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ON VALUE GROUPS AND RESIDUE FIELDS OF SOME
VALUED FUNCTION FIELDS*

by SUDESH K. KHANDUJA

(Received 23rd September 1992)

Let K = K0(x,y) be a function field of transcendence degree one over a field KQ with x,y satisfying y2 = F(x),
F(x) being any polynomial over Ko. Let v0 be a valuation of Ko having a residue field fc0 and u be a
prolongation of v0 to K with residue field k. In the present paper, it is proved that if G0^G are the value
groups of v0 and v, then either G/Go is a torsion group or there exists an (explicitly constructive) subgroup
G, of G containing Go with [G,:G0] <oo together with an element y of G such that G is the direct sum of G,
and the cyclic group Zy. As regards the residue fields, a method of explicitly determining A: has been described
in case k/k0 is a non-algebraic extension and char ko^2. The description leads to an inequality relating the
genus of K/Ko with that of k/k0: this inequality is slightly stronger than the one implied by the well-known
genus inequality (cf. [Manuscripta Math. 65 (1989), 357-376], \_Manuscripta Math. 58 (1987), 179-214]).

1991 Mathematics subject classification: 12F20, 13A18.

0. Introduction

Let v0 be a valuation of a field Ko and u be a prolongation of v0 to a simple
transcendental extension K of Ko. Let G0^G and ko^k be the value groups and
residue fields of v0 and v respectively. In 1983 Ohm [12] proved a conjecture made by
Nagata that either k is an algebraic extension of k0 or it is a simple transcendental
extension of a finite extension of k0. Analogously for value groups, Khanduja [7] has
proved that either G/Go is a torsion group or there exists an explicitly constructible
subgroup G, of G containing Go with [G,:G0] <oo such that G is the direct sum of G,
and an infinite cyclic group. In this paper, we prove similar results for value groups and
residue fields of (K,v)/(K0, v0) when K = KQ(x,y) is a function field of transcendence
degree 1 over Ko with x,y satisfying a relation y2 = F(x), F(x) being any polynomial
over KQ. In the case that the extension k/k0 is non-algebraic, we describe a method to
determine explicitly the residue field k of (K, v) and thereby establish an inequality
relating the genus of K/Ko with that of k/k0; in certain cases this relation happens to be
slightly stronger than the one implied by the genus inequality of Matignon (cf. [6,
Theorem 3.1], [10, p. 201, Theorem 4]) which was obtained by entirely different
techniques.

•The research is partially supported by CSIR grant No. 25/53/90-EMR II.
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1. Notation and statements of results

We shall prove:

Theorem 1.1. Let v0 be a valuation of a field Ko and v be an extension of v0 to an
overfield K = K0(x,y) of transcendence degree one over Ko, where y2 = F(x) is in K0[x]. V
GOSG are the value groups of v0 and v, then either G/Go is a torsion group or there exists
a subgroup Gxof G containing Go with [G1;G0]<c» and an element y of G (both G{ and
y explicitly constructible) such that G is the direct sum of G{ and the cyclic group Zy
generated by y.

Notation. For a finite extension (L, w)/(L0, w0) of valued fields the henselian defect of
the extension is defined to be [L*: Lh

0~]/ef where "h" stands for henselisation and e, f
denote the ramification index and the residual degree of w/w0. We shall denote it by
def*((L, w)/(L0, w0)) or by def"(L/L0) when the underlying valuations are clear.

Throughout the paper (K0,v0), (K,v) and G0^G will be as in Theorem 1.1 and kozk
will denote the residue fields of v0 and v, respectively. For any £ in the valuation ring of
v, £* will stand for its i;-residue, i.e., the image of £ in the residue field of v. In the
remaining part of this section, it is assumed that the field k0 is of characteristic (to be
abbreviated as char) #2 and that k is not algebraic over k0. We shall denote by A the
algebraic closure of k0 in k and by /, R the numbers [G: Go] and [A: /c0] respectively.

