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It is shown that the dynamics of electrons accelerated in narrow capillary waveguides is significantly influenced by the parametric
excitation of their betatron oscillations. On the one hand, this excitation can irreversibly spoil the emittance of an accelerated
electron bunch that limits the possibilities of their practical use. On the other hand, controlled parametric excitation of betatron
oscillations can be used to generate short-pulse sources of synchrotron radiation. )e article analyzes the regions of parametric
instabilities, their dependence on the parameters of accelerated electron bunches and guiding structures, and their influence on the
dynamics of accelerated electrons.)e parameters of the generated synchrotron radiation are also estimated. Measurements of the
spectral parameters of synchrotron radiation can serve as a tool for diagnostics of betatron oscillations and their excitation in the
case of parametric resonances.

1. Introduction

)e concept of electron acceleration to multi-GeV energies
in laser wakefield accelerators [1–3] requires the propagation
of laser pulses over distances of many Rayleigh lengths. For
this purpose, both widely used plasma channels and gas filled
capillary waveguides [4–7] can be effectively used.

It will be shown below that laser wakefields in narrow
capillary waveguides (with an inner radius of the order of
twice the characteristic radius of the transverse envelope of
the laser field) can be used for efficient acceleration of
electron bunches provided that parametric excitation of
betatron oscillations of electrons is excluded throughout the
entire acceleration stage. )is excitation is caused by a
periodic change in the frequency of betatron oscillations due
to the interference of the eigenmodes of electromagnetic
fields inside the waveguide. In particular, in [8], it was shown
that it is possible to correlate specific mode-mixture of the
laser field inside the capillary to specific frequency tuning of
the betatron spectra. )e corresponding conditions on the
parameters of laser pulses and capillary waveguides for
parametric excitation of betatron oscillations of electrons are
analyzed below.

On the contrary, parametric excitation of betatron os-
cillations in capillary waveguides or in plasma channels with
a specially matched ratio of the characteristic channel width
to the laser spot size can be used for efficient generation of
synchrotron radiation in the ultraviolet or X-ray range. )is
can be used as an alternative to the previously proposed
schemes for creating short-pulse sources of synchrotron
radiation due to oscillations of the centroid of a laser pulse in
a plasma channel or in a capillary waveguide [9–11] or with
the help of off-axis electron beam injection into laser-plasma
accelerator [12].

Recently, it was theoretically demonstrated and exper-
imentally confirmed that another type of instability, elec-
tron-hose one, leads to a sharp increase in the X-ray flux for
interaction distances exceeding the dephasing length [13].
)e efficient generation of X-ray photons with energies of
several keV using betatron oscillations of electrons
accelerated in laser wakefields has been demonstrated in a
number of recent experiments [13–15].

In addition, the synchrotron radiation of accelerated
electrons can be used to diagnose their betatron oscillations.
Betatron oscillations of electrons in guiding structures di-
rectly determine the emittance of electron bunches [16–18].
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)erefore, synchrotron radiation monitoring can be used to
control the emittance of accelerated electron bunches [19], as
well as to control the quality of accelerating wake waves. To
maintain a low emittance of the accelerated electron bunch,
parametric excitation of betatron oscillations should be
avoided during the entire acceleration stage.

2. Equations of Motion and Modes of
Electromagnetic Field

Consider a bunch of electrons accelerated in wakefields
generated by a laser pulse propagating from left to right
along the 0z axis of a capillary waveguide filled with plasma
with a constant electron concentration n. )e entrance face
of the capillary is at the point z � 0. )e motion of electrons
in cylindrically symmetric wakefields behind the laser pulse
is determined by the relativistic equations of motion, which
have the following form in Cartesian coordinates [20]:

dPz

dτ
� zξϕ, (1)

dξ
dτ

� c
−1
e Pz − 1, (2)
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where ϕ � ϕ(ξ, ρ, τ) is the normalized on mc2/e wakefield
potential [21]; x � kpx, y � kpy, kp � ωp/c, and
ωp �

�������
4πne2/m

√
; e, m, and c are electron charge, mass, and

speed of light, respectively; Pα, α � x, y, z, are dimensionless

on mc components of electrons momentum; ce �

�������

1 + |P|2
􏽱

is the electron gamma factor; ξ � kp(z − ct), τ � ωpt,
ρ � kpr, and 􏽥ξ � k0(z − ct), and 􏽥τ � ω0τ (where k0 � ω0/c,
ω0 � 2πc/λ0 is the laser pulse frequency, and λ0 is the laser
wavelength) are dimensionless coordinates which will be
used hereafter.

