ON VALUE GROUPS AND RESIDUE FIELDS OF SOME VALUED FUNCTION FIELDS*

by SUDESH K. KHANDUJA

(Received 23rd September 1992)

Let $K = K_0(x, y)$ be a function field of transcendence degree one over a field K_0 with x, y satisfying $y^2 = F(x)$, F(x) being any polynomial over K_0 . Let v_0 be a valuation of K_0 having a residue field k_0 and v be a prolongation of v_0 to K with residue field k. In the present paper, it is proved that if $G_0 \subseteq G$ are the value groups of v_0 and v, then either G/G_0 is a torsion group or there exists an (explicitly constructible) subgroup G_1 of G containing G_0 with $[G_1:G_0]<\infty$ together with an element y of G such that G is the direct sum of G_1 and the cyclic group \mathbb{Z}_p . As regards the residue fields, a method of explicitly determining k has been described in case k/k_0 is a non-algebraic extension and char $k_0 \neq 2$. The description leads to an inequality relating the genus of K/K_0 with that of k/k_0 : this inequality is slightly stronger than the one implied by the well-known genus inequality (cf. [Manuscripta Math. 65 (1989), 357-376], [Manuscripta Math. 58 (1987), 179-214]).

1991 Mathematics subject classification: 12F20, 13A18.

0. Introduction

Let v_0 be a valuation of a field K_0 and v be a prolongation of v_0 to a simple transcendental extension K of K_0 . Let $G_0 \subseteq G$ and $k_0 \subseteq k$ be the value groups and residue fields of v_0 and v respectively. In 1983 Ohm [12] proved a conjecture made by Nagata that either k is an algebraic extension of k_0 or it is a simple transcendental extension of a finite extension of k_0 . Analogously for value groups, Khanduja [7] has proved that either G/G_0 is a torsion group or there exists an explicitly constructible subgroup G_1 of G containing G_0 with $[G_1:G_0]<\infty$ such that G is the direct sum of G_1 and an infinite cyclic group. In this paper, we prove similar results for value groups and residue fields of $(K, v)/(K_0, v_0)$ when $K = K_0(x, y)$ is a function field of transcendence degree 1 over K_0 with x, y satisfying a relation $y^2 = F(x)$, F(x) being any polynomial over K_0 . In the case that the extension k/k_0 is non-algebraic, we describe a method to determine explicitly the residue field k of (K, v) and thereby establish an inequality relating the genus of K/K_0 with that of k/k_0 ; in certain cases this relation happens to be slightly stronger than the one implied by the genus inequality of Matignon (cf. [6, Theorem 3.1], [10, p. 201, Theorem 4]) which was obtained by entirely different techniques.

^{*}The research is partially supported by CSIR grant No. 25/53/90-EMR II.

1. Notation and statements of results

We shall prove:

Theorem 1.1. Let v_0 be a valuation of a field K_0 and v be an extension of v_0 to an overfield $K = K_0(x, y)$ of transcendence degree one over K_0 , where $y^2 = F(x)$ is in $K_0[x]$. If $G_0 \subseteq G$ are the value groups of v_0 and v, then either G/G_0 is a torsion group or there exists a subgroup G_1 of G containing G_0 with $[G_1; G_0] < \infty$ and an element γ of G (both G_1 and γ explicitly constructible) such that G is the direct sum of G_1 and the cyclic group $\mathbb{Z}\gamma$ generated by γ .

Notation. For a finite extension $(L, w)/(L_0, w_0)$ of valued fields the henselian defect of the extension is defined to be $[L^h: L_0^h]/ef$ where "h" stands for henselisation and e, f denote the ramification index and the residual degree of w/w_0 . We shall denote it by $def^h((L, w)/(L_0, w_0))$ or by $def^h(L/L_0)$ when the underlying valuations are clear.

Throughout the paper (K_0, v_0) , (K, v) and $G_0 \subseteq G$ will be as in Theorem 1.1 and $k_0 \subseteq k$ will denote the residue fields of v_0 and v, respectively. For any ξ in the valuation ring of v, ξ^* will stand for its v-residue, i.e., the image of ξ in the residue field of v. In the remaining part of this section, it is assumed that the field k_0 is of characteristic (to be abbreviated as char) $\neq 2$ and that k is not algebraic over k_0 . We shall denote by Δ the algebraic closure of k_0 in k and by l, l the numbers l and l and l and l are respectively.