Let £, be an element of the valuation ring of v such that £,* is transcendental (to be
written as tr.) over k0. We shall denote by D (more precisely by D(v/v0) the henselian
defect of the finite extension (K, v)/(KQ(^), vi) (vf, denotes the restriction of v to Ko(^)); in
view of the Independence Theorem [13, p. 299], D is independent of the choice of the
residually tr. element £.

With the above notation, we shall prove:

Theorem 1.2. Let v0 be a valuation of a field Ko with residue field k0 of char ̂ 2 and
let v be an extension of v0 to an overfield K=K0(x,^/F(x)), F(X) being a non-constant
polynomial in an indeterminate x over Ko. Assume that the residue field k of v is not
algebraic over kQ. Then one can determine (by an explicit algorithm) an element u
transcendental over k0 and a polynomial A(u) over the algebraic closure A of k0 in k with
degA(u)^S + (degF(x))/IRD such that k = A(u,y/A(u)) where 6 = 0 or 1; indeed 3 can be
chosen to be 0 when 1=1.

Throughout the paper, when we refer to the genus of a function field, we shall mean
the genus over the exact constant field as in [1] or [4] and shall denote the genus of L
by gL-

The following theorem will be deduced from Theorem 1.2.

Theorem 1.3. Let K0^K, v0, v and ko^k be as in Theorem 1.2. Assume that Ko is
algebraically closed in K. Then

(i) IRD(gk-l)^gK-IRD + l
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(ii) / = R = D = 1 implies that gkfkgK.

If Ko, K etc. are as above with Ko an algebraically closed field, then Go is a divisible
group and k0 is an algebraically closed field, so that I = R = l; in this case D= 1 by the
Stability Theorem (see [13, Theorem 2.1]). Thus the following corollary is an immediate
consequence of the 2nd assertion of Theorem 1.3.

Corollary 1.4. Let Ko, K, v0, v etc. be as in the above theorem. Assume further that
Ko is an algebraically closed field. Then gk^gK-

Remark 1.5. The relation between gk and gK given by the well-known genus
inequality (cf. [6, Theorem 3.1.], [10, p. 201, Theorem 4]) is

IRD(gk-l)^gK-l. (1)

If IRD^.2, then clearly Theorem 1.3(i) implies (1). In view of the fact that the henselian
defect is always a non-negative integral power of the characteristic of the residue field
(see [2, p. 180, Prop. 15]), we conclude that IRD<2, if and only if, l = R = D=l, in
which case(l) follows from assertion (ii) of Theorem 1.3.

Remark 1.6. We shall give examples in the last section to show that the bound on gk

given by Theorem 1.3 is indeed the best possible and stronger than the one given by (1).
In fact (K,v)/(K0,v0) will be constructed so that gk = [(gK+ l) / /K0]<[(gK- 1 )//*£>] + 1;
here [r] stands for the largest integer not exceeding r.

2. Proof of Theorem 1.1

Assume that G/Go is not a torsion group. Let H denote the value group of the
valuation v restricted to the subfield K0(x) of K. Then [G.//]g[K:K0(x)]^2, and
H/Go is not a torsion group. It is known (cf. [7, Corollary 1.2.] or [8, Remark 3.2]) that
there exists an (explicitly constructible) subgroup Ht of H containing Go with
[f/,: Co] < oo and an element of 0 of H such that H is the direct sum of Ht and 1.6. So
we need to prove the theorem when [G://] = 2.

Two cases are distinguished.
If (A + 0)/2 = 0,(say) belongs to G for some k in H, then

and hence G = Hl @ Z0j in this case.
Suppose that (/ij +0)/2£G for any hl in Ht. It will be shown that G=(Gn{H1) ©

in this case. Let g be any element of G. Since 2geH, we can write

8 2 2
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for some ht in // , and some integer n. The claim is that n must be even. If n were odd,
then on writing g as

we derive that (ht + 0)/2eG, contrary to the supposition. This proves the claim and the
theorem follows.

