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ISOMETRIES OF MEASURABLE FUNCTIONS

MICHAEL CAMBERN

Let (X, £, y) be a a-finite measure space and denote by
OO

L (X, K) the Banach space of essentially bounded, measurable

functions F defined on X and taking values in a separable

Hilbert space K . In this article a characterization is given

of the linear isometries of L (X, K) onto itself. It is shown

that if T is such an isometry then T is of the form

[T(F)){x) = U(x)[${F))(x) , where $ is a set isomorphism of £

onto itself, and U is a measurable operator-valued function

such that V{x) is almost everywhere an isometry of K onto

itself. It is a consequence of the proof given here that every

isometry of L (X, K) is the adjoint of an isometry of

LX(X, K) .

1. Introduction

Throughout this article (X, E, y) will denote a a-finite measure

space, and the letter K will represent a separable Hilbert space which

may be either real or complex. We denote by ( ', •) the inner product in

K , and by S the one-dimensional Hilbert space which is the scalar field

associated with K .

A function F from X to K will be called measurable if the scalar

function <F, e> is measurable for each e € K . Then for 1 S p S » , we

denote by •If(X, K) the Banach space of (equivalence classes of)

measurable functions F from X to K for which the norm
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14 M i c h a e l Cambern

\\F\]p = { | \ \ ( ) f } P

is finite. (||-|| will denote the norm in lP{X, K) and ||«|| that in

K .) If F € LP(X, K) , we define the support of F , which will be

denoted by supp(F) , to be the set {x € X : F(x) # 0} .

Let {e-i> ep' '''} t>e s o m e orthonormal basis for K . For

F € L"(X, K) , we define the measurable coordinate functions f by

/ (x) = < F(x) , e > . Then almost everywhere we have £ |/ (x) \ < °° , and
n

F(x) = Y, f (x)s . Moreover, i t is clear that each / belongs to

rP(x, s) .

In [7, p. 178], Banach determined the isometries of iF\x, S) ,

l < p < o o , p # 2 , for the case in which X is the unit interval and y

Lebesgue measure. Lamperti later obtained a complete description of the

isometries of L"(X, S) for an arbitrary a-finite measure space

(X, £, y) , and the same values of p , [S]. The first such result for

vector-valued functions was obtained in [2], where the surjective

isometries of lP(X, K) , for 1 5 p < ° ° , p / 2 , were characterized.

This result was also established, via quite different methods, in [6] by

Fleming and Jamison, and strengthened in [9] by Sourour, who replaced the

Hilbert space K by a separable Banach space E having only trivial

//-summands. In this article we investigate the surjective isometries of
00, %

L (X, K) .

CO

If K is the one-dimensional Hilbert space 5 , then since L (X, S)

is isometrically isomorphic to C{1) , where Y is the maximal ideal space

of L (X, S) , a description of the isometries can be obtained through an

application of the Banach-Stone theorem. And if K is finite dimensional,
00

i t can be shown that L (X, K) is isometrically isomorphic to C(Y, K) ,

the space of continuous functions on Y to K , under the map
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It N „
Y, f e •*" T, f e , where f -*• f is the Gelfand representation of
n=l " n n=l n n

L (X, S) . In this case the description we give in this article can also

be obtained from what is known about isometries of spaces of continuous

vector-valued functions [3], However when K is infinite dimensional, the

continuity on 1 of the coordinate functions / no longer implies

continuity for Y. f e > an(^ thus the problem requires different methods of
n

approach.

A mapping $ of Z onto itself, defined modulo null sets, is called

a regular set isomorphism if it satisfies the properties

HA') = [HA)]' ,

$ U A
n

= U *(i4

and

= 0 if, and only if, \i(A) = 0 for all sets A, A in Z .

(Throughout, A' will denote the complement of A .) A regular set

isomorphism induces a linear transformation, also denoted by $ , on the

space of measurable scalar functions defined on X , which is characterized
b v "KxJ = X*rA) » where x^ is the characteristic function of the

measurable set A . This process is described by Doob in [5, pp. U53-U51*].

Given a regular set isomorphism $ of Z onto itself, and

F = Y, f e i n LP(X, K) , we define $(F) by the equation
n

(•(*))(*) = 1 [*[fn))lx)e .
n

The fact that, in the case in which K is infinite dimensional, the series

on the right is indeed convergent in K for almost all x was established

in [2, p. 10]. One readily verifies that the definition of HF) is

independent of the choice of orthonormal basis for K .