In the considered case of propagation of cylindrically
symmetric laser pulses in capillary waveguide angular
harmonics [22, 23] of the wake potential, ϕ are absent and it
can be determined using the following simple equation,
written under the assumption of a constant electron density
inside the capillary [2, 21, 24]:
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2

4
, (5)

where a⊥ � eE⊥/(mω0c) is the dimensionless transverse
(with respect to direction of propagation 0z) complex

amplitude of electromagnetic field strength, slowly varying
in time scale ω−1

0 and at space length λ0. Solution of (5) is

ϕ(ξ, ρ, τ) �
1
4

􏽚
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Assuming that the maximal power P0 of the laser pulse is
much less than the critical power Pcr for the relativistic self-
focusing, P0≪Pcr � 0.017(ω0/ωp)2 TW, and disregarding
all nonlinear process of laser field propagation inside a
capillary waveguide, one can express |a⊥|

2 in terms of the
sum of its radial eigenmodes as follows [22, 25–27]:
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where amax is the maximum value of the module of di-
mensionless complex amplitude of electromagnetic field
strength.

􏽥Cn(ξ, τ) � CnF‖
􏽥ξ +Φn(􏽥τ)􏼐 􏼑exp −iΦn(􏽥τ)( 􏼁, (8)

where 􏽥ξ � cphξ, 􏽥τ � cphτ, cph � ω0/ωp is the gamma factor of
the plasma wave, F‖(

􏽥ξ) is the longitudinal envelop of the
laser pulse before its entrance into the guiding structure, and
Cn are modes coefficients, determined by boundary con-
ditions at the guiding structure entrance z � 0 [7, 24]. )e
expressions for phase factors Φn and radial modes Dn(r) in
the vicinity of the guiding structure axis 0z in the considered
case of symmetric propagation of laser fields in capillary
waveguides can be written as

Dn � J0
u0,nρ
kpR􏼐 􏼑

⎛⎝ ⎞⎠, (9)
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􏽥τ
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2
⊥n + 1 − εc􏼐 􏼑,

k⊥n �
u0,n

R
1 − i

μw

R
􏼒 􏼓,

(10)

where J0 and u0,n are zero-order Bessel function and its n-th
root, respectively; R � k0R; R is the inner radius of a
capillary; εc � 1 − c−2

ph is the permittivity of a plasma inside
the capillary waveguide; and factor
μw � (εw + 1)/(2

�����
εw − 1

􏽰
) is dependent on capillary wall

properties, described by its permittivity εw.
Below we assume that the transverse size σr of the

accelerated electron bunch is much smaller than the char-
acteristic transverse scale of the wakefield determined by the
driving laser spot size r0. For this case, expanding the
wakefield potential near the axis 0z over power series of the
value r/r0, one can omit all terms except quadratic one
ϕ(r⟶ 0)∼(r/r0)

2. )is corresponds to a linear depen-
dence of the radial focusing force Fρ � zϕ/zρ on distance ρ
from capillary axis. In accordance with (3) and (4), the
electron trajectory in the transverse plane xy is determined
in this case by the following equations:
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d2x
dτ2

+
d ln ce

dτ
dx

dτ
+Ω2x � 0, (11)

Ω(ξ, τ) �

������
α(ξ, τ)

ce(ξ, τ)

􏽳

,

α(ξ, τ) � −ρ− 1
zρϕ|ρ�0.

(12)

)e equation for y coordinate coincides with equation
(11) after replacement of x by y. Equation (11) describes the
betatron oscillations of electrons in the transverse plane xy

with the frequency Ω.
In (12), it is assumed that α> 0; that is, electrons are

injected and accelerated in the focusing phase of the
wakefields. As is known (see, for example, [28]), near the
entrance to the capillary, matched to the laser spot size, the
laser and wakefields are not regular enough due to the beats
of high eigenmodes. )is leads here to the inevitable for-
mation of defocusing regions. To exclude the influence of
such regions on the propagation of electrons, it is necessary
to inject electrons at a sufficient distance from the entrance
to the capillary, at a certain length Linj, sufficient to filter
higher modes due to their damping stipulated by energy
losses through the walls of the capillary. In what follows, we
assume that such filtering has been done.

