
J. Functional Programming 8 (1): 83–88, January 1998. Printed in the United Kingdom

c© 1998 Cambridge University Press

83

F U N C T I O N A L P E A R L

Meertens numberã

RICHARD S. BIRD
Programming Research Group, Oxford University,

Wolfson Building, Parks Road, Oxford OX1 3QD, UK

1 Introduction

Meertens number is a number with a very peculiar property. I had the idea in 1991,

when I was invited to celebrate the occasion of Lambert Meertens’ 25 years at the

CWI, Amsterdam. Lambert has been a good friend and colleague for a number of

years, and rather than bring the usual bottle of Glenlivet as a gift, I decided to give

him a number.

The property concerns the prime factorisation of numbers. For example, 400 =

243052 and 432 = 243350. Suppose we define g(n) by taking the decimal representation

d1d2 . . . dk of n and setting g(n) = 2d13d2 . . . pdkk , where pk is the kth prime. Thus,

g(402) = 400 and g(430) = 432. The numbers n and g(n) are not always so close

together as these two examples suggest; in fact, most of the time they are wildly

different. The question is: do they ever coincide?

The function g is named after Kurt Gödel, who exploited the idea of coding a

sequence of characters as a single number in his famous paper on the incompleteness

of arithmetic. Here we are using the same device, coding a number by coding its

decimal representation. If n = g(n), then n is called a Meertens number.

The existence of a Meertens number is not at all obvious. The number has to be

even, and a little mental calculation shows that it cannot have one, two or three

digits. For example, any three digit number would have to end with a zero and so

be both divisible and not divisible by five. On the other hand, there are some near

misses as the numbers 402 and 430 show. Furthermore, as n increases the value

g(n) jumps about quite a lot, so there is no obvious reason why they should never

coincide.

The problem is not specific to decimals of course. In base 2, each of the numbers

2, 6 and 10 is a Meertens number. For example, 6 in binary is 110 and 6 = 213150.

The number 10 is also a Meertens number in base 3 since 10 in ternary is 101 and

10 = 213051. Such results are encouraging, but finding the Meertens number for

mere bits and bytes is not enough. Mere tens, on the other hand, would be quite

ã This pearl is adapted from material in Introduction to Functional Programming, Second
Edition by Richard Bird, Prentice Hall, to be published in 1998. Permission to publish is
gratefully acknowledged.

https://doi.org/10.1017/S0956796897002931 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002931

84 R. S. Bird

appropriate. Our aim in this pearl is to construct a program for finding Meertens

numbers.

2 A simple approach

The most obvious method is to define

meertens :: [Integer]

meertens = [n | n← [1 ..], n = godel n]

godel :: Integer → Integer

godel n = product (zipWith (↑) primes (digits n))

The function digits returns the decimal representation of a number and (↑) denotes

exponentiation. The Haskell type Integer contains integers of arbitrary precision.

The list primes of all primes can be defined in a number of ways, and we will not

go into details.

The trouble with this program is that it is very slow. The godel number of each

candidate is computed afresh and this takes a significant number of steps.

As preparation for a change in representation, we can rewrite the definition of

meertens in the eqivalent form

meertens = [n | (n, g)← map gn [1 ..], n = g]

where gn n = (n, godel n)

3 Using trees

One way to avoid excessive recomputation is to use a tree structure for storing

partial results. Each node in the tree, apart from the very first, has 10 subtrees, one

for each digit. The first tree has 9 subtrees, since decimals begin with a nonzero

digit. Each node in the tree is labelled with two integers, n and g. The decimal

representation of n describes the path in the tree to the given node and g = godel n.

The tree therefore has type Tree, where

data Tree = Node Label [Tree]

type Label = (Integer, Integer)

The idea is to build a tree gtree so that

flatten gtree = map gn [1 ..]

where flatten lists the labels of a tree in breadth-first order. The value gtree is

defined by

gtree :: Tree

gtree = snip (mktree prps (0, 1))

The function snip snips off the leftmost branch to remove decimals beginning with

zero:

snip :: Tree→ Tree

snip (Node x ts) = Node x (tail ts)

https://doi.org/10.1017/S0956796897002931 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002931

Functional pearl 85

The work of building the tree is relegated to the function mktree. This function takes

an infinite list prps of the powers of each prime and a starting label of (0, 1), which

is correct since g(0) = 1. The list prps is defined by

prps :: [[Integer]]

prps = map powers primes

The value of powers p is an infinite list [1, p, p2, . . .] of powers of p:

powers :: Integer → [Integer]

powers p = iterate (p×) 1

The standard function iterate is defined by

iterate :: (α→ α)→ α→ [α]

iterate f x = x : iterate f (f x)

Now we can define mktree by

mktree :: [[Integer]]→ Label → Tree

mktree (ps : pps) x = Node x (map (mktree pps) (labels ps x))

where

labels :: [Integer]→ Label → [Label]

labels ps (n, g) = zip (map (m+) digits) (map (g×) ps)

where m = 10× n; digits = [0 .. 9]

The list meertens of Meertens’ numbers can now be computed, in theory at least, by

meertens = [n | (n, g)← flatten gtree, n = g]

where gn n = (n, godel n)

There is no theoretical difficulty in printing out the labels of an infinite tree in

breadth-first order because the ordering proceeds level by level. However, there is a

substantial practical difficulty: the computation rapidly runs out of space and grinds

to a halt. Searching a tree in breadth-first order requires space proportional to the

size of the tree, and the size of Meertens’ tree grows exponentially. No evaluator,

real or imagined, has sufficient resources to proceed very far with the computation.