Let ξ be an element of the valuation ring of v such that ξ^* is transcendental (to be written as tr.) over k_0 . We shall denote by D (more precisely by $D(v/v_0)$ the henselian defect of the finite extension $(K, v)/(K_0(\xi), v_0^{\xi})$ (v_0^{ξ} denotes the restriction of v to $K_0(\xi)$); in view of the Independence Theorem [13, p. 299], D is independent of the choice of the residually tr. element ξ .

With the above notation, we shall prove:

Theorem 1.2. Let v_0 be a valuation of a field K_0 with residue field k_0 of char $\neq 2$ and let v be an extension of v_0 to an overfield $K = K_0(x, \sqrt{F(x)})$, F(x) being a non-constant polynomial in an indeterminate x over K_0 . Assume that the residue field k of v is not algebraic over k_0 . Then one can determine (by an explicit algorithm) an element u transcendental over k_0 and a polynomial A(u) over the algebraic closure Δ of k_0 in k with deg $A(u) \leq \delta + (\deg F(x))/IRD$ such that $k = \Delta(u, \sqrt{A(u)})$ where $\delta = 0$ or 1; indeed δ can be chosen to be 0 when I = 1.

Throughout the paper, when we refer to the genus of a function field, we shall mean the genus over the exact constant field as in [1] or [4] and shall denote the genus of L by g_L .

The following theorem will be deduced from Theorem 1.2.

Theorem 1.3. Let $K_0 \subseteq K$, v_0 , v and $k_0 \subseteq k$ be as in Theorem 1.2. Assume that K_0 is algebraically closed in K. Then

(i)
$$IRD(g_k-1) \leq g_K - IRD + 1$$

(ii) I = R = D = 1 implies that $g_k \leq g_K$.

If K_0 , K etc. are as above with K_0 an algebraically closed field, then G_0 is a divisible group and k_0 is an algebraically closed field, so that I = R = 1; in this case D = 1 by the Stability Theorem (see [13, Theorem 2.1]). Thus the following corollary is an immediate consequence of the 2nd assertion of Theorem 1.3.

Corollary 1.4. Let K_0 , K, v_0 , v etc. be as in the above theorem. Assume further that K_0 is an algebraically closed field. Then $g_k \leq g_K$.

Remark 1.5. The relation between g_k and g_K given by the well-known genus inequality (cf. [6, Theorem 3.1.], [10, p. 201, Theorem 4]) is

$$IRD(g_k - 1) \leq g_K - 1. \tag{1}$$

If $IRD \ge 2$, then clearly Theorem 1.3(i) implies (1). In view of the fact that the henselian defect is always a non-negative integral power of the characteristic of the residue field (see [2, p. 180, Prop. 15]), we conclude that IRD < 2, if and only if, I = R = D = 1, in which case (1) follows from assertion (ii) of Theorem 1.3.

Remark 1.6. We shall give examples in the last section to show that the bound on g_k given by Theorem 1.3 is indeed the best possible and stronger than the one given by (1). In fact $(K, v)/(K_0, v_0)$ will be constructed so that $g_k = [(g_K + 1)/IRD] < [(g_K - 1)/IRD] + 1$; here [r] stands for the largest integer not exceeding r.

2. Proof of Theorem 1.1

Assume that G/G_0 is not a torsion group. Let H denote the value group of the valuation v restricted to the subfield $K_0(x)$ of K. Then $[G:H] \leq [K:K_0(x)] \leq 2$, and H/G_0 is not a torsion group. It is known (cf. [7, Corollary 1.2.] or [8, Remark 3.2]) that there exists an (explicitly constructible) subgroup H_1 of H containing G_0 with $[H_1:G_0] < \infty$ and an element of θ of H such that H is the direct sum of H_1 and $\mathbb{Z}\theta$. So we need to prove the theorem when [G:H] = 2.