It can be shown [18] that, in the case of relativistic
electrons moving along the 0z axis with a speed close to the

speed of light, it is possible to separate their longitudinal and
transverse motion that greatly simplifies the analysis of their
betatron oscillations.

Having solved the equations of electron motion in the
laser wakefields, one can determine the normalized trans-
verse emittance [16–18]:

εn �

����������

2 ε2x,n + ε2y,n􏼐 􏼑

􏽱

,

εx,n � ceεx,

εx �

�����������

x
2
x′

2
− xx′

2
􏽱

,

(13)

of the bunch of electrons, which determines the degree of
their angular and spacial spread, important for applications.
Here, x′ � dx/dz � _x/ _z � Px/Pz for considered relativistic
electrons moving along axis 0z; the bar above some value X

means ensemble averaging; X2 � N−1
b 􏽐i(Xi − X)2, X �

N−1
b 􏽐iXi, where index i refers to i-th particle; Nb is the full

number of particles; and εn � 2εx,n � 2εy,n for considered
cylindrically symmetric case.

3. Wakefields in Capillaries and Parametric
Excitations of Betatron Oscillations

Taking in mind (6)–(10), one can write down the following
expression for wakefield potential ϕ:
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where a0 is the nonoscillating part of the module of complex
amplitude |a⊥|,

a0(ξ, ρ, τ) � amax 􏽘
n

2CnF n‖ (ξ, τ)Dn(ρ);

􏽥Cn � Cne
− kn′􏽥τ ,
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and k⊥,n is given by (10):

F n‖ (ξ, τ) � exp
− δξ + τkn

′( 􏼁
2

L
2
ξ

⎡⎢⎣ ⎤⎥⎦, (16)

where δξ � ξ − ξLc, with ξLc as the coordinate on ξ of the
laser pulse center; expression (16) for F‖n is written, for
simplicity, with assumption of Gaussian longitudinal en-
velop of the laser pulse and taking in mind smallness of the
parameter R−1≪ 1; and Lξ � kpctFWHM/

�����
2 ln 2

√
, where

tFWHM is the full width at half of the maximum intensity of
laser pulse.

In accordance with (6)–(10), beats of electromagnetic
field modes inside a capillary waveguide due to phase factors
Φn (8) and (10) give rise to terms ∼cos(Ωnkτ) in (14). )ese
terms lead to oscillations with capillary length z of the
maximum (on coordinate ξ) value of the wakefield potential
at capillary axis.
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Assuming that the center of the electron bunch is in-
jected in the focusing phase of the wakefield in the vicinity of
the maximum of the longitudinal acceleration force, we can

obtain the following expression for the potential of the
wakefield seen by these electrons at the moment τ:

ϕ ξinj, ρ, τ􏼐 􏼑 � a
2
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R
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u
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R
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2
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(17)

where ξinj is the distance between the point of injection of the
center of the electron bunch at τ � 0 and the point of
maximum of the accelerating force (which is also the point of
zero transverse force F⊥, i.e., the point of the boundary
between the focusing and defocusing phases of the wakefield
potential); ce is the gamma factor of an electron bunch, the
transverse and longitudinal dimensions of which are as-
sumed to be much smaller than the corresponding char-
acteristic dimensions of the wakefield that makes it possible

to disregard the energy spread of electrons in the bunch; and
A �

���
π/2

√
Lξe

−L2
ξ /8/4, its maximum value maxA ≈ 0.38 at

Lξ � 2 (resonance condition of plasma wake excitation).
From (17), one can obtain the following expression for

the maximum in the ξ value of the wakefield potential on the
capillary axis ϕmξ(τ) � maxξϕ(ξ, ρ � 0, τ), assuming that the
first mode has the largest amplitude:

ϕmξ(τ) � 4a
2
maxA 􏽘

n

C
2
nΓn(τ)cos

Ω1n

cph
τ􏼠 􏼡 + 2 􏽘

n,k> n

CnCkΓnk(τ)cos
Ω1n +Ω1k

2cph
τ􏼠 􏼡cos Ωnkτ( 􏼁⎡⎢⎢⎣ ⎤⎥⎥⎦, (18)

where Ω11 � 0 and Ωnk>n � cph(u2
0,k − u2

0,n)/(2R2) in ac-
cordance with (10) and (15).

