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1. Introduction

Let M, and M, be two sets of probability measures defined on R™.
A measurable R? valued function % (! = 1) is said to distinguish M, from
M, unbiasedly if there are numbers or vectors I, and I, (I,51,) such that
[roh(@)m(dx) =1, if m is in M, (¢ = 1, 2). Here we shall be concerned
with the case where M, and M, are translation families, in that all of the
elements of M; are translates of a single measure m,;. This means that if,
for any ¢ in R", m} is the measure defined by m%(E) = m,(E—t), where
E—t={x—t:xeE}, then M, = {m':teT,}, where T, is a subset of
R™ 1f M, and M, are of this type, we will investigate the conditions under
which there does not exist a function to distinguishing M, from M, unbiased-
ly. A case of special interest arises if m,(E) = m,(BE) =m, ({Bx:z € E}),
with B a non-degenerate # X # matrix, and particularly a nonzero multiple
(scale parameter) of the identity matrix, cf. [1], [2]. For simplicity, take / = 1.

Much of our investigation requires an answer to the following question:
To find condition on m, and m, such that m,- and m,-integrability of any
function 4 implies integrability of % with respect to m, the convolution of
m, and m,.

2. Analytical results

Let m = m{m, denote the convolution of m, with m,. Standard ar-
guments show that a measurable function f: R® — R! is m-integrable if
and only if the function g : R?" — R! defined by g(z, y) = f(x+y) is inte-
grable with respect to the product measure m,; X m,. The support of the
measure m; will be denoted by S;, the support of m by S.

PROPOSITION 1. Suppose that E, and E, satisfy
my(Ey) =my(E)) =0, S;CT,UE,, S,CT,u E,,

and that h : R* — R is m-integrable. Then h does not distinguish M, from M,
unbiasedly.
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PROOF. I, = |, hiy)mi(dy) = fT’h(x—ky)ml(dy)
for every « in T, hence
L= [, [, Me+yimidy)| ms(da).
Similarly,
f UTxh(x—ky)mz(dx); m, (dy).
Let g(z) = R(z) if
zeT+Ty,={at+y:xeT,,yeT,}
and g(z) = 0 otherwise. Then

I, :fR,. UR"g(x—l—y)ml(dz)} my(dy) and I, =fm{fmg(x+y)mz(dy)} my (dz).

But since |g| < |A|, g is m, X m, integrable and Fubini’s theorem implies
that the iterated integrals for J, and I, are equal. This proves Proposition 1.

Propositions 2 and 3 show how the hypothesis of Proposition 1 that 4
is m-integrable can be satisfied. They are concerned with measures m, and
m, which satisfy the following readily recognizable conditions: There is a
sigma-finite measure x4 on a sigma field # of subsets of R® (with & in-
cluding &, the Borel sets of R") and such that:

(i) there is a constant @ such that
(¢) u(E—s) < au(E) for seS,, Ec%#, ECS,+s,
(B) p(E+s) <au(E) forseS,, Ee#, ECS,, and forse S, E e,

() u(—E) = au(E)for Ee#B, —ECS;nS;and ECS,nS,;

(i) for ¢ = 1 and 2 there are numerical constants a,, a;, b; and ¢,
such that, if 7, is the density (= Radon-Nikodym derivative) of m; with
respect to u, and x any element of S

(«) 7,(y) < a,7;(b,x) for yeS, (when ¢=2) or ye(x—S,) NS,
(when ¢ = 1), and ¢ < 322 < $x - 9,

(B) 7:(b:%) < a;7,(x).

PROPOSITION 2. Assume (1) and (ii) with ¢ = 0. Then if h is m-integrable
for i =1, 2, h is m-integrable (m = mym,).

Proor. We first show that (iz) and (if) imply that m is absolutely
continuous with respect to u. If E is any Borel set, the part outside S
has m-measure 0, and if E is any Borel set in S, then by (ix)

m(E) = [ o m(E—y)my(dy) < a [ |[ n(@—yu(dz)|m(dy),
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and so this holds for any Borel set of R". Since », = 0 and since, by taking
E = R, it follows from (i8) that the inner integral is at most a, the iterated
integral is finite; therefore we can change the order of integration, obtaining

m(E) = a [ [ n(@—y)my(dy)| n(dz) < o,

which shows the absolute continuity of m with respect to u.
Therefore, there exists a density, », of m with respect to u, which
satisfies (when S;= S, n{yeS,:x—yeS,})

(2.1) rz) = a [ nE—yn)dy).