Two cases are distinguished.

If $(\lambda + \theta)/2 = \theta_1$ (say) belongs to G for some λ in H, then

$$H = H_1 \oplus \mathbb{Z}\theta \subseteq H_1 \oplus \mathbb{Z}\theta_1 \subseteq G$$

and hence $G = H_1 \oplus \mathbb{Z}\theta_1$ in this case.

Suppose that $(h_1 + \theta)/2 \notin G$ for any h_1 in H_1 . It will be shown that $G = (G \cap \frac{1}{2}H_1) \oplus \mathbb{Z}\theta$ in this case. Let g be any element of G. Since $2g \in H$, we can write

$$g = \frac{h_1}{2} + \frac{n\theta}{2}$$

for some h_1 in H_1 and some integer n. The claim is that n must be even. If n were odd, then on writing g as

$$g = \frac{h_1 + \theta}{2} + \frac{n-1}{2}\theta,$$

we derive that $(h_1 + \theta)/2 \in G$, contrary to the supposition. This proves the claim and the theorem follows.

3. Proof of Theorem 1.2

We first introduce some notation and state a couple of lemmas.

Let v_0 be a valuation of a field K_0 with value group G_0 and v' be a prolongation of v_0 to a simple tr. extension $K_0(x)$. (Later on we shall take v' to be the restriction of v to the subfield $K_0(x)$ of K). For any ξ in the valuation ring of v', we denote by ξ^* its v'-residue. It is assumed that the residue field k' of v' is not algebraic over the residue field k_0 of v_0 . For such an extension v'/v_0 , we define a number E' (more precisely written as $E'(v'/v_0)$) by

$$E' = \min \{ [K_0(x): K_0(\xi)] \mid \xi \in K_0(x), v'(\xi) \ge 0, \xi^* \text{ tr. over } k_0 \}.$$

Fix an element ξ of the valuation ring of v' with ξ^* tr. over k_0 . We shall denote by D' the henselian defect of the extension $(K_0(x), v')/(K_0(\xi), v_0^{\xi})$; in view of the Independence Theorem [13, p. 299], D' is independent of the choice of ξ , we shall denote by Δ' the algebraic closure of k_0 in k' and by G' the value group v'. It may be recalled that, by the Ruled Residue Theorem [12], k' is a simple tr. extension of Δ' . The following inequality which is due to Matignon and Ohm [11, p. 353, Corollary 2.2.3] is quoted for future reference:

$$E' \ge [G': G_0][\Delta': k_0]D'. \tag{2}$$

For the proof of the following lemma see [9, Lemma 2.2].

Lemma 3.1. Let v_0 , v', G', k' and E' be as above. Then to any $\lambda \in G'$, there corresponds a polynomial $h(x) \in K_0[x]$ of degree $\leq E' - 1$ such that $\lambda = v'(h(x))$.

After introducing some notation we recall a few results proved in [8]. Let v_0 , v', G', k' and E' be as before. Fix an algebraic closure \overline{K}_0 of K_0 and an extension v'' of v' to $\overline{K}_0(x)$. We denote by \overline{v}_0 the restriction of v'' to \overline{K}_0 . The extension k'/k_0 is given to be non-algebraic, therefore so is k''/\overline{k} , where $\overline{k} \subseteq k''$ are the residue fields of \overline{v}_0 , v'' respectively. Arguing exactly as in [14, p. 205, §2.5], it can be easily proved that there exist α and α in \overline{K}_0 such that the v''-residue $((x-\alpha)/\alpha)^*$ of $(x-\alpha)/\alpha$ is tr. over k_0 . If $v''(x-\alpha)=\overline{v}_0(\alpha)$ is denoted by μ then μ is torsion mod G_0 , i.e., $m\mu \in G_0$ for some positive integer m. As in