)e expression (18) with τ � kpz, taking into account
only the first two modes, well describes the main details of
the oscillations of the wakefield potential due to mode beats,

including amplitude, phase, and frequency (see Figure 1,
where the case of a silicon capillary with a radius matched to
the laser spot size (when r0/R ≈ 0.61) is considered). Par-
ticularly, for this case, one has from (18) with n, k � 1, 2:

ϕmξ(z)

ϕmξ
(z � 0) ≈ 0.67e

−0.2y
+ 0.023e

−1.07y cos(1.2y) + 0.25e
−0.64y− 0.18y2

cos(0.6y)cos(96y), y ≡
z

Lph
, (19)

where Lph � λ0c3
ph is the dephasing length [29]. Neverthe-

less, the finer structure of oscillations of the wakefield
amplitude, caused by higher modes, can be essential, as will
be shown below, as long as it can leads to parametric ex-
citation of betatron oscillations of electrons propagating in a
capillary. )is structure, due to the first 6 modes, can also be
described with high accuracy by the expression (18) for the

capillary length z/Lph > 0.07, as seen from Figure 1. For
z/Lph < 0.07, the interference of higher modes leads to an
irregular structure of the laser and wakefields, which de-
termines the need for their filtering, as indicated above. In
particular, for the case considered in Figure 1, we can write
expressions for the damping factors of the first few modes in
the form Γn(z) � exp(−Υnz/Lph) with

4 Laser and Particle Beams

https://doi.org/10.1155/2021/6655499
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 30 Jul 2025 at 16:51:39, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1155/2021/6655499
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Υ1 ≈ 0.202,Υ2 ≈ 1.07,Υ3 ≈ 2.62,Υ4 ≈ 4.87,Υ5 ≈ 7.80,Υ6 ≈
11.43,Υ7 ≈ 15.8,Υ8 ≈ 20.8,Υ9 ≈ 26.5,Υ10 ≈ 32.9,Υ15 ≈ 75.2.
)erefore, for z>0.1Lph, one has Γ10 <5 × 10−2,Γ15 <10−3

that means effective filtering of high modes for such
distances.

From (17), one can obtain an expression for the coef-
ficient α (12) of the linear dependence of the focusing force
near the capillary axis on the radius ρ and, therefore, an
expression for the betatron frequencyΩ (12) in equation (11)
for betatron oscillations. )is expression can be written as

Ω2(τ) � Ω2β0(τ)Kg(τ) 1 + 􏽘
n,k> n

]nk(τ)cos Ωnkτ( 􏼁⎡⎢⎢⎣ ⎤⎥⎥⎦,
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�����
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􏽳

,
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C
2
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2
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τ
2
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2
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−
1

c
2
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+
u
2
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R
2
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−1
g (τ)CnCk u

2
0,n + u

2
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τ
2

1
c
2
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−
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c
2
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+
u
2
0n + u

2
0k

2R2
⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦.

(20)

)e dynamic of gamma-factor ce(τ) of an electron
bunch can be estimated, taking into account longitudinal
equation of motion, as Veisman and Andreev [18]:

ce(τ) � cinj + 2c
2
phAa

2
max sin ξinj +

τ
2

c
−2
ph +

u
2
01

R
2􏼠 􏼡􏼠 􏼡 − sin ξinj􏼐 􏼑􏼢 􏼣,

(21)

where cinj is the electrons gamma factor at the moment of
injection.

Equation (20) shows that the squared frequency of be-
tatron oscillations of electrons in a capillary waveguide

Ω2cap(τ) � Ω2β0(τ)Kg(τ) (22)

is modulated in time τ with frequencies Ωnk and amplitudes
]nk. In accordance with the common theory of parametric
oscillator Landau and Lifschitz [30], this leads to parametric
excitation of electrons betatron oscillations (the frequencyΩ
(20) changes with time τ due to the change in electrons
gamma factor stipulated by their acceleration, due to

1

0.5

0
Ф
m
ξ/Ф

m
ξ (
z =

 0
)

0 0.1 0.2 0.3 0.4 0.5
z/Lph

Numerical solution
Simplified solution with 6 modes
Simplified solution with 2 modes

