UNBIASED DISTINGUISHING OF TRANSLATION FAMILIES AND INTEGRABILITY WITH RESPECT TO A CONVOLUTION OF MEASURES

H. S. KONIJN and R. SACKSTEDER (Received 11 July 1966)

1. Introduction

Let M_1 and M_2 be two sets of probability measures defined on R^n . A measurable R^l valued function h ($l \ge 1$) is said to distinguish M_1 from M_2 unbiasedly if there are numbers or vectors I_1 and I_2 ($I_1 \ne I_2$) such that $\int_{R^n} h(x)m(dx) = I_i$ if m is in M_i (i = 1, 2). Here we shall be concerned with the case where M_1 and M_2 are translation families, in that all of the elements of M_i are translates of a single measure m_i . This means that if, for any t in R^n , m_i^t is the measure defined by $m_i^t(E) = m_i(E-t)$, where $E-t=\{x-t:x\in E\}$, then $M_i=\{m_i^t:t\in T_i\}$, where T_i is a subset of R^n . If M_1 and M_2 are of this type, we will investigate the conditions under which there does not exist a function to distinguishing M_1 from M_2 unbiasedly. A case of special interest arises if $m_2(E)=m_1(BE)=m_1$ ($\{Bx:x\in E\}$), with B a non-degenerate $n\times n$ matrix, and particularly a nonzero multiple (scale parameter) of the identity matrix, cf. [1], [2]. For simplicity, take l=1.

Much of our investigation requires an answer to the following question: To find condition on m_1 and m_2 such that m_1 - and m_2 -integrability of any function h implies integrability of h with respect to m, the convolution of m_1 and m_2 .

2. Analytical results

Let $m=m_1^*m_2$ denote the convolution of m_1 with m_2 . Standard arguments show that a measurable function $f:R^n\to R^1$ is m-integrable if and only if the function $g:R^{2n}\to R^1$ defined by g(x,y)=f(x+y) is integrable with respect to the product measure $m_1\times m_2$. The support of the measure m_i will be denoted by S_i , the support of m by S.

Proposition 1. Suppose that E_1 and E_2 satisfy

$$m_1(E_2) = m_2(E_1) = 0$$
, $S_1 \subset T_2 \cup E_2$, $S_2 \subset T_1 \cup E_1$,

and that $h: \mathbb{R}^n \to \mathbb{R}^1$ is m-integrable. Then h does not distinguish M_1 from M_2 unbiasedly.

PROOF.
$$I_1 = \int_{R^n} h(y) m_1^x (dy) = \int_{T_2} h(x+y) m_1 (dy)$$

for every x in T_1 , hence

$$I_1 = \int_{T_1} \left\{ \int_{T_2} h(x+y) m_1(dy) \right\} m_2(dx).$$

Similarly,

$$I_2 = \int_{T_2} \left\{ \int_{T_1} h(x+y) m_2(dx) \right\} m_1(dy).$$

Let g(z) = h(z) if

$$z \in T_1 + T_2 = \{x + y : x \in T_1, y \in T_2\}$$

and g(z) = 0 otherwise. Then

$$I_1 = \int_{\mathbb{R}^n} \left\{ \int_{\mathbb{R}^n} g(x+y) m_1(dx) \right\} m_2(dy) \text{ and } I_2 = \int_{\mathbb{R}^n} \left\{ \int_{\mathbb{R}^n} g(x+y) m_2(dy) \right\} m_1(dx).$$

But since $|g| \leq |h|$, g is $m_1 \times m_2$ integrable and Fubini's theorem implies that the iterated integrals for I_1 and I_2 are equal. This proves Proposition 1.

Propositions 2 and 3 show how the hypothesis of Proposition 1 that h is m-integrable can be satisfied. They are concerned with measures m_1 and m_2 which satisfy the following readily recognizable conditions: There is a sigma-finite measure μ on a sigma field \mathscr{F} of subsets of R^n (with \mathscr{F} including \mathscr{B} , the Borel sets of R^n) and such that:

- (i) there is a constant a such that
- (a) $\mu(E-s) \leq a\mu(E)$ for $s \in S_2$, $E \in \mathcal{B}$, $E \subset S_1+s$,
- (β) $\mu(E+s) \leq a\mu(E)$ for $s \in S_2$, $E \in \mathcal{B}$, $E \subset S_1$, and for $s \in S$, $E \in \mathcal{B}$, $-E \subset S_1 \cap S_2$,
 - (γ) $\mu(-E) \leq a\mu(E)$ for $E \in \mathcal{B}$, $-E \subset S_1 \cap S_2$ and $E \subset S_1 \cap S_2$;
- (ii) for i = 1 and 2 there are numerical constants a_i , a'_i , b_i and c, such that, if r_i is the density (= Radon-Nikodym derivative) of m_i with respect to μ , and x any element of S
- (a) $r_i(y) \le a_i r_i(b_i x)$ for $y \in S_2$ (when i=2) or $y \in (x-S_2) \cap S_1$ (when i=1), and $c^2 \le |\frac{1}{2}x|^2 \le \frac{1}{2}x \cdot y$,
 - $(\beta) \ r_i(b_i x) \leq a'_i r_i(x).$

PROPOSITION 2. Assume (i) and (ii) with c = 0. Then if h is m_i -integrable for i = 1, 2, h is m-integrable $(m = m_1^* m_2)$.