We will use the fact that the set of extreme points of the unit ball

in L (X, K) consists of those elements F such that ||F(x)|| = 1 almost
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everywhere on X . Throughout the a r t i c l e , given e € K , we denote by e
CO

that element of L (X, K) which is constantly equal to e .

2. Isometries
CO

Throughout, T will denote a fixed isometry of L (X, K) onto

i tself .

LEMMA 1. Let E be an element of L°(X, K) with \\E{x)\\ = 1

almost everywhere. If A € E then supp(r(x. 'E)) and supp(y(x,,, 'E))

are disjoint measurable sets whose union is almost everywhere equal to X .

Moreover, \\ [T[XA '#)) (aOII £s equal to one almost everywhere on

Proof. Note that since E is an extreme point of the unit ball in

L (X, K) , so is T{E) , and thus we have, almost everywhere,

(1) 1 = \\{T(E))(x)\\ = \\[T{xA'E))(x) + {T{xArE))M\\ .

F i r s t suppose tha t || [T[X,'E]) (X) || # 1 almost everywhere on

supp [T (X. 'E) ) ; t ha t i s , there i s a measurable subset B c supp(!T(x. 'E) )

with y(B) > 0 and \\[T[X,-E)) (x)\\ < 1 - e for some e > 0 on B .

The se t {x : \\{T(XA,'E)) {x)\\ = l] cannot in te r sec t supp(r(x^'£'))

in a se t of pos i t ive measure. For Wx.'Etx* ,'E\\ = 1 gives

\\(T(XA-E))(X)±(T(XA,'E))(X)\\ £ 1 almost everywhere, and [T[XA,'E]) (x) is

an extreme point of the unit ball of K for al l

x € {x : \\{T{XA,'E))(X)\\ = 1 } . Thus \\[T[XA,'E))(X)\\ < 1 a l m o s t

everywhere on supp [T[XA'E)) , so that we can find a subset C of B with

\i(C) > 0 and \\[T(XA,-E))(X)\\ < 1 - e 2 on C , for some z^ > 0 .

Let e = min{e , e } . Then we cer ta in ly have | |T(X. 'E)±t-xc'E\\m < 1

and ||T(x/j,-£')±e-X(:.'£
lll0O 2 1 , so that ^ ( a : ) -£(x)± [r"1 (e-x^-ff)) U) < 1

and \\xA r(x) 'E(x)± \T~ (e'Xr'E) \(x)\\ 5 1 almost everywhere. But since
II « I. t. ; ||

IF (e*xr,*£'J is not the zero element of L {X, K) , its support must meet
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either A or A' in a set of positive measure, contradicting the fact

that X«(x) ' E[x) is an extreme point of the unit ball of K almost

everywhere on A , and XAi(x) ' E(x) is an extreme point of the unit ball

of K almost everywhere on A' .

This contradiction shows that || [T{X,'E) ) (x) || = 1 almost everywhere

on supp(T(x4-£')) . Similarly, \\{T[XA,'E)) (x)\\ = 1 on supp(r(X/} ,•£)) .

It is clear that supp(y(x.•#)) and supp(r(x,,•#)) are measurable. The

fact that these sets are disjoint again follows since

\\[T[xA-E))(x)±[T[xA,-E))(x)\\ < 1

almost everywhere, and [T[XA'E))(X) is an extreme point of the unit ball

in K for all x € supp [T{XA'&)) • Finally, the union of supp (T(X. •£"))

and supp(T(x/1,*£')) is, by (l), equal to X .

LEMMA 2. With E as in Lemma 1 define, for A € E ,

$(J4) = supp(r(x.•£•)) . Then $ is a regular set isomorphism of £ onto

itself.

Proof. It follows immediately from Lemma 1 that for A € E ,

*U') = [HA)]' .

Note that uU) t 0 if and only if xA '
 E * ° i n L°(X, K) which is

true if and only if T[X.'E) + 0 in L (X, K) and this holds if and only

if u[$U)] > 0 . Thus trivially we have

u[$U)] = 0 if, and only if, uU) = 0 .

