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Abstract In this paper we study the algebraic structure of the hyperelliptic mapping class group of
Klein surfaces, which is closely related to the mapping class group of punctured discs. This group plays
an important role in the study of the moduli space of hyperelliptic real algebraic curves. Our main result
provides a presentation by generators and relations for the hyperelliptic mapping class group of surfaces
of prescribed topological type.
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1. Introduction

The study of the mapping class group goes back to the classical works of Fricke, Artin,
Magnus, Bohnenblust, Markoff and others. Most of this work concerns the braid group
and the mapping class group of punctured spheres. This group has been extremely use-
ful in understanding the moduli space of hyperelliptic complex algebraic curves because
it is intimately related with the hyperelliptic mapping class group of the hyperelliptic
Riemann surfaces by virtue of the papers by Birman and Hilden [4], Harvey and Maclach-
lan [7] and Zieschang [13]. Our goal in this paper is to study the algebraic structure of
the hyperelliptic mapping class group of Klein surfaces, which, as we will see, is closely
related to the mapping class group of punctured discs. This group plays an important
role, analogous to the one in the complex case, in the study of the moduli space of
hyperelliptic real algebraic curves.

Our main result provides a presentation by generators and relations for the hyperellip-
tic mapping class group of surfaces of prescribed topological type (for the mapping class
group of Riemann surfaces, such a presentation was obtained in [8]).

The article is divided into the following sections. Section 2 is devoted to introducing the
notions and notation we are going to use. In § 3 we establish the relationship between the
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subset of the moduli space, determined by the hyperelliptic Klein surfaces of prescribed
topological type, and its hyperelliptic mapping class group. In § 4 we get a presentation of
the modular group of the group uniformizing the quotient of the Klein surface under its
hyperelliptic involution. This is useful to get a presentation, in § 5, of the relative modular
group or hyperelliptic mapping class group of hyperelliptic Klein surfaces. Finally, we
obtain some applications in § 6; in particular we determine under what conditions the
hyperelliptic mapping class group is finite.

2. Preliminaries

A Klein surface is a surface (orientable or not, with or without boundary) endowed with
a dianalytic structure. Let X be a Klein surface of algebraic genus p > 2 and non-empty
boundary. The surface X is said to be hyperelliptic if it admits a dianalytic involution
φ such that the quotient X/〈φ〉 has algebraic genus zero. It is well known that such an
involution is unique, and it is called the hyperelliptic involution.

Notice that there exists a functorial equivalence between compact hyperelliptic Klein
surfaces and hyperelliptic real algebraic curves (see [1,5]) analogous to the classical one,
and so we can express the obtained results in terms of hyperelliptic real algebraic curves.

The surface X can be written as a quotient X = U/Γ of the hyperbolic plane U under
the action of a surface non-Euclidean crystallographic (NEC) group Γ . The hyperellip-
ticity of X means that the quotient X/〈φ〉 can be uniformized by an NEC group Γ ′

containing Γ as a subgroup of index 2, i.e. X/〈φ〉 = U/Γ ′.
The algebraic presentation of the group Γ ′—or, in other words, the topological data

of the covering X → X/〈φ〉—is determined by a symbol, the signature of Γ ′, which has
the following form:

σ(Γ ′) = (0; +; [2, r. . ., 2]; {(2, s. . ., 2)}), (2.1)

where r and s are non-negative integers, and s is even. That means that X/〈φ〉 is a
topological disc and the covering X → X/〈φ〉 ramifies at r inner points of X/〈φ〉 and s

points in the boundary. In other words, X/〈φ〉 has an orbifold structure (see [12]) with
r conic points and s corner points, and Γ ′ can be considered as the fundamental group
of the orbifold X/〈φ〉.

Let g be the topological genus of X, k the number of connected components of its
boundary, and ε = 2 if X is orientable and ε = 1 otherwise. We call the triple (g, k, ε)
the topological type of X, which determines the integers r, s in (2.1). In fact, it is known
(see [5, ch. 2]) that

if g = 0, then r = 0 and s = 2k;

if g 6= 0 and ε = 2 (and so k < 3), then r = 2g + k, s = 0;

if g 6= 0 and ε = 1, then r = g and s = 2k.