3. Proof of Theorem 1.2

We first introduce some notation and state a couple of lemmas.
Let v0 be a valuation of a field Ko with value group Go and v' be a prolongation of

v0 to a simple fr. extension /C0(x). (Later on we shall take v' to be the restriction of v to
the subfield K0(x) of K). For any £, in the valuation ring of v', we denote by £* its
i/-residue. It is assumed that the residue field k' of i/ is not algebraic over the residue
field k0 of v0. For such an extension v'/v0, we define a number £' (more precisely written
as E'(v'/v0)) by

F = min{[K0(x):K0(^] |£eK0(x) , , / (^(U*fr . over *<,}•

Fix an element t, of the valuation ring of v' with £* rr. over /c0. We shall denote by D'
the henselian defect of the extension (K0(x),v')/(K0(£), i4); in view of the Independence
Theorem [13, p. 299], D' is independent of the choice of £, we shall denote by A' the
algebraic closure of k0 in k! and by G' the value group t/. It may be recalled that, by the
Ruled Residue Theorem [12], k' is a simple tr. extension of A'. The following inequality
which is due to Matignon and Ohm [11, p. 353, Corollary 2.2.3] is quoted for future
reference:

0]D'. (2)

For the proof of the following lemma see fJ9, Lemma 2.2].

Lemma 3.1. Let v0, v', G', k' and E be as above. Then to any X e C, there corresponds
a polynomial /i(x)eK0[x] of degree ̂ E'— 1 such that A = t/(/i(x)).

After introducing some notation we recall a few results proved in [8]. Let v0, v', G', k'
and £' be as before. Fix an algebraic closure Ko of Ko and an extension v" of v' to
K0(x). We denote by v0 the restriction of v" to ^ 0 . The extension k'/k0 is given to be
non-algebraic, therefore so is k"/k~, where £ s k" are the residue fields of tJ0, v" respectively.
Arguing exactly as in [14, p. 205, § 2.5], it can be easily proved that there exist a and a
in Ko such that the i/'-residue ((x — a)/a)* of {x—tx)/a is tr. over k0. If v"(x - a) = tJ0(a) is
denoted by \i then n is torsion mod Go, i.e., mfi e Go for some positive integer m. As in
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[3, §10.1, Proposition 2], it can be easily seen that for any polynomial /(x) =
£1-c,-(x-a)''over Ko,

since the assumption [/'(/(*))> min, (tJ0(c,) +1», would lead to ((x — <x)/a)* being alge-
braic over k0. This also shows that v"(f(x)) is torsion modG0 for /(x)eK0[x].

Define a subset Do of Ko by

Fix an element P of Do such that [Ko(0):Ko]g[Ko(y):/Co] for all y in Do. We shall
denote by P(x) the minimal polynomial of /? over Ko of degree M (say), by 6 the element
i/(P(x)) of C and by G, the value group of the valuation v0 restricted to K0(P). As
shown above 9 is torsion mod Go; let s be the smallest positive integer such that sOeGi.
It is clear from the proof of Theorem 1.3 of [8] that

£' = sn = s deg P(x).

In view of the choice of /? any polynomial over Ko having degree less than n has no
root in Do. So by assertion (ii) of Lemma 2.1 of [8] for such a polynomial g(x), one has

We now prove:

Lemma 3.2. Let v0, v', E', k' and A' be as above and let n = f(x)/g(x) be a unit of the
valuation ring of v' with /(x), #(x) in /C0[x] and degg(x)^2E'— 1. Then one can
determine (by an explicit algorithm) a generator t of the simple tr. extension /c'/A' together
with polynomials B(t), C(t) over A' satisfying deg B{t) g (deg /(x))/F, degC(t)^ 1 such that
the v'-residue r\* of r\ is given by n* = B(t)/C(t).

Proof. Let v", v0, OL, /?, P(x) n, 6 and s be as above, so that E' = sn. Let q(x)eK0[x] be
a polynominal of degree less than n such that vo(q(p)) = s6. By [8, Theorem 1.3(i)] the
i/-residue of P(x)"/q(x) is a generator of the simple tr. extension /c'/A' and A' equals the
residue field of the valuation v0 restricted to K0(f}); we shall denote this generator of
if/A' by t.