Figure 1: )e maximum in the ξ value of the wakefield potential on the capillary axis, ϕmξ(z), normalized to the value ϕmξ(z � 0), as a
function of the propagation length z � ct of the laser pulse in the capillary, for the dimensionless maximum amplitude of the laser field
amax � 0.5, laser wavelength λ0 � 0.8 μm, plasma wave gamma factor cph � 80, exponential width of the Gaussian transverse distribution of
the laser field at the capillary entrance r0 � 50 μm, the full width of the laser pulse at half its maximum intensity (at z � −0), tFWHM � 80 fs;
and a silicon capillary waveguide (εw � 2.25) has a radius ofR � 82 μm (the ratio r0/R ≈ 0.61 is close to the condition for the best laser energy
input into a capillary [26]). )e length z along the capillary is normalized on the dephasing length Lph � λ0cph3 ≈ 41 cm. )e complete
numerical solution (14) (with τ � kpz) and the simplified analytical solution (18) with 2 and 6 modes are shown by different curves (see
figure legend).
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attenuation of modes and dispersion of their group velocities
and due to the difference between electron bunch velocity,
which is close to the speed of light and the plasma wave
phase velocity, manifested in dependence on τ of the factors
Kg and ]nk in equation (20), but this change occurs adia-
batically at betatron period [18], and therefore, we assume
that the concept of parametric resonance is applicable for the
case under consideration) provided Ωcap(τ) is close (or
becomes close) to resonance frequencies (higher order
resonances with lower increments are also possible for
frequencies which are multiples of frequencies (23) [30]):

ΩR nk �
Ωnk

2
. (23)

Maximum increments Snk of parametric resonances at
frequencies (23) can be written, in accordance with Landau
and Lifschitz [30], as

Snk �
]nkΩRnk

4
. (24)

)e increments snk of the betatron oscillation amplitude
are nonzero in a certain interval of betatron oscillation
frequencies, in the vicinity of the resonance frequenciesΩRnk

(23). )is interval is specified by the condition that, in the
following (25) expressions for snk root, arguments exceed
zero:

snk �

���������������

S
2
nk − Ω −ΩRnk( 􏼁

2
􏽱

, (25)

where ΩRnk are given by (23) and Snk are given by (24).
If rβ,0(τ0) is the amplitude of the betatron oscillations of

electrons injected at τ � τ0 at the point kpLinj � τ0 along the
capillary length, then at a certain length z � ct>Linj inside
the capillary, at the time τ � kpz, this amplitude can be
estimated as rβ(τ) � rβ,0(τ0)Gnk(τ, τ0), where Gnk is the
highest resonance growth factor for a given cinj:

Gnk τ, τ0( 􏼁 � exp 􏽚
τ

τ0
snk τ′( 􏼁dτ′􏼠 􏼡. (26)

)e growth factors arising from the beatings of the first
few modes in a matched capillary waveguide are shown in
Figure 2.

From Figure 2, it is clear that beating of higher-order
modes (n, k> n, k≥ 5) leads to very high increments of
parametric instability linear theory predicting high growth
factors of parametric instability and becomes inapplicable
when the amplitudes of betatron oscillations increase so
strongly that they become comparable with the capillary
radius R for electrons with relatively low injection energies
cinj < 150. Instability regions are within the intervals
cinj < 700, 103 < cinj < 2103, 9103 < cinj < 2.5104.

Figure 3 shows the dynamics of changes in the nor-
malized emittance εn (13), the root-mean-square radius of
the accelerated electron bunch 〈r2〉1/2, and the average
increase in the electron energy during acceleration 〈E〉 −

Einj (where Einj is the energy of the electron bunch at the
moment of injection). Curves are shown for electrons with
different injection energies propagating in a matched

capillary waveguide. Electron dynamics in the wakefields
given by the expression (14) was determined by means of
numerical solution of the system of equations (1)–(4) for
each electron of the bunch.

