edges from e to f
in H𝑐 . By (2) Proposition 2.2, we have∫

𝐸

∑
𝑓 ∈[𝑒]E

F(𝑒, 𝑓 )𝜌𝜈 (𝑒, 𝑓 ) 𝑑𝜈(𝑒) =
∫
𝐸

∑
𝑒∈[ 𝑓 ]E

F(𝑒, 𝑓 ) 𝑑𝜈( 𝑓 ). (DC)

Using Proposition 6.5, we get an upper bound for the right-hand side of Equation (DC) as∫
𝐸

∑
𝑒∈[ 𝑓 ]E

F(𝑒, 𝑓 ) 𝑑𝜈( 𝑓 ) ≤
∫

dom(𝑐)
degH𝑐

( 𝑓 ) 𝑑𝜈( 𝑓 ) ≤ 32(Δ!)14.

Using the definition of V𝑐 (𝑒) for 𝑒 ∈ 𝑈𝑐 , Proposition 6.4 and Proposition 6.3, we get an lower bound
for the left-hand side of Equation (DC) as∫

𝐸

∑
𝑓 ∈[𝑒]E

F(𝑒, 𝑓 )𝜌𝜈 (𝑒, 𝑓 ) 𝑑𝜈(𝑒) =
∫
𝑈𝑐

∑
( 𝑓 1 , 𝑓 2) ∈V𝑐 (𝑒)

∑
𝑓 ∈𝑃3

𝑐

𝜌𝜈 (𝑒, 𝑓 ) 𝑑𝜈(𝑒)

≥
∫
𝑈𝑐

∑
( 𝑓 1 , 𝑓 2) ∈V𝑐 (𝑒)

𝐿

2
𝑑𝜈(𝑒)

≥
∫
𝑈𝑐

1
(4Δ)7 log2

8Δ (𝐿)
𝐿

2
𝑑𝜈(𝑒) = 1

2(4Δ)7 log2
8Δ (𝐿)𝐿𝜈(𝑈𝑐).

Altogether, we infer that

𝜈(𝑈𝑐) ≤
64(4Δ)7 (Δ!)14

log2
8Δ (𝐿)𝐿

as desired. �

7. Proof of the main result

We restate Theorem 1.1, in a compact form, for the convenience of the reader.

Theorem 7.1. Let G = (𝑉,B, 𝐸) be a Borel graph such that Δ (G) < ∞ and 𝜇 ∈ P (𝑉). Then there is a
Borel map 𝑐 : 𝐸 → [Δ (G) + 1] that is a proper edge coloring 𝜇-almost everywhere.

Proof. Apply Proposition 2.1 to G to get 𝜇̂, then apply Theorem 5.1 to E = (𝐸, C, 𝐼G) and 𝜇̂ to get
𝜈 ∈ P (𝐸) with the property that 𝜌𝜈 (𝑒, 𝑓 ) ≤ 8Δ for every 𝑒, 𝑓 ∈ 𝐸 such that (𝑒, 𝑓 ) ∈ 𝐼G , and
𝜇({𝑥 ∈ 𝑉 : ∃𝑒 ∈ 𝐴 𝑥 ∈ 𝑒}) = 0 for every 𝐴 ∈ C such that 𝜈(𝐴) = 0.

Set 𝐿𝑛 = 𝐴 · (8Δ)𝑛, where 𝐴 ∈ N is such that log8Δ (𝐿𝑛) ≥ (8Δ)20 for every 𝑛 ∈ N, and define
inductively, using Theorem 4.2, a sequence {𝑐𝑛}𝑛∈N such that 𝑐𝑛 does not admit improvement of weight
𝐿𝑛 for every 𝑛 ∈ N and

𝜈({𝑒 ∈ 𝐸 : 𝑐𝑛 (𝑒) ≠ 𝑐𝑛+1 (𝑒)}) ≤ 𝐿𝑛+1𝜈(𝑈𝑐)

for every 𝑛 ∈ N.
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The Borel–Cantelli lemma implies that 𝑐(𝑒) = lim𝑛→∞ 𝑐𝑛 (𝑒) is defined 𝜈-almost everywhere as∑
𝑛∈N

𝐿𝑛+1𝜈(𝑈𝑐𝑛 ) ≤
∑
𝑛∈N

64(4Δ)7 (Δ!)14𝐿𝑛+1

log2
8Δ (𝐿𝑛)𝐿𝑛

=
∑
𝑛∈N

64(4Δ)7 (Δ!)14(8Δ)𝑛+1

𝑛2 (8Δ)𝑛
=

∑
𝑛∈N

128(4Δ)8 (Δ!)14

𝑛2 < ∞

by Theorem 6.1. Altogether, this shows that c is correct at 𝜇-almost every vertex by the definition of 𝜈. �
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