The obvious solution is to restrict the height of the tree and to switch to depth-first

search. We have to make the tree finite if we want to use depth-first search, because

one cannot traverse an infinite Meertens’ tree in depth-first order. If we build a tree

of height k, then we can search for Meertens’ numbers n in the range 1 ≤ n < 10k .

The revised definition is

meertens :: Int→ [Integer]

meertens k = [n | (n, g)← flatten (gtree k), n = g]

where gn n = (n, godel n)

This time, flatten lists the labels of a tree in depth-first order:

flatten (Node x ts) = x : concat (map flatten ts)

https://doi.org/10.1017/S0956796897002931 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002931

86 R. S. Bird

The function gtree returns trees of given height:

gtree :: Int→ Tree

gtree k = snip (mktree prps (0, 1))

where prps = map powers (take k primes)

The function mktree is virtually the same as before:

mktree :: [[Integer]]→ Label → Tree

mktree [] x = Node x []

mktree (ps : pps) x = Node x (map (mktree pps) (labels ps x))

Since we have replaced breadth-first by depth-first search, it follows that meertens is

no longer guaranteed to produce numbers in increasing order.

4 Optimisation

The revised definition is faster but still very slow. There is another optimisation

that can usefully be applied. There is no point in generating any subtree with a

label (n, g) in which g ≥ 10k since, by construction, all labels (n, g) in the tree have

n < 10k . To incorporate this test without carrying around an extra parameter, we

will make the functions mktree and labels local to the definition of gtree:

gtree k

= snip (mktree prps (0, 1))

where

prps = map powers (take k primes)

mktree [] x = Node x []

mktree (ps : pps) x = Node x (map (mktree pps) (labels ps x))

labels ps (n, g) = zip (map (m+) ds) (chop (map (g×) ps))

where m = 10× n
chop = takeWhile(< 10k)

Even with these optimisations the search is still fairly slow. Apart from carefully

studying the problem to see what number theory can be applied, there is one more

technique for improving matters and we consider this next.

5 Deforestation

Deforestation is the general name for a programming technique that removes inter-

mediate datatypes from a program. The idea is to get rid of the tree we have so

carefully constructed. The saving will not be huge but it will be significant. If the

resulting program can be sped up by, say, a factor of two, then the optimisation is

worthwhile. (Surely by now the reader will have suspected that the first Meertens

number is not a small one.)

Like all sound techniques for optimisation, deforestation is carried out simply

by program calculation. The theme of the calculation is to combine functions that

produce and consume elements of an intermediate datatype. We begin by calculating,

https://doi.org/10.1017/S0956796897002931 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002931

Functional pearl 87

for k > 0, that

(flatten · gtree) k
= {definition of gtree, with prps = map powers (take k primes)}

(flatten · snip · mktree prps) (0, 1)

= {definition of mktree, with ps : pps = prps (since k > 0)}
(flatten · snip ·Node (0, 1) · map (mktree pps) · labels ps) (0, 1)

= {since snip ·Node x = Node x · tail}
(flatten ·Node (0, 1) · tail · map (mktree pps) · labels ps) (0, 1)

= {since tail · map f = map f · tail}
(flatten ·Node (0, 1) · map (mktree pps) · tail · labels ps) (0, 1)

= {since flatten ·Node x = (x :) · concat · map flatten}
(((0, 1) :) · concat · map flatten · map (mktree pps) · tail · labels ps) (0, 1)

= {since map is a functor}
(((0, 1) :) · concat · map (flatten · mktree pps) · tail · labels ps) (0, 1)

The resulting expression suggests introducing the function search, defined by

search pps = flatten · mktree pps

It is this function that captures the idea of deforestation. The building and flattening

of a tree is combined in a single function.

The aim now is to get a recursive definition of search. The simplification of

search [] is straightforward, and that of search (ps : pps) x is similar to that of

flatten · gtree. The result is

search [] x = [x]

search (ps : pps) x = x : concat (map (search ps) (labels ps x))

Here is the final program, in which we suppose k > 0:

meertens k = [n | (n, g)← candidates (0, 1), n = g]

where

candidates = concat · map (search pps) · tail · labels ps
ps : pps = map powers (take k primes)

search [] x = [x]

search (ps : pps) x = x : concat (map (search pps) (labels ps x))

labels ps (n, g) = zip (map (m+) digits) (chop (map (g×) ps))

where m = 10× n
chop = takeWhile (< 10k)

digits = [0 .. 9]

6 A result

The program above was run under Hugs for Windows 3.1 on a small and ancient

laptop with 22K of heap space:

https://doi.org/10.1017/S0956796897002931 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002931

88 R. S. Bird

? meertens 8

[81312000]

(1783302 reductions, 4393345 cells, 189 garbage collections)

As far as I am aware, 81312000 is the only known Meertens number. As I said to

Lambert, handle it carefully and keep it cool, for it decomposes rather easily.

Acknowledgement

I would like to thank Geraint Jones for a number of discussions about Meertens

number, and my wife Norma for lending me her laptop.

https://doi.org/10.1017/S0956796897002931 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002931