Let x € S be fixed and let U={yeS;: |3z < iz - y}; its complement is
={yeS;: nglz <}z @y}
If yeV, ¥y =x—y belongs to (x—S,;) N S;, satisfies |3x2 < 3z -y’
and so by (iix) 7;(x—y) < a,7,(,2), hence
[, re—y)r@)udy) < a, [, nGx)n@)udy) < ar ().
HyeU, ry(y) < ayr,(b,x) and

[ynE—un@n@y) < a, [ r@—y)r,b.2)udy)
< a7y (by3) [ (e—y)u(dy) S a,a%ra(by2),

where the last part follows by an application of (if) and (iy).
Therefore, it has been shown that, for x € S,

7(%) = aa,7,(byx)+ada,r,(byx).
Finally, by (iig), this shows that, for z € S,
(2.2) r(x) < agry(x)+ayr,(z)
with a, = aa,a;, ag = a%a,a,. This implies the conclusion of Proposition 2.

ProposITION 3. Assume (i) and (ii) (with ¢ > 0) and suppose that r,
or 7, 1s bounded and that r, is lower semi-continuous. Let T, be an open set
containing S, and suppose that h is mi-integrable for every t in T,, and is
my- and my-integrable. Suppose also that u(E—s) < au(E) holds also for all
sinT,, Ee€B, ECS,+s. Then Iy is m-integrable.

PrOOF. We showed in the proof of Proposition 2 that s has a density
satisfying (2.1), and that, for |z| = 2¢, (2.2) holds. It remains to consider
r(x) on the set of x € S for which |2] < 2¢; call its closure S,.

By hypothesis either there is a constant k, such that »,(z) < k| for
all z, whence, by (2.1), 7(z) < ak, for all z; or there is a constant k&, such
that7,(y) < k, forally, whence by (2.1), 7(x) =< ak, [, 7,(x—y)n(dy) =a’k,,
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where the last part follows from (i) and (iy) as already noted in the proof
of Proposition 2. So in either case there is a constant %, such 7(z) < &,
for all .

Now S, is closed; and if z is in S,, z = «,+2,, where z, is in S,. There
Is an & = g(x,) > 0 such that if |y—=z,| <<e, y is in T,, and there is a y,
such that |y;—a,| <e and r(y;) > 0. Let y, = x,+x,—y; so that
x = Y+Y,y, |Yp—x,] < e and so y, is in T,. Let 6 and 5 be such that
ri(y) 2 >0if ly—y,| <. Then »,(y—y.) =9 if |y—a|=ly—y,—y.| <6.
Since x was an arbitrary point of S, S, can be covered by a finite number,
k, of disks, the j* disk having radius ¢’ and center z’, such that, if
ly—2'| < &,

ry—y') =7 >0,

where %’ is in T,. Then, writing 7, = n*+- - -+n*, we have that for y in S,

r(y) = ko = (Ro/m0) g (y—vy’).

But the last hypothesis of the Proposition implies that for any
Ee#, ECS,+y,

[ re—y)uidn) < ami(E) with t =y G =1,---, ).

So since & was to be mi-integrable for t € Ty, [geh(y)ri(y—y')p(dy) exists
and is finite for j = 1, - - -, k. Hence [g.2(y)r(y)u{dy) exists and is finite,
which proves the Proposition.

3. An example

This section is devoted to an example (in R!) of two sets of measures
M, ={m]:jeJ} and M, = {m} :je J} which can be distinguished un-
biasedly, even though the union of the S;; coincides with the union of the
S,; (where Sy; is the support of mj, S,; the support of mj).

Let J denote the integers. The measure , is defined as follows: Let
>, a be a series of positive terms whose sum is 1, for example take
a, = (§)*. Then m} assigns the mass a, at the integer 2¥+4 and mj assigns
the mass 4, at 3 - 2+4. A function % will be constructed which distinguishes
M, and M, unbiasedly, by requiring that for every j in J it satisfy:

+o0 0
(3.1), | wiwims az) ;W%mm<w
(3.2); ‘f h(x)m (dx) Eh (2% +7)a;
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(3.3); fjw {7 () |} (der) =r§1 [h(3 - 25+)|a, < oo,
(3.4); f+m h(x)m}(dz) = § h(3 - 2547)a, = 0.