[3, § 10.1, Proposition 2], it can be easily seen that for any polynomial $f(x) = \sum_{i} c_{i}(x-\alpha)^{i}$ over \bar{K}_{0} ,

$$v''(f(x)) = \min_{i} (\bar{v}_0(c_i) + i\mu),$$

since the assumption $v''(f(x)) > \min_i(\bar{v}_0(c_i) + i\mu)$, would lead to $((x - \alpha)/a)^*$ being algebraic over \bar{k}_0 . This also shows that v''(f(x)) is torsion mod G_0 for $f(x) \in \bar{K}_0[x]$. Define a subset D_0 of \bar{K}_0 by

$$D_0 = \{ \gamma \in \bar{K}_0 : \bar{v}_0(\gamma - \alpha) \ge \mu \}.$$

Fix an element β of D_0 such that $[K_0(\beta): K_0] \leq [K_0(\gamma): K_0]$ for all γ in D_0 . We shall denote by P(x) the minimal polynomial of β over K_0 of degree n (say), by θ the element v'(P(x)) of G' and by G_1 the value group of the valuation \bar{v}_0 restricted to $K_0(\beta)$. As shown above θ is torsion mod G_0 ; let s be the smallest positive integer such that $s\theta \in G_1$. It is clear from the proof of Theorem 1.3 of [8] that

$$E' = sn = s \deg P(x)$$
.

In view of the choice of β any polynomial over K_0 having degree less than n has no root in D_0 . So by assertion (ii) of Lemma 2.1 of [8] for such a polynomial g(x), one has

$$v'(g(x)) = \bar{v}_0(g(\beta)).$$

We now prove:

Lemma 3.2. Let v_0 , v', E', k' and Δ' be as above and let $\eta = f(x)/g(x)$ be a unit of the valuation ring of v' with f(x), g(x) in $K_0[x]$ and $\deg g(x) \leq 2E'-1$. Then one can determine (by an explicit algorithm) a generator t of the simple tr. extension k'/Δ' together with polynomials B(t), C(t) over Δ' satisfying $\deg B(t) \leq (\deg f(x))/E'$, $\deg C(t) \leq 1$ such that the v'-residue η^* of η is given by $\eta^* = B(t)/C(t)$.

Proof. Let v'', \bar{v}_0 , α , β , P(x) n, θ and s be as above, so that E' = sn. Let $q(x) \in K_0[x]$ be a polynominal of degree less than n such that $\bar{v}_0(q(\beta)) = s\theta$. By [8, Theorem 1.3(i)] the v'-residue of $P(x)^s/q(x)$ is a generator of the simple tr. extension k'/Δ' and Δ' equals the residue field of the valuation \bar{v}_0 restricted to $K_0(\beta)$; we shall denote this generator of k'/Δ' by t.

Observe that any polynomial $h(x) \in K_0[x]$ can be uniquely written as a finite sum

$$h(x) = \sum_{i=0}^{r} h_i(x) P(x)^i$$

where, for $0 \le i \le r$, the polynomial $h_i(x) \in K_0[x]$ is either 0 or of degree less than that of

P(x) and $h_r(x) \neq 0$. This will be referred to as the canonical representation of h(x) with respect to P(x).

By hypothesis $\deg g(x) \le 2E' - 1$, so the index *i* in the canonical representation of g(x) with respect to P(x) cannot vary beyond 2s - 1. Arguing similarly for f(x), we can rewrite the canonical representations of f(x) and g(x) (after adding zero terms, if necessary) as

$$f(x) = \sum_{i=0}^{m} f_i(x) P(x)^i, g(x) = \sum_{i=0}^{2s-1} g_i(x) P(x)^i.$$

where the integer m does not exceed $1/n \deg f(x)$.

It is given that $v'(f(x)) = v'(g(x)) = \lambda(\text{say})$. In view of [8, Lemma 2.1(ii), (iii)], we have

$$\lambda = \min_{i} \left(\bar{v}_0(f_i(\beta)) + i\theta \right) = \min_{i} \left(\bar{v}_0(g_i(\beta)) + i\theta \right).$$