Now suppose that A and B are disjoint measurable sets. Since

\\[T[XA'E))(X)±[T(XB'E))(X)\\ 5 1 almost everywhere and [T[XA'E))(X) is an

extreme point of the unit ball in K for all x € supp(r(x. -E)) , <t(A)

and $(S) must be almost everywhere disjoint. Thus if B is a measurable

subset of the measurable set A , then B and A' are disjoint so that

$(5) and $(/!') are disjoint. Hence Be A implies that $(S) c $(4) .

It is easily seen that the reverse implication is also true: $(S) c$(4)

implies that B c A . The sentence before last also implies that A and
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B are disjoint if and only if HA) and «>(B) are disjoint.

Next assume that [A , A , ...} is a pairwise disjoint sequence of

CO

measurable sets and let A = U A Then since A c A for all n , we
n=l n n

00

have $(4 ) c $(4) for a l l n , so that U <b[A ) c $(4) . Set
n=l

CO

B = <b(A) - U <k[A ) . We would like to show that u(B) = 0 . To this
n=l "

end we first show that $ maps E onto itself.

Thus suppose that B is any measurable set. We have

T(E) = xB

so that

By Lemma 1 (interchanging the roles of T and T~ , A and B , E and

!'(£') ) , the two elements on the right in the last equation have disjoint

supports, and have norm equal to one almost everywhere on their respective

supports. Thus T'1 [xB'T{E)] is of the form Xc '
 E for some C i E ,

and hence

(2) T{XC'E) = xB ' T{E)

which says that $(C) = 5 . Thus $ is onto.

CO

Now with S = HA) - U $[A ) , take C € E with $(C) = S . By
n=l "

what was established in the second paragraph of this proof, we must have

C c A in this instance. Thus if we suppose that B , hence C , has

positive measure, then, for some n , C meets A in a set of positive

measure. But 4>(C) and ${A ) are disjoint, and this contradiction shows

that we must have u(B) = 0 . Thus
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$ U A
, n

n=l
= u *(,*) ,

completing the proof of the lemma.

NOTE. Equation (2) tells us that for each A € £ ,

From this it follows that for every / € L (X, S) we have

T(f'E) = Hf) • T(E) .

LEMMA 3. If E and E~ are two pointwise orthogonal elements of

L (X, K) with \\E.{x)\[ = 1 almost everywhere on X , j = 1, 2 , then
3

T(E ) and T[E-) are pointwise orthogonal for almost all x .

Proof. Using the polarization identity [7, p. 27^] (and assuming the

space is complex), we have

1 ' 2 n^X

But the elements E + i E n = 1, 2, 3, h , are extreme points of the

ball of radius VJF centered at the origin in L (X, K) . Hence

\\\T\E +i L (i) = V2 almost everywhere on X , so the inner product

< (r(£ ))(x), [T[EJ)(X)> is almost everywhere equal to zero.

If K is a real Hilbert space, the corresponding polarization

identity also gives the desired result.

LEMMA 4. Let E and £„ be as in Lemma 3, and for j = 1, 2 , let

$. be the regular set isomorphism of I onto itself that is associated
3

with E. as in Lemma 2. Then $. = $_ .
3 •*- *-

Proof. Let A € E* and consider
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(3) {T[xA'[Ex+E2)/V2))(x) = U/y/2)[T[xA'E1))(x) + (I/V2) ̂ ( x ^ ) ) (x)

Now the left hand side of (3) is equal to

$ U ) g $ U ) 2
1 >*- 1 3^-

where $ is the regular set isomorphism associated with (E +E J /V2

a Lemma 2. Thus, by the almost everywhere linear independence of

jjCx) and [T[E2))(X) we have

\(A){X) "

almost everywhere, and hence <J> = $„ .

LEMMA 5. Suppose that F±, Fg are elements of L°{X, K) such that

FAx) and FAx) are orthogonal in K for almost all x . Then

< [T[F )){X), {T(F ) ) ( X ) > = 0 almost everywhere.

Proof. First suppose that F = g G and F^ = g^G^ , where the g.

are elements of L (X, 5) with suppQ?.) = suppff-J and the G. are
3 3 3

measurable vector functions such that ||£.(x)|| = 1 on supp[F.J ,
3 3

, 7 = 1 , 2 . Let A = supp(F ) - supp(f ) . On A we have

F (x) = V, f {x)e , the convergence being almost everywhere pointwise in

K . Since A = U A , where A = {x € A : f (x) # o} we can define a
n n n

measurable vector function H on A by HAx) = f Ax)e - f (x)e , for

X € Al U A2 ' a n d f o r " > 2 ' H1M = ~frP^e\ ~ f\('X">en f o r

x € A - (A U . . . u A ) . Then H (x) is almost everywhere orthogonal

to FAx) on A , and the vector function J defined on A by

aOH , x € A , is such that l l^x) ! ! = 1 for x € 4 and
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JAx) is pointwise orthogonal to FAx) almost everywhere on A .