PROOF. We first show that $(i\alpha)$ and $(i\beta)$ imply that m is absolutely continuous with respect to μ . If E is any Borel set, the part outside S has m-measure 0, and if E is any Borel set in S, then by $(i\alpha)$

$$m(E) = \int_{\mathbb{R}^n} m_1(E-y) m_2(dy) \le a \int_{\mathbb{R}^n} \left\{ \int_E r_1(x-y) \mu(dx) \right\} m_2(dy),$$

and so this holds for any Borel set of R^n . Since $r_1 \ge 0$ and since, by taking $E = R^n$, it follows from (i β) that the inner integral is at most a, the iterated integral is finite; therefore we can change the order of integration, obtaining

$$m(E) \leq a \int_{E} \left\{ \int_{\mathbb{R}^n} r_1(x-y) m_2(dy) \right\} \mu(dx) < \infty,$$

which shows the absolute continuity of m with respect to μ .

Therefore, there exists a density, r, of m with respect to μ , which satisfies (when $S_3 = S_2 \cap \{y \in S_2 : x - y \in S_1\}$)

(2.1)
$$r(x) \leq a \int_{S_3} r_1(x-y) r_2(y) \mu(dy).$$

Let $x \in S$ be fixed and let $U = \{y \in S_3 : |\frac{1}{2}x|^2 \le \frac{1}{2}x \cdot y\}$; its complement is $V = \{y \in S_3 : |\frac{1}{2}x|^2 < \frac{1}{2}x \cdot (x-y)\}$.

If $y \in V$, y' = x - y belongs to $(x - S_2) \cap S_1$, satisfies $|\frac{1}{2}x|^2 < \frac{1}{2}x \cdot y'$ and so by (iia) $r_1(x-y) \leq a_1 r_1(b_1 x)$, hence

$$\int_{V} r_1(x-y)r_2(y)\mu(dy) \leq a_1 \int_{V} r_1(b_1x)r_2(y)\mu(dy) \leq a_1r_1(b_1x).$$

If $y \in U$, $r_2(y) \leq a_2 r_2(b_2 x)$ and

$$\int_{U} r_{1}(x-y)r_{2}(y)\mu(dy) \leq a_{2} \int_{U} r_{1}(x-y)r_{2}(b_{2}x)\mu(dy)
\leq a_{2}r_{2}(b_{2}x) \int_{S_{\bullet}} r_{1}(x-y)\mu(dy) \leq a_{2}a^{2}r_{2}(b_{2}x),$$

where the last part follows by an application of $(i\beta)$ and $(i\gamma)$.

Therefore, it has been shown that, for $x \in S$,

$$r(x) \leq aa_1r_1(b_1x) + a^3a_2r_2(b_2x).$$

Finally, by $(ii\beta)$, this shows that, for $x \in S$,

(2.2)
$$r(x) \leq a_0 r_1(x) + a'_0 r_2(x)$$

with $a_0 = aa_1a_1'$, $a_0' = a^3a_2a_2'$. This implies the conclusion of Proposition 2.

PROPOSITION 3. Assume (i) and (ii) (with c > 0) and suppose that r_1 or r_2 is bounded and that r_1 is lower semi-continuous. Let T_2 be an open set containing S_2 and suppose that h is m_1^t -integrable for every t in T_2 , and is m_1 - and m_2 -integrable. Suppose also that $\mu(E-s) \leq a\mu(E)$ holds also for all s in T_2 , $E \in \mathcal{B}$, $E \subset S_1 + s$. Then h is m-integrable.

PROOF. We showed in the proof of Proposition 2 that m has a density satisfying (2.1), and that, for $|x| \ge 2c$, (2.2) holds. It remains to consider r(x) on the set of $x \in S$ for which |x| < 2c; call its closure S_0 .