Observe that any polynomial /i(x)eK0[x] can be uniquely written as a finite sum

h(x)=£hAx)P{x)'
i = O

where, for O^i^r, the polynomial Jz,{x)eK0[x] is either 0 or of degree less than that of
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P(x) and hr(x)=£0. This will be referred to as the canonical representation of h(x) with
respect to P(x).

By hypothesis degg(x)^2E' — 1, so the index i in the canonical representation of g(x)
with respect to P(x) cannot vary beyond 2s—1. Arguing similarly for f(x), we can
rewrite the canonical representations of f(x) and g(x) (after adding zero terms, if
necessary) as

/ w = I/;•(*)W,gM= I g,(x)P(xy.
i=0 i=0

where the integer m does not exceed l/«deg/(x).
It is given that v'(f(x)) = v'(g(x)) = l(say). In view of [8, Lemma 2.1(ii), (iii)], we have

k = min {UfAP)) + W = min (vo(gi(P)) + iO).
• i

Let j be the smallest non-negative index such that at least one of the minimum of the
above equation is attained at j , i.e., k is either vo(f0)) + jO or vo(g0)) + jO and j is the
smallest with this property. Observe that 0^j^2s — 1. Since s is the smallest positive
integer for which s6evo(Ko(P)), it follows that

k 5j vo(f0)) + jO for 0 ̂  / ̂  m with strict inequality if i ^ j mod s (3)

and

^ = Vo(gj(P)) + jO for 0^i^2s—I with strict inequality if i £ j mod s. (4)

Define h(x) = fj(x)P(x)J, when k = vo(fj(p)) +j6 and h(x)=gj(x)P(x)j, if k > vo(f0)) +
jd; in the latter case k must equal vo(g0)) + j9 by choice of j . We write ti = tii/ti2 where
rj1=f(x)/h(x), rj2=g(x)/h(x). Observe that v'(ril) = v'(ti2) = 0. The lemma is proved as
soon as it is shown that r\\ is a polynomial in t over A' of degree ^ 1 and that r\\ is a
polynomial over A' of degree g m/s ̂  (deg f)/sn = (deg /)/£'. For this distinguish two
cases.

Consider first the case when h{x) = fi(x)P(x)i. Keeping in view (4) and using the fact
(proved in [8, Lemma 2.1(ii)]) that for any non-zero polynomial R{x)eK0[x~\ of degree
less than n, the i/'-residue of R(x)/R(P) is 1, it can be easily checked that in the case
J<s,ri2-=(gj(P)/fjW)* + t(q(p)gj+M/fj(P))* and ^=(80)1/0))*, otherwise. Arguing
similarly and using (3), it can be easily seen that r\X is a polynomial in t over A' of
degree^m/s. This completes the proof of the lemma in the first case.

The proof in the second case, i.e., when h(x)=gj(x)P(x)J is similar and is omitted.

Remark 33. Let v', k', t] = f(x)/g(x) be as in Lemma 3.2. If we further assume that
g(x) is a constant polynomial (in fact if degg(x)^n— 1 then it is clear from the proof of
the above lemma that rj* will be a polynomial in t over A' of degree^(deg f(x))/E'.

The following lemma (whose proof is omitted) is an immediate consequence of

https://doi.org/10.1017/S0013091500018897 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500018897


SOME VALUED FUNCTION FIELDS 451

Theorem 17.17 and Corollary 16.6 of [5]. A simple proof of this lemma which was
suggested to the author by Professor A. Wadsworth is given in [9, Lemma 2.4].

Lemma 3.4. Let L=L\s/n) be a quadratic extension of a field L of char #2, rjeL'.
Let w' be a valuation of L' having w'(n) = 0 such that the residue field k' of w' has char ̂  2.
Suppose that w' can be uniquely extended to a valuation w of L, then the w-residue of y/n
is not in k'.