Similarly we can find a measurable vector function J defined on

B = supp(F ) - supp(F ) such that ||J2(x)|| = 1 on B and

( F (x), JAx) > = 0 almost everywhere on B . We now define measurable

vector functions E and E by

EAx) =

EAx) =

'G±(x) , x € ^

JAx) , x f A ,

e1 , x € X - (supp^) u supp(F2)) ,

G2ix) , x € supp(F2) ,

JAx) , x € B ,

e2 , x € X - (supp(F1) u supp(F2)) .

Then ||£.(a:)|| = 1 and (EAx), EAx)) = 0 almost everywhere.
3 1 ^

We can write F. = g .E. , j = 1, 2 , so that by Lemma h and the note
3 3 3

following Lemma 2, there exists a regular set isomorphism $ of E onto

itself such that T[F .) = 4>[g .)T[E .) for j = 1, 2 . We thus have
0 3 0

<(T(F1))(x), [T[P2)){x)> =<{9(g1))lx)[T[E1)){x), (*(|72)) U ) [T[EJ) (X) >

I*l02JJ(*>< (^(BjJCa:), (r(^))(x)> = 0

almost everywhere by Lemma 3.
OO

Now since every F (. L (X, K) can be written in the form F = gG ,

where g € I (X, 5) with supp(g') = supp(F) and G is measurable with

||G(x)ll = 1 almost everywhere on supp(F) (that is, let g(x) = ||F(x)||

and G(x) = F(x)/\\F(x)\\ for x € supp(F) ) the proof of the lemma is

complete.

LEMMA 6. Let $ be the regular set isomorphism of Z onto itself

determined by T^eJ = X ^ j ^ e J , for n = 1, 2, ... and A i Z , and

denote also by $ the corresponding linear transformation of measurable

scalar functions. Then the map defined for F € L°(X, K) by F •* $(F) is
OO

an isometry of L (X, K) onto itself.
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Proof. It follows from Lemma k, the separability of K , and the note

following Lemma 2 that there exists a well defined regular set isomorphism

$ of £ onto itself such that for all n = 1, 2, ... and all bounded

measurable scalar functions / , T(f'e ) = $(/) • T[e ) . It is obvious

that il$(.f) H^ = ll/ll̂, holds for all scalar simple functions / , and the

fact that the same equality then holds for an arbitrary element / of
00

L (X, S) follows easily from the fact that $ preserves the almost

everywhere convergence of sequences of measurable functions.

Now using [2, p. 10] and the fact that $ preserves the set of

positive elements of L°(.X, S) , it follows that for F € L°(X, K) ,

||(*(F))(-)|| = $(I|F(')II) , where \\F( •) || denotes the L°{X, S) element g

defined by g(x) = ||F(a;)|| for x i X . Thus

WF)\\a = ess supll (*(F)) (x) || = ess sup *(||F(a:)||) .

But by the previous paragraph this last quantity is equal to

ess sup ||F(x)|| = ||F|| SO that the map is norm preserving, and it is clear

that it is also surjective.

We now define the measurable operator function U(x) by first

defining U(x) on the basis vectors e of K via the equation

U(x)e = (r(e ))(x) , and then extending U(x) linearly to K . By Lemma

3, {[f[e ))(x), (r(e2))(x), ...} is almost everywhere an orthonormal set

in K , so that U{x) is an isometry of K into itself almost everywhere.
00

It thus follows from Lemma 6 that for F € L {X, K) , the map

F(') •+ U( •)(*(*•))(•) is an isometry of L°{X, K) into itself.
In the following lemma we use the fact that, modulo the usual

CO

conjugate-linear identification of K with i t s own dual space, L \X, K)

is the dual space of l}{X, K) [4, p. 282].

LEMMA 7. Fbr F = £ f e € L°U, K) define, for N = i , 2, ... ,

N
F
N = E ?

 e
n '

 Then y(*K$(F^))(*) tends to (/(•)(*(*"))(•) in the weak
n=l n

* topology of L°(X, K) .