By hypothesis either there is a constant k_1 such that $r_1(x) \leq k_1$ for all x, whence, by (2.1), $r(x) \leq ak_1$ for all x; or there is a constant k_2 such that $r_2(y) \leq k_2$ for all y, whence by (2.1), $r(x) \leq ak_2 \int_{S_2} r_1(x-y)\mu(dy) \leq a^3k_2$,

where the last part follows from $(i\beta)$ and $(i\gamma)$ as already noted in the proof of Proposition 2. So in either case there is a constant k_0 such $r(x) \leq k_0$ for all x.

Now S_0 is closed; and if x is in S_0 , $x=x_1+x_2$, where x_i is in S_i . There is an $\varepsilon=\varepsilon(x_2)>0$ such that if $|y-x_2|<\varepsilon$, y is in T_2 , and there is a y_1 such that $|y_1-x_1|<\varepsilon$ and $r_1(y_1)>0$. Let $y_2=x_1+x_2-y_1$ so that $x=y_1+y_2$, $|y_2-x_2|<\varepsilon$ and so y_2 is in T_2 . Let δ and η be such that $r_1(y) \ge \eta > 0$ if $|y-y_1|<\delta$. Then $r_1(y-y_2) \ge \eta$ if $|y-x|=|y-y_1-y_2|<\delta$. Since x was an arbitrary point of S_0 , S_0 can be covered by a finite number, k, of disks, the j^{th} disk having radius δ^j and center x^j , such that, if $|y-x^j|<\delta^j$,

$$r_1(y-y^i) \ge \eta^i > 0,$$

where y^j is in T_2 . Then, writing $\eta_0 = \eta^1 + \cdots + \eta^k$, we have that for y in S_0

$$r(y) \leq k_0 \leq (k_0/\eta_0) \sum_{i=1}^k r_1(y-y^i).$$

But the last hypothesis of the Proposition implies that for any $E \in \mathcal{B}$, $E \subset S_1 + y^i$,

$$\int_{E} r_1(x-y^j)\mu(dx) \leq am_1^t(E) \text{ with } t=y^j \ (j=1,\cdots,k).$$

So since h was to be m_1^t -integrable for $t \in T_2$, $\int_{\mathbb{R}^n} h(y) r_1(y-y^i) \mu(dy)$ exists and is finite for $j = 1, \dots, k$. Hence $\int_{\mathbb{R}^n} h(y) r(y) \mu(dy)$ exists and is finite, which proves the Proposition.

3. An example

This section is devoted to an example (in R^1) of two sets of measures $M_1 = \{m_1^j : j \in J\}$ and $M_2 = \{m_2^j : j \in J\}$ which can be distinguished unbiasedly, even though the union of the S_{1j} coincides with the union of the S_{2j} (where S_{1j} is the support of m_1^j , S_{2j} the support of m_2^j).

Let J denote the integers. The measure m_i is defined as follows: Let $\sum_{k=1}^{\infty} a_k$ be a series of positive terms whose sum is 1, for example take $a_k = (\frac{1}{2})^k$. Then m_1^j assigns the mass a_k at the integer $2^k + j$ and m_2^j assigns the mass a_k at $3 \cdot 2^k + j$. A function h will be constructed which distinguishes M_1 and M_2 unbiasedly, by requiring that for every j in J it satisfy:

(3.1)_j
$$\int_{-\infty}^{+\infty} |h(x)| m_1^j(dx) = \sum_{k=1}^{\infty} |h(2^k + j)| a_k < \infty,$$

(3.2),
$$\int_{-\infty}^{+\infty} h(x)m_1^j(dx) = \sum_{k=1}^{\infty} h(2^k + j)a_k = 1,$$

(3.3)_j
$$\int_{-\infty}^{+\infty} |h(x)| m_2^j(dx) = \sum_{k=1}^{\infty} |h(3 \cdot 2^k + j)| a_k < \infty,$$

$$(3.4)_{j} \qquad \int_{-\infty}^{+\infty} h(x) m_{2}^{j}(dx) = \sum_{k=1}^{\infty} h(3 \cdot 2^{k} + j) a_{k} = 0.$$

It can be shown that if $i \neq j$, the sets $S_{1i} \cap S_{1j}$ and $S_{2i} \cap S_{2j}$ contain at most one element, and that, for all i and j, $S_{1j} \cap S_{2j}$ contains at most two elements. Now h can easily be defined by induction on |j| to satisfy $(3.1)_j$, $(3.2)_j$, $(3.3)_j$, and $(3.4)_j$. The idea of the proof is that h can be defined first on S_{10} , then on S_{20} , S_{11} , S_{21} , $S_{1,-1}$, $S_{2,-1}$, S_{12} , and so on. At each step, where h is to be defined on some S_{1j} (or S_{2j}), h will have been defined on only finitely many points of S_{1j} (or S_{2j}) in previous steps, hence it will be possible to satisfy $(3.1)_j$ and $(3.2)_j$ (or $(3.3)_j$ and $(3.4)_j$), since $a_k > 0$ for every k.