Proof of Theorem 1.2. We write K = K0(x,y), where y2 = F(x)eK0MVK0. We
denote by v' the valuation v restricted to KQ(x) and by k', G the residue field and the
value group of v'. Then [/c:fc']^[K:K0(x)]?S2, and k'/k0 is a non-algebraic extension as
k/k0 is given to be so. By the Ruled Residue Theorem [12], k' is a simple tr. extension
of a finite extension A' of k0. Throughout the proof, t will stand for the particular
generator of k'/A' described in the opening lines of the proof of Lemma 3.2. If k = k', the
theorem needs no proof. From now on, it is assumed that [fc:/c'] = 2 and that A' = A, for

Since

[K:K0(x)] = [fc:/c'] (5)

it follows from the fundamental inequality [3, §8.3, Theorem l(b)] that the value group
of v is G; in particular v{y) e G. By Lemma 3.1 we can choose a non-zero polynomial
/z(x)e/(0[x] of degree <£ ' = E'(v'/v0) such that v(y) = v'(h(x)); in the case G = G0, we
choose h(x) of degree 0. Set

z = y/h(x),n = F(x)/h(x)2.

Then z2 = n and v'(n)=0. In view of (5) and the fundamental inequality [3, §8.3,
Theorem l(b)], v is the only extension to K = K0(x,z) of the valuation v' defined on
K0(x). It follows from Lemma 3.4 applied to the extension K/K0(x) that z* = y/n* is not
in k'. Keeping in view the assumptions [&:&'] = 2 and A = A', it is now clear that

Recall that n = F(x)/h(x)2, where deg h{x)2 ̂  2F - 2; in fact deg/i(x)2 = 0 if G = GO. By
Lemma 3.2, n* = B(t)/C(t) with B(t), C(t) in A[t] satisfying degB(t)^(degF)/F and
degC(l)^ 1. Further by Remark 3.3, the polynomial C(t) may be chosen to be of degree
0 when G = G0.

Let us assume the inequality E ^ IRD to be proved below.
If degC(t) = 1, on taking u = C(i) and writing the polynomial B{t) as Bx{u), we see that

as desired, for deg B,(u) = deg B(t)^(deg F)/£'g(deg F)/IRD.
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In case degC(r) = O, say C(t) = CeA, then the theorem is proved on taking u = t and
A(u) = B(t)/C.

It only remains to verify the inequality E'^.IRD with the assumptions A = A' and
[K:/C0(x)] = [£:&']. The latter implies that G = G' and that the henselian defect of the
extension (K,v)/(K0{x), v') is 1. Fix any element £ of K0(x) with v'(^) = 0 and £* tr. over
kQ. Then as remarked in the first section, D = defh{K/K0(^)). Since the henselian defect is
multiplicative, it follows that

D = dcf* (K/K0(x)) def* (Ko(x)/Ko(O) = def*(KoW/Ko(£))-

Thus D equals the number D' defined in the beginning of the third section and the
inequality (2) quoted there can be rewritten as £' ^ IRD, as G' = G and A' = A.

4. Proof of Theorem 1.3

The following lemma is probably known; we merely give reference of the results
leading to its proof.

Lemma 4.1. Let L = L0(x,y/f(x)) be an extension of a field Lo of char / 2 , where x is
transcendental over LQ and f(x) is a non-constant polynomial over Lo. Suppose that Lo is
algebraically closed in L. Then

(i) there exist x0, y0 in L such that L = L0(x0, y0) where yl = h(x0) is a polynomial in x0

over Lo of degree ̂  2gL + 2;

(ii) g l£(deg / (*))-1/2.

Proof. If gL = 0, then keeping in view that char L#2, (i) is immediate from [1,
Chapter 16, §4, Theorem 6]. If gL= 1, then since L has a divisor of degree ^2 , assertion
(i) follows from cases 1 and 2 of [1, Chapter 16, §5]. In case gL^2, L being a quadratic
extension of L0(x), has a desired set of generators over Lo in view of case 1 of [1,
Chapter 16, §7, Theorem 14].