Let j be the smallest non-negative index such that at least one of the minimum of the above equation is attained at j, i.e., λ is either $\bar{v}_0(f_j(\beta)) + j\theta$ or $\bar{v}_0(g_j(\beta)) + j\theta$ and j is the smallest with this property. Observe that $0 \le j \le 2s - 1$. Since s is the smallest positive integer for which $s\theta \in \bar{v}_0(K_0(\beta))$, it follows that

$$\lambda \le \bar{v}_0(f_j(\beta)) + j\theta$$
 for $0 \le i \le m$ with strict inequality if $i \ne j \mod s$ (3)

and

$$\lambda \le \bar{v}_0(g_j(\beta)) + j\theta$$
 for $0 \le i \le 2s - 1$ with strict inequality if $i \ne j \mod s$. (4)

Define $h(x) = f_j(x)P(x)^j$, when $\lambda = \bar{v}_0(f_j(\beta)) + j\theta$ and $h(x) = g_j(x)P(x)^j$, if $\lambda > \bar{v}_0(f_j(\beta)) + j\theta$; in the latter case λ must equal $\bar{v}_0(g_j(\beta)) + j\theta$ by choice of j. We write $\eta = \eta_1/\eta_2$ where $\eta_1 = f(x)/h(x)$, $\eta_2 = g(x)/h(x)$. Observe that $v'(\eta_1) = v'(\eta_2) = 0$. The lemma is proved as soon as it is shown that η_2^* is a polynomial in t over Δ' of degree ≤ 1 and that η_1^* is a polynomial over Δ' of degree $\leq m/s \leq (\deg f)/sn = (\deg f)/E'$. For this distinguish two cases.

Consider first the case when $h(x) = f_j(x)P(x)^j$. Keeping in view (4) and using the fact (proved in [8, Lemma 2.1(ii)]) that for any non-zero polynomial $R(x) \in K_0[x]$ of degree less than n, the v''-residue of $R(x)/R(\beta)$ is 1, it can be easily checked that in the case j < s, $\eta_2^* = (g_j(\beta)/f_j(\beta))^* + t(q(\beta)g_{j+s}(\beta)/f_j(\beta))^*$ and $\eta_2^* = (g_j(\beta)/f_j(\beta))^*$, otherwise. Arguing similarly and using (3), it can be easily seen that η_1^* is a polynomial in t over Δ' of degree $\leq m/s$. This completes the proof of the lemma in the first case.

The proof in the second case, i.e., when $h(x) = g_i(x)P(x)^j$ is similar and is omitted.

Remark 3.3. Let v', k', $\eta = f(x)/g(x)$ be as in Lemma 3.2. If we further assume that g(x) is a constant polynomial (in fact if $\deg g(x) \le n-1$ then it is clear from the proof of the above lemma that η^* will be a polynomial in t over Δ' of $\deg g(x)/E'$.

The following lemma (whose proof is omitted) is an immediate consequence of

Theorem 17.17 and Corollary 16.6 of [5]. A simple proof of this lemma which was suggested to the author by Professor A. Wadsworth is given in [9, Lemma 2.4].

Lemma 3.4. Let $L=L'(\sqrt{\eta})$ be a quadratic extension of a field L of char $\neq 2$, $\eta \in L'$. Let w' be a valuation of L' having w'(η)=0 such that the residue field k' of w' has char $\neq 2$. Suppose that w' can be uniquely extended to a valuation w of L, then the w-residue of $\sqrt{\eta}$ is not in k'.

Proof of Theorem 1.2. We write $K = K_0(x, y)$, where $y^2 = F(x) \in K_0[x] \setminus K_0$. We denote by v' the valuation v restricted to $K_0(x)$ and by k', G' the residue field and the value group of v'. Then $[k:k'] \leq [K:K_0(x)] \leq 2$, and k'/k_0 is a non-algebraic extension as k/k_0 is given to be so. By the Ruled Residue Theorem [12], k' is a simple tr. extension of a finite extension Δ' of k_0 . Throughout the proof, t will stand for the particular generator of k'/Δ' described in the opening lines of the proof of Lemma 3.2. If k=k', the theorem needs no proof. From now on, it is assumed that [k:k'] = 2 and that $\Delta' = \Delta$, for $\Delta' \subseteq \Delta$ yields $k = \Delta(t)$.