This example shows that one cannot take for granted the validity of the interchange in order of integration in Proposition 1. m_1^0 and m_2^0 have their supports in J and are absolutely continuous with respect to the measure which assigns the mass one to each integer and so satisfies (i). However, for any c, b_1 and b_2 there are always points $x \ge 2c$ in the support of $m_1^0 * m_2^0$ for which, for i = 1 or 2, $r_i(b_i x) = 0$ but $r_i(y) \ne 0$ for some y satisfying the condition of (iia), or $r_i(b_i x) \ne 0$ but $r_i(x) = 0$. Note also that m_1^0 and m_2^0 differ by a scale parameter.

4. Application to statistical estimation problems

Let $M = \{m_k : k \in K\}$ be a set of probability measures on \mathbb{R}^n . If $\tau : K \to \mathbb{R}^1$ is any function, a statistic $h : \mathbb{R}^n \to \mathbb{R}^1$ is said to be an unbiased estimator of τ in the family of probability distributions

$$\Omega = \{m_k^y : k \in K, y \in T_k\},\$$

where $T_k \subset \mathbb{R}^n$, if for every k in K,

$$\tau(k) = \int_{R^n} h(x) m_k^{\mathbf{y}}(dx)$$

whenever y is in T_k . We are interested in showing that unbiased estimators do not exist in certain cases.

CASE 1: h is semi-bounded. In some applications it is natural to require that any statistic used to estimate τ be non-negative or, more generally, semi-bounded. For example, if the range of τ is the set of possible values of a scale parameter and all of these values are non-negative, it would be reasonable to require that h be non-negative. Proposition 1 then shows that there can be no semi-bounded, unbiased estimator of τ , unless τ is constant.

CASE 2. Ω dominates $\Omega^*\Omega$. Ω is said to dominate $\Omega^*\Omega$ if, whenever m_1 and m_2 are elements of Ω , their convolution m_1*m_2 satisfies

$$(m_1*m_2)(E) \leq \sum_{i=1}^N n_i(E),$$

where E is any Borel set and n_1, \dots, n_N are (not necessarily distinct) elements of Ω , which do not depend on E. For example, Ω might be a stable class. If h is an unbiased estimator of τ , h must be integrable with respect to n_1, \dots, n_N , hence h is $m_1 * m_2$ integrable. Proposition 1 then shows that there is no unbiased estimator of τ unless τ is constant.

CASE 3. Application of Propositions 2 and 3. Condition (i) is automatically satisfied if μ is Lebesgue measure or if μ is the measure which assigns mass one to the set of integral lattice points of R^n . Condition (ii) will often be satisfied for some b_i 's less than 1. This is clearly so for the discrete distributions generally encountered in the statistical literature.

Consider now distributions which have densities with respect to Lebesgue measure; in particular, for i=1, 2, let r_i be continuous and positive on a disk of R^n of m_i -measure 1. Then (iia) is satisfied if r_i becomes nonincreasing for large |x|, the case occurring in all examples considered in practice. Moreover, the approach to zero of the density as |x| increases is in many cases such that (ii β) is satisfied as well.

Thus Propositions 1, 2, 3, show that unbiased estimates of τ cannot exist in many of the frequently encountered cases. For the estimation of a scale parameter it is natural to require that for i = 1 and 2 the existence in the finite sense of $\int_{\mathbb{R}^n} h(x)r_i(x)\mu(dx)$ implies that of $\int_{\mathbb{R}^n} h(x)r_i(b_ix)\mu(dx)$ for some open range of b_i ; in that case condition (ii β) may be dispensed with.

5. Application to a testing problem

Let $M_1 = \{m_1^t : t \in T_1\}$ and $M_2 = \{m_2^t : t \in T_2\}$ be two sets of probability measures on R^n , as in the introduction. A measurable function $h: R^n \to R^1$ is called a (strictly) unbiased test of M_1 against M_2 of level α if $\int_{R^n} h(x) m_1^t (dx) \leq \alpha$ for t in T_1 and $\int_{R^n} h(x) m_2^t (dx) > \alpha$ for t in T_2 . There is a Proposition analogous to Proposition 1 which gives conditions in which tests of level α do not exist. The proof is essentially the same as that of Proposition 1.

References

- [1] H. S. Konijn, 'On a theorem of Halmos concerning unbiased estimation of moments', Australian Math. Soc. 4 (1964), 229—232.
- [2] H. S. Konijn, 'Statistical reproduction of orderings and translation subfamilies', Ann. Math. Statist. 37 (1966), 196—202.

Tel-Aviv University
and
The City University of New York