To avoid defocusing due to high (with numbers over 10)
modes near the capillary entrance, the electron injection was
shifted along capillary length from the capillary entrance by
the value Linj ≈ 0.093Lph. For the selected value of Linj,
modes that violate the regular structure of the wakefield near
the capillary entrance are effectively filtered, while the lower
modes still survive, and their beating leads to parametric
excitation of betatron oscillations of electrons in the cor-
responding resonance regions. In particular, electrons with
cinj � 500 and cinj � 1500 undergo parametric excitation of
their betatron oscillations due to the beats of 1.4 and 1.3
modes, respectively, as follows from the results shown above
in Figure 2. )is excitement manifests itself in a sharp in-
crease in the rms radius 〈r2〉1/2 and normalized emittance εn

(see thick and thin solid curves on Figures 3(a) and 3(b)).
On the contrary, electrons with cinj � 850 and

cinj � 7000 are not subjected to parametric excitation of their
betatron oscillations since they are outside the parametric
instability regions shown in Figure 2. For these electrons,
both the root-mean-square radius 〈r2〉1/2 and the normal-
ized emittance εn are bounded, respectively, by the values
kp〈r2〉1/2(τ � 0) � 0.21 and εn < 1mm·mrad.

102

102 103 104

10

1

G n
k

γinj

1, 2
1, 3
1, 4

1, 5
1, 6

Figure 2: )e growth factors Gnk of betatron oscillations ampli-
tudes as function of gamma-factors of injected electrons cinj,
calculated by formulas (20)–(25). Gnk are estimated for a capillary
waveguide with the same parameters as in Figure 1, for the duration
of electron acceleration Δτ � τ − τ0 � 0.2kpLph (where τ0 � kpLinj
indicates the start of acceleration; τ0 � 3800 ≈ 0.093kpLph in cal-
culations). )e growth factors are due to the beating of the modes
with the numbers n, k indicated on the legend.
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4. Estimation of Synchrotron Radiation

Regular calculation of the emission spectrum of accelerated
electrons requires integration over exact trajectories of
electrons [31], but estimates of the intensities of the cor-
responding spectral lines, characteristic frequencies, and
spectral widths can be made on the basis of the assumption
of harmonic oscillations of electrons with constant energies
and amplitudes.

In accordance with [31], the energy radiated in the di-
rection 0z (angle θ � 0) in a unit solid angle dΘ in a unit
frequency range dω (or in a unit energy range Zdω) during
Nβ � z/λβ betatron periods (where λβ � 2πc/Ω and Ω are
the wavelength and frequency of betatron oscillations, re-
spectively), due to synchrotron radiation of an electron,
oscillating with constant amplitude rβ can be written as

d2Eω

ZdωdΘ
� 􏽘

n

Qn,

Qn �
1
137

4ω
ωn

c
2
eN

2
βRn(ω)Fn αn( 􏼁

1 + a
2
β

,

aβ �
ceΩrβ

c
,

(27)

where

Rn(ω) �
sin πNβ ω/ω1 − n( 􏼁􏽨 􏽩

πNβ ω/ω1 − n( 􏼁
⎡⎣ ⎤⎦

2

, (28)

is the resonance function,
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Figure 3: Dependencies on the acceleration length z of (a) normalized emittance εn, (b) root-mean-square radius of the accelerated electron
bunch 〈r2〉1/2, and (c) average energy gain of electrons during acceleration 〈E〉 − Einj � mc2(ce − cinj) for matched capillary waveguide.
Curves are shown for different energies of injection of electron bunches Einj � mc2cinj (see legend). Electrons in accelerated bunches have
Gaussian distribution in both longitudinal and transverse directions with dimensionless characteristic sizes kpσξ � 0.14 and kpσr � 0.21,
respectively. Electron bunches are injected at the time τ0 � kpLinj at the point kpLinj � 0.093kpLph � 3800 at the length of the capillary, with
zero initial emittance. )e center of the electron bunch is injected into the focusing phase of the wakefield at a distance of ξinj � 0.2 from the
point of maximum of the accelerating force. Other parameters are the same as for Figure 1.
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ω1 �
ωef

1 + a
2
β
,

ωef � 2c
2
eΩ,

(29)

and aβ is given by (27); the function

Fn αn( 􏼁 � nαn J(n+1)/2 αn( 􏼁 − J(n+1)/2 αn( 􏼁􏽨 􏽩
2
,

αn �
ω
ω1

a
2
β/4

1 + a
2
β/2

,

(30)

and J] are Bessel functions of the order ].
Figure 4 shows the computation of d2Eω/(ZdωdΘ) for

Nβ � 4, with constant ce � 2100 and for different kprβ �

0.21 and kprβ � 0.63, 1.05, which estimates, respectively, the
unexcited amplitude of electron oscillations and the

amplitude of oscillations excited (with growth factors G � 3
and 5) due to parametric resonances, for the parameters
shown in Figure 3.