Since

$$[K:K_0(x)] = [k:k']$$
 (5)

it follows from the fundamental inequality [3, §8.3, Theorem 1(b)] that the value group of v is G'; in particular $v(y) \in G'$. By Lemma 3.1 we can choose a non-zero polynomial $h(x) \in K_0[x]$ of degree $\langle E' = E'(v'/v_0) \rangle$ such that v(y) = v'(h(x)); in the case $G = G_0$, we choose h(x) of degree 0. Set

$$z = y/h(x)$$
, $\eta = F(x)/h(x)^2$.

Then $z^2 = \eta$ and $v'(\eta) = 0$. In view of (5) and the fundamental inequality [3, §8.3, Theorem 1(b)], v is the only extension to $K = K_0(x, z)$ of the valuation v' defined on $K_0(x)$. It follows from Lemma 3.4 applied to the extension $K/K_0(x)$ that $z^* = \sqrt{\eta^*}$ is not in k'. Keeping in view the assumptions [k:k'] = 2 and $\Delta = \Delta'$, it is now clear that

$$k = k'(\sqrt{\eta^*}) = \Delta(t, \sqrt{\eta^*}).$$

Recall that $\eta = F(x)/h(x)^2$, where $\deg h(x)^2 \le 2E' - 2$; in fact $\deg h(x)^2 = 0$ if $G = G_0$. By Lemma 3.2, $\eta^* = B(t)/C(t)$ with B(t), C(t) in $\Delta[t]$ satisfying $\deg B(t) \le (\deg F)/E'$ and $\deg C(t) \le 1$. Further by Remark 3.3, the polynomial C(t) may be chosen to be of degree 0 when $G = G_0$.

Let us assume the inequality $E' \ge IRD$ to be proved below.

If deg C(t) = 1, on taking u = C(t) and writing the polynomial B(t) as $B_1(u)$, we see that

$$k = \Delta(u, \sqrt{B_1(u)/u}) = \Delta(u, \sqrt{uB(u)})$$

as desired, for deg $B_1(u) = \deg B(t) \le (\deg F)/E' \le (\deg F)/IRD$.

In case deg C(t) = 0, say $C(t) = C \in \Delta$, then the theorem is proved on taking u = t and A(u) = B(t)/C.

It only remains to verify the inequality $E' \ge IRD$ with the assumptions $\Delta = \Delta'$ and $[K: K_0(x)] = [k: k']$. The latter implies that G = G' and that the henselian defect of the extension $(K, v)/(K_0(x), v')$ is 1. Fix any element ξ of $K_0(x)$ with $v'(\xi) = 0$ and ξ^* tr. over k_0 . Then as remarked in the first section, $D = \text{def}^h(K/K_0(\xi))$. Since the henselian defect is multiplicative, it follows that

$$D = \operatorname{def}^{h}(K/K_{0}(x)) \operatorname{def}^{h}(K_{0}(x)/K_{0}(\xi)) = \operatorname{def}^{h}(K_{0}(x)/K_{0}(\xi)).$$

Thus D equals the number D' defined in the beginning of the third section and the inequality (2) quoted there can be rewritten as $E' \ge IRD$, as G' = G and $\Delta' = \Delta$.

4. Proof of Theorem 1.3

The following lemma is probably known; we merely give reference of the results leading to its proof.

- **Lemma 4.1.** Let $L = L_0(x, \sqrt{f(x)})$ be an extension of a field L_0 of char $\neq 2$, where x is transcendental over L_0 and f(x) is a non-constant polynomial over L_0 . Suppose that L_0 is algebraically closed in L. Then
- (i) there exist x_0 , y_0 in L such that $L = L_0(x_0, y_0)$ where $y_0^2 = h(x_0)$ is a polynomial in x_0 over L_0 of degree $\leq 2g_L + 2$;
 - (ii) $g_L \leq (\deg f(x)) 1/2$.

Proof. If $g_L = 0$, then keeping in view that char $L \neq 2$, (i) is immediate from [1, Chapter 16, § 4, Theorem 6]. If $g_L = 1$, then since L has a divisor of degree ≤ 2 , assertion (i) follows from cases 1 and 2 of [1, Chapter 16, § 5]. In case $g_L \geq 2$, L being a quadratic extension of $L_0(x)$, has a desired set of generators over L_0 in view of case 1 of [1, Chapter 16, § 7, Theorem 14].