Proof. The sequence {$(F )} converges almost everywhere to
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and is uniformly bounded in norm by II^F) Ib = \\F\\m • Hence the sequence

{U{ *) (*(*\J) (')} converges almost everywhere to £/(•)(*(?))(•) , and is

also uniformly bounded in norm by H^H^ . It follows that if

G € LX{X, K) , then G( • )£/( •) (*(FJ) (•) converges almost everywhere to

£(•)£/( •)(*(*"))(•) , and is dominated by ||F||J|G(')ll • Thus, by the

dominated convergence theorem,

|J G(x)U(x){${FN))(x)d\i - |

2 | \\G(x)U(x)[${FN))(x)-G(x)U(x){HF))(x)\\d\i

•* 0 a s N •+•<*>.

LEMMA 8. Let v be the measure defined on 1 by

\>{A) = u[$ {A)\ , for A £ , and let h = -?- . Define R mapping

LX{X, K) to itself by [R(G))(x) = U(x)h(x)[${G)){x) , for G z LX(X, K) .

Then R maps I?~{X, K) isometrioally onto itself and T = R*~X .

Proof. First note that, by the definition of a regular set

isomorphism, v is absolutely continuous with respect to \i and that, for

A € Z , we have

yU)=v[«U)]=f dv = f ;r<2u
>HA) av

Moreover, by [9, p. 283] the mapping R defined above is an isometry of

l}(X, K) into itself.

If G = Y. 9 e € ^{X, K) , then the sequence {G ) , where for

N = 1, 2, ... and x ( X , £»/(x) = Y 9 (x)g > converges almost
M=l

everywhere to G and is dominated by ||G|| . Thus, by the dominated

N
convergence theorem, finite sums of the form G., = Y g e are dense in

L (X, K) , and it is cleaS: that we still have a dense set if we restrict

the coordinate functions g to be scalar simple functions. Moreover, it
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is also clear that L (X, K) elements of the form H(x) = Y_ s (x)e >
n

where the s are scalar simple functions, are dense in L (X, K) .

Thus suppose we have two such elements G € L {X, K) and

00 N n

H € L {X, K) . We may suppose that G = £ £ c. .\. e. and
N i=l j=l lJ Aj ̂

N n °°
H = H + H where H = I I d. -X, e. , ff = I s.e , the

1 ^ X i=l /=l tJ j ̂ 2 i=W+l t' ̂

c . . , d. . are scalars, and the A. are pairwise disjoint measurable sets.

We thus have

= \
N n It n

dV= I I c,.d..v{A.) ,

But by (U) this latter quantity is equal to

N nN n _ f
Y Y Q..d.. \ hdv
A A %3 V3 h(A.)

3
0'

N n

i=l j=l

and since by Lemma 5, (T[H^))(X) is almost everywhere orthogonal in K

to r(e.) , 1 5 i ; i , this last integral equals

U(x)h(x) [<S>[GN]) (x), [T[H1))(x)+{T{H2))(x))dM

| , T(H) )dv = | < C^, i?* o T(H) >d\i

Here R* is, again modulo the conjugate-linear identification of K with

its own dual, the Banach space adjoint of R [2, p. 11].

00

Thus for each H in L (X, K) of the form considered, we have shown

that the linear functionals on L (X, K) determined by H and

(R* o T)(H) agree when evaluated at all elements <?„ belonging to a dense
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subset of l}(X, K) . Hence, for such H , we have (/?* ° T){H) = H ; and

since this equality holds for all H belonging to a dense subset of

lT(X, K) , we have R* = T~X and R*~ = T . Note that this implies that

R is actually an isometry of ]}{x, K) onto itself [JO, p. 226].

THEOREM. For F € L°{X, K) , [T(F))(X) = U(X)[HF))(X) .

Proof. Let F = £ / e belong to £°°(X, K) , and for N = 1, 2, ...

A?
set FM = Y f e . Then by an argument exactly analogous to that given

in the proof of Lemma 7, F~ -»• F in the weak * topology of L {X, K) .

Since adjoints of maps continuous with respect to the norm topology remain

continuous with respect to the weak * topology, we have

T[F) = R*'1^) •*• R*~X{F) = T(F) weak * . But by Lemma 7,

T(F) = J/(')(*(F ))(•) tends weak * to U( •) (*(F)) (•) , and the proof of

the theorem is complete.
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