If deg/(x)^2, then gL=0 by a well-known result referred to above and hence (ii)
holds in this case. Suppose (ii) is false, so that deg/(x)^3 and gL>((deg/(x))—1)/2^1.
Since L contains the subfield L0(x) of co-dimension 2 and gL^2, it is a hyperelliptic
field (cf. [1, Chapter 16]. So by case 1 of [1, Chapter 16, §7, Theorem 14], there exists a
polynomial /,(x)eL0[x] of degree 2gL+ 1 or 2gL+2 which is not divisible by the square
of any non-constant polynomial of L0[x] such that L = L0(x,y/fl(x)). It follows that
/t(x) and /(x) differ multiplicatively by the square of an element of L0(x). Using the fact
that /i(x) is square-free over Lo, it can be easily seen that there exists a polynomial
/4(x)eL0[x] such that /i(x)/l(x)2 = /(x). In particular deg/(x)^deg/,(x)^2gL+1,
which is contrary to our supposition. This contradiction proves the desired assertion.

Proof of Theorem 13. By assertion (i) of the above lemma, we can write K =
Ko(xo>\/h(xo)) where h{x0) is a polynomial in (a tr. elememt) x0 over Ko of
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degree g 2gK + 2. In view of Theorem 1.2, the residue field k of v can be expressed as
k = di(u,yJA{u)) where u is tr. over A and X(u)eA[u] is a polynomial of degree
^ 1 +(deg/i(xo))///?D; in fact when / = 1, one has degA(u)^(degh(xo))/RD.

If deg/4(u) = 0, then k is a simple tr. extension of A and gk = 0; thus the desired
relations (i) and (ii) are trivially true in this case. Assume that deg/l(u)^l. Applying
Lemma 4.1, we see that

^deg A(u) l
gk= 2 2 = JRD

which proves (i).
In the case I = R = D = 1, using the estimate degA(u)^degh(x0), and arguing as

above, it can be easily seen that gk^gK-

Examples 4.2. We give examples to point out that the estimates on gk given by both
the assertions of Theorem 1.3 are best possible.

(i) Let K0 = Q(t) where Q is the field of rational numbers and t is an indeterminate.
Let v0 be the f-adic valuation of Q(t) trivial on Q (which is characterized by vo(t) = l).
Let x be tr. over Ko and set

Let Vi denote the valuation of Ko(£) defined on Ko[< ]̂ by

Z a£ ) = m i n vo(ad, <*i6 Ko.

Extend t), arbitrarily to a valuation v' of K0(
JC)- As shown in [15, 4.5] the residue field k'

of v' is A'(<̂ *) where the (/-residue £* of £, is tr. over A' = Q(V/— l>N/3).
Define a square-free polynomial F(x)eX0[x] by

Let y be an extension of v' to K0(x,,/F(x)). It is easily seen that the residue field k of
v is fc'^*)*) = A'(£*, >/*(«•)), where

*(5*) = £*(£* + 1)(«* + 2)(£* + 3)(<̂ * + 4).

Clearly / = 1, R = 4, and D= 1, as the characteristic of the residue field is 0.
By a well-known result (cf. [16, p. 44]), the genus of K = (deg F(x))/(2) - 1 =9, and

that of k is 2. A simple calculation gives

2=ft = [(ftt + 1)//KD] < [fc* - 1)///?/?] + 1

where [ ] denotes the integral part. This together with Remark 1.5 shows that the
bound on gk given by Theorem 1.3(i) is actually attained and is definitely better than the
one yielded by (1).
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(ii) Let v0 be the 5-adic valuation of the field K0 = Q characterized by uo(5) = l. Let v'
be the valuation of a simple transcendental extension K0(x) defined on K0[x] by

Yy A = min

\ i 'X ) •

The residue field k' of v' is A'(x*) with the tZ-residue x* of x tr. over the field A' of 5
elements. Let v be an extension of v' to K0(x,s/F(x)), where F(x) = x(x+l)(x + 2). Then
the residue field k of v is A'(x*, N/F(x)*). Observe that F(x)* is a square-free polynomial
in x* of degree 3 over A'. So gK—Sk= 1- I n this case> clearly / = /? = 1, and D= 1 in view
of the fact that the extension K0(x, N/F(x))//C0(x) has henselian defect 1.
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