If $\deg f(x) \leq 2$, then $g_L = 0$ by a well-known result referred to above and hence (ii) holds in this case. Suppose (ii) is false, so that $\deg f(x) \geq 3$ and $g_L > ((\deg f(x)) - 1)/2 \geq 1$. Since L contains the subfield $L_0(x)$ of co-dimension 2 and $g_L \geq 2$, it is a hyperelliptic field (cf. [1, Chapter 16]. So by case 1 of [1, Chapter 16, § 7, Theorem 14], there exists a polynomial $f_1(x) \in L_0[x]$ of degree $2g_L + 1$ or $2g_L + 2$ which is not divisible by the square of any non-constant polynomial of $L_0[x]$ such that $L = L_0(x, \sqrt{f_1(x)})$. It follows that $f_1(x)$ and f(x) differ multiplicatively by the square of an element of $L_0(x)$. Using the fact that $f_1(x)$ is square-free over L_0 , it can be easily seen that there exists a polynomial $A(x) \in L_0[x]$ such that $f_1(x)A(x)^2 = f(x)$. In particular $\deg f(x) \geq \deg f_1(x) \geq 2g_L + 1$, which is contrary to our supposition. This contradiction proves the desired assertion.

Proof of Theorem 1.3. By assertion (i) of the above lemma, we can write $K = K_0(x_0, \sqrt{h(x_0)})$ where $h(x_0)$ is a polynomial in (a tr. element) x_0 over K_0 of

degree $\leq 2g_K + 2$. In view of Theorem 1.2, the residue field k of v can be expressed as $k = \Delta(u, \sqrt{A(u)})$ where u is tr. over Δ and $A(u) \in \Delta[u]$ is a polynomial of degree $\leq 1 + (\deg h(x_0))/IRD$; in fact when I = 1, one has $\deg A(u) \leq (\deg h(x_0))/RD$.

If deg A(u)=0, then k is a simple tr. extension of Δ and $g_k=0$; thus the desired relations (i) and (ii) are trivially true in this case. Assume that deg $A(u) \ge 1$. Applying Lemma 4.1, we see that

$$g_k \leq \frac{\deg A(u)}{2} - \frac{1}{2} \leq \frac{\deg h(x_0)}{2IRD} \leq \frac{g_K + 1}{IRD}$$

which proves (i).

In the case I = R = D = 1, using the estimate $\deg A(u) \le \deg h(x_0)$, and arguing as above, it can be easily seen that $g_k \le g_K$.

Examples 4.2. We give examples to point out that the estimates on g_k given by both the assertions of Theorem 1.3 are best possible.

(i) Let $K_0 = Q(t)$ where Q is the field of rational numbers and t is an indeterminate. Let v_0 be the t-adic valuation of Q(t) trivial on Q (which is characterized by $v_0(t) = 1$). Let x be tr. over K_0 and set

$$\xi = ((x^2 + 1)^2 - 3t^2)/t^3$$
.

Let v_1 denote the valuation of $K_0(\xi)$ defined on $K_0[\xi]$ by

$$v_1\left(\sum_i a_i \xi^i\right) = \min_i v_0(a_i), a_i \in K_0.$$

Extend v_1 arbitrarily to a valuation v' of $K_0(x)$. As shown in [15, 4.5] the residue field k' of v' is $\Delta'(\xi^*)$ where the v'-residue ξ^* of ξ is tr. over $\Delta' = Q(\sqrt{-1}, \sqrt{3})$.

Define a square-free polynomial $F(x) \in K_0[x]$ by

$$F(x) = \xi(\xi+1)(\xi+2)(\xi+3)(\xi+4).$$

Let v be an extension of v' to $K_0(x, \sqrt{F(x)})$. It is easily seen that the residue field k of v is $k'(\sqrt{F(x)^*}) = \Delta'(\xi^*, \sqrt{h(\xi^*)})$, where

$$h(\xi^*) = \xi^*(\xi^* + 1)(\xi^* + 2)(\xi^* + 3)(\xi^* + 4).$$

Clearly I = 1, R = 4, and D = 1, as the characteristic of the residue field is 0.