It can be shown that if 7 + , the sets S;; n S;; and S,; N Sy, contain
at most one element, and that, for all # and 7, S;; n S,; contains at most
two elements. Now % can easily be defined by induction on |j| to satisfy
(3.1);, (3.2);, (3.3);, and (3.4),. The idea of the proof is that % can be
defined first on S;y, then on Sy, Sy, Sy, S; .1, Sa,—1, Si2, and so on.
At each step, where % is to be defined on some S;; (or S,;), # will have
been defined on only finitely many points of S;; (or S,;) in previous steps,
hence it will be possible to satisfy (3.1); and (3.2); (or (3.3); and (3.4);),
since a; > 0 for every k.

This example shows that one cannot take for granted the validity
of the interchange in order of integration in Proposition 1. m] and mj have
their supports in J and are absolutely continuous with respect to the
measure which assigns the mass one to each integer and so satisfies (i).
However, for any ¢, b, and b, there are always points * = 2¢ in the support
of m?xm3 for which, for ¢ =1 or 2, »,(b,z) = 0 but 7,(y) # 0 for some y
satisfying the condition of (iiz), or #,{b,x) # 0 but 7,(x) = 0. Note also
that m? and m differ by a scale parameter.

4. Application to statistical estimation problems

Let M = {m, : ke K} be a set of probability measures on R". If
7 : K — R! is any function, a statistic A : R* — R! is said to be an un-
biased estimator of v in the family of probability distributions

Q=1{m} :keK,yeT,}
where T, C R", if for every % in K,

v(k) = [, h(@)ml(dz)

whenever y is in 7. We are interested in showing that unbiased estimators
do not exist in certain cases.

CASE 1: & is semi-bounded. In some applications it is natural to require
that any statistic used to estimate z be non-negative or, more generally,
semi-bounded. For example, if the range of 7 is the set of possible values
of a scale parameter and all of these values are non-negative, it would be
reasonable to require that 4 be non-negative. Proposition 1 then shows that
there can be no semi-bounded, unbiased estimator of 7, unless 7 is constant.

CASE 2. Q dominates Q*0. 2 is said to dominate Q*Q if, whenever
my and m, are elements of Q, their convolution m, % m, satisfies
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my 5 ) (E) < 3. m,(E),

where E is any Borel set and #,, -, ny are (not necessarily distinct)
elements of 2, which do not depend on E. For example, 2 might be a
stable class. If % is an unbiased estimator of 7, # must be integrable with
respect to #,,- -, ny, hence & is m, #m, integrable. Proposition 1 then
shows that there is no unbiased estimator of v unless 7 is constant.

Case 3. Application of Propositions 2 and 3. Condition (i) is auto-
matically satisfied if u is Lebesgue measure or if g is the measure which
assigns mass one to the set of integral lattice points of R". Condition (ii)
will often be satisfied for some &,’s less than 1. This is clearly so for the
discrete distributions generally encountered in the statistical literature.

Consider now distributions which have densities with respect to
Lebesgue measure; in particular, for ¢ = 1, 2, let », be continuous and
positive on a disk of R" of m,-measure 1. Then (iia) is satisfied if », becomes
nonincreasing for large |z|, the case occurring in all examples considered in
practice. Moreover, the approach to zero of the density as || increases is in
many cases such that (iif) is satisfied as well.

Thus Propositions 1, 2, 3, show that unbiased estimates of r cannot
exist in many of the frequently encountered cases. For the estimation of
a scale parameter it is natural to require that for ¢ = 1 and 2 the existence
in the finite sense of [ga 2(2)7;(x)u(dz) implies that of [ga A(x)r;(b,x)u(d)
for some open range of b;; in that case condition (iif) may be dispensed with.

5. Application to a testing problem

Let My = {m} : t e T,} and M, = {m}, : ¢ e T,} be two sets of probability
measures on R*, as in the introduction. A measurable function %2 : R* — R}
is called a (strictly) unbiased test of M, against M, of level « if
j'Rﬂ x)m}(de) < o for ¢ in T and [pa h(x)mi(dz) > « for ¢ in T,. There
is a Proposition analogous to Proposmon 1 which gives conditions in which
tests of level « do not exist. The proof is essentially the same as that of
Proposition 1.
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