)e value of betatron frequency Ω in a capillary
waveguide, calculated by expressions (20) and (22), was
1.49 × 10−3 (ΩkpLph � 60.0), which corresponds to the
frequency of betatron oscillations in the capillary at τ �

0.28kpLph of an electron injected with cinj � 1500 at τ0 �

0.093kpLph and for all other parameters that are the same as
in Figure 3. )e factor G � 5 roughly corresponds to the
cases of parametric excitation of betatron oscillations, shown
in Figure 3 by thick and thin solid curves. )e value ce �

2100 corresponds to the moment of acceleration
τ ≈ 0.28kpLph for electrons injected with cinj � 1500 at τ0 �

0.093kpLph (thin solid curve at Figure 3).
A significant increase in the amplitudes of the first few

harmonics of the emitted synchrotron radiation with an

105

104

103

102

d2 E
ω/

dh
ω/

dΘ

1 2 3 4 5 6
ω/ωef

kprβ = 0.21

(a)

d2 E
ω/

dh
ω/

dΘ

105

104

103

102
1 2 3 4 5 6

ω/ωef

kprβ = 0.63

(b)

d2 E ω
/d

hω
/d

Θ

105

104

103

102
1 2 3 4 5 6

ω/ωef

kprβ = 1.05

(c)

Figure 4: Energy d2Eω/(ZdωdΘ), radiated in the direction 0z in a unit solid angle dΘ in a unit frequency interval dω, during Nβ � 4
betatron periods, for different kprβ � 0.21, 0.63, 1.05 (from left to right subfigures), ce � 2100, andΩkpLph � 60. Other parameters are the
same as in Figure 3. )e characteristic quantum energy Zωef � 260 eV and the parameter aβ � 0.66, 1.99, 3.32 for given calculations with
kprβ � 0.21, 0.63, 1.05, respectively.
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increase in kprβ from 0.21 till 0.63 and 1.05 and an increase
in the width of the emission spectrum are clearly seen. In the
considered example of calculations with kprβ � 1.05 (cor-
responding to betatron oscillations growth factor G � 5
under conditions of Figure 3), photons are emitted in the
X-ray spectral range with photon energies Zω ∈ [90; 650] eV
for the level of the spectral energy flux d2Eω/ZdωdΘ∼105.

Such modifications of the synchrotron radiation spectrum
with a change in the amplitude of the root-mean-square radius
of an electron bunch accelerated in a capillary waveguide can
serve as a diagnosis of betatron oscillations of the bunch.

5. Conclusions

An analysis of the parametric excitation of betatron oscil-
lations of electrons accelerated in wakefields behind laser
pulses propagating in narrow capillary waveguides with an
inner radius close to the transverse dimension of the laser
spot is presented. Areas (in the parameter cinj) of parametric
instabilities due to betatron frequency modulation due to
modes beats are revealed. It is shown that the dynamics of
electrons during acceleration substantially depends on
whether their injection energy falls into the regions of
parametric instability.

It is also shown that capillary waveguides can be ef-
fectively used to accelerate electrons while maintaining a low
emittance of accelerated bunches. )is requires (i) excluding
the influence of higher modes of electromagnetic and, as a
consequence, wakefields on betatron oscillations of electrons
and (ii) choosing the parameters of electron bunches and
capillary waveguides in such a way to avoid regions of
parametric resonances during acceleration. Parametric
resonances arise from beats of modes of electromagnetic
fields in capillary waveguides. Mode filtering can be per-
formed by longitudinal displacement of the onset of ac-
celeration (for example, by special profiling of the gas
density at the capillary entrance).

On the contrary, beats of modes of the electromagnetic
and wakefields in capillary waveguides or plasma channels,
leading to parametric excitation of betatron oscillations of
electrons, can be used in studies of sources of synchrotron
radiation. Estimates have shown that an increase in the
amplitude of betatron oscillations due to parametric reso-
nances can lead to a significant increase in the width of the
radiation spectrum. )us, modifications of the synchrotron
radiation spectrum with a change in the amplitude of the
root-mean-square radius of an electron bunch accelerated in
a guiding structure can be used to diagnose betatron os-
cillations of the bunch and their possible parametric exci-
tation in this structure.
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