By a well-known result (cf. [16, p. 44]), the genus of $K = (\deg F(x))/(2) - 1 = 9$, and that of k is 2. A simple calculation gives

$$2 = g_k = \lceil (g_K + 1)/IRD \rceil < \lceil (g_K - 1)/IRD \rceil + 1$$

where [] denotes the integral part. This together with Remark 1.5 shows that the bound on g_k given by Theorem 1.3(i) is actually attained and is definitely better than the one yielded by (1).

(ii) Let v_0 be the 5-adic valuation of the field $K_0 = Q$ characterized by $v_0(5) = 1$. Let v' be the valuation of a simple transcendental extension $K_0(x)$ defined on $K_0[x]$ by

$$v'\left(\sum_{i} a_{i} x^{i}\right) = \min_{i} v_{O}(a_{i}), a_{i} \in Q.$$

The residue field k' of v' is $\Delta'(x^*)$ with the v'-residue x^* of x tr. over the field Δ' of 5 elements. Let v be an extension of v' to $K_0(x, \sqrt{F(x)})$, where F(x) = x(x+1)(x+2). Then the residue field k of v is $\Delta'(x^*, \sqrt{F(x)^*})$. Observe that $F(x)^*$ is a square-free polynomial in x^* of degree 3 over Δ' . So $g_K = g_k = 1$. In this case, clearly I = R = 1, and D = 1 in view of the fact that the extension $K_0(x, \sqrt{F(x)})/K_0(x)$ has henselian defect 1.

REFERENCES

- 1. E. Artin, Algebraic numbers and algebraic functions (Gordon and Breach, New York, 1951).
- 2. J. Ax, A metamathematical approach to some problems in number theory, 1969 Number Theory Institute, in *Proc. Sympos. Pure Math.* XX (Amer. Math. Soc. 1971), 161-190.
 - 3. N. Bourbaki, Commutative Algebra, Chapter VI (Hermann, 1972).
- **4.** C. Chevalley, Introduction to the theory of algebraic functions of one variable, *Math. Surveys* **6** (Amer. Math. Soc., New York, 1951).
 - 5. O. Endler, Valuation Theory (Springer-Verlag, New York, 1972).
- 6. B. W. Green, M. Matignon and F. Pop, On valued function fields I, Manuscripta Math. 65 (1989), 357-376.
- 7. S. K. Khanduja, Value groups and simple transcendental extensions, *Mathematika* 38 (1991), 381-385.
 - 8. S. K. Khanduja, On valuations of K(x), Proc. Edinburgh Math. Soc. 35 (1992), 419-426.
- 9. S. K. Khanduja and U. Garg, Residue fields of valued function fields of conics, *Proc. Edinburgh Math. Soc.* 36 (1993), 469-478.
- 10. M. MATIGNON, Genre et genre residuel des corps de fonctions values *Manuscripta Math.* 58 (1987), 179-214.
- 11. M. MATIGNON and J. OHM, Simple transcendental extensions of valued fields III: The uniqueness property, J. Math. Kyoto Univ. 30 (1990), 347-365.
- 12. J. Ohm, The ruled residue theorem for simple transcendental extensions of valued fields, *Proc. Amer. Math. Soc.* 89 (1983), 16–18.
- 13. J. Ohm, The henselian defect for valued function fields, *Proc. Amer. Math. Soc.* 107 (1989), 299–307.
- 14. J. Онм, Simple transcendental extensions of valued fields, J. Math. Kyoto Univ. 22 (1982), 201–221.
- 15. J. Онм, Simple transcendental extensions of valued fields II: A fundamental inequality, J. Math. Kyoto Univ. 25 (1985), 583-596.
- 16. J. H. SILVERMAN, The arithmetic of Elliptic Curves (Springer-Verlag, New York, Berlin-Heidelberg, 1986).

CENTRE FOR ADVANCED STUDY IN MATHEMATICS PANJAB UNIVERSITY CHANDIGARH 160014 INDIA