 (2.2)

Note that we always assume that the algebraic genus p = εg + k − 1 of X is greater
than or equal to 2.

For all these general results concerning hyperelliptic Klein surfaces, the interested
reader is referred to [5].
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In classical terms, the mapping class group of an orientable topological surface without
boundary is defined as the group of isotopy classes of orientation-preserving autohome-
omorphisms of the surface. We define the mapping class group of the Klein surface X

as the group of isotopy classes of autohomeomorphisms of the underlying topological
surface. This is isomorphic to the so-called modular group of Γ , defined as

mod(Γ ) =
aut(Γ )
inn(Γ )

,

where aut(Γ ) is the group of automorphisms of Γ and inn(Γ ) is the subgroup consisting
of its inner automorphisms (see [13, Corollary 8.8]).

If X is hyperelliptic, the group

mod(Γ ′) =
aut(Γ ′)
inn(Γ ′)

is called the modular group of Γ ′. Since Γ is a normal subgroup of Γ ′, the group
aut(Γ ′, Γ ), automorphisms f of Γ ′ such that f(Γ ) = Γ , contains inn(Γ ′). The quotient

mod(Γ ′, Γ ) =
aut(Γ ′, Γ )
inn(Γ ′)

is called the relative modular group, or the hyperelliptic mapping class group of fixed
topological type (g, k, ε), and we shall denote it by maph(g, k, ε). The group maph(g, k, ε)
is isomorphic to the mapping class group of the orbifold X/〈φ〉, i.e. the group of isotopy
classes of homeomorphisms preserving the singular points and its type. This approach
will be used in § 4.

3. Moduli of hyperelliptic Klein surfaces

We are mainly interested in determining the group maph(g, k, ε), since it plays a central
role in describing the moduli space of hyperelliptic Klein surfaces. Let us determine the
relation between these two objects, but first we introduce some more notation. Let G be
the group of maps from Ĉ = C ∪ {∞} to Ĉ having the form

z 7→ az + b

cz + d
or z 7→ a′z̄ + b′

c′z̄ + d′
,

where z̄ is the complex conjugate of z; a, b, c, d, a′, b′, c′ and d′ are real numbers;

det

(
a b

c d

)
= 1 and det

(
a′ b′

c′ d′

)
= −1.

For each NEC group ∆, let M(∆, G) be the set of type-preserving group monomor-
phisms ∆ ↪→ G with discrete image (see [7] for the analogous notion for Fuchsian groups).
The Teichmüller space of ∆ is the quotient

T (∆) =
M(∆, G)
∼ ,
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where ∼ is the equivalence relation given by conjugation by elements of G. In particular,
the inclusion i : Γ ↪→ Γ ′ between the NEC groups Γ and Γ ′ uniformizing X and X/〈φ〉,
induces a map

i∗ : M(Γ ′, G)→M(Γ, G) : α 7−→ α ◦ i,

which is compatible with the equivalence relation ∼, and so one gets a map

m : T (Γ ′) −→ T (Γ ) : [α] 7−→ [α ◦ i],

which is an isometric embedding with respect to the Teichmüller metric (see [10]).
The group aut(Γ ) acts in a natural way on T (Γ ), and this action induces the following

map:
mod(Γ )× T (Γ )→ T (Γ ) : ([ϕ], [α]) 7−→ [α ◦ ϕ].

Then, as in the case of Riemann surfaces (see [7, § 4]), the moduli space of hyperelliptic
Klein surfaces of topological type (g, k, ε) is defined as

Mh(g, k, ε) = Λ(Γ )/ mod(Γ ),

where
Λ(Γ ) =

⋃
[ϕ]∈mod(Γ )

[ϕ](m(T (Γ ′))).

On the other hand, the action of mod(Γ ′) on T (Γ ′) restricts to an action of mod(Γ ′, Γ )
on T (Γ ′), and so the quotient T (Γ ′)/ mod(Γ ′, Γ ) makes sense. We are now in a position
to prove the main result of this section.

Theorem 3.1. There exists a homeomorphism between the moduli space Mh(g, k, ε)
and the quotient T (Γ ′)/ mod(Γ ′, Γ ).

So, as in the classical case of Riemann surfaces, the relative modular group mod(Γ ′, Γ )
or the hyperelliptic mapping class group maph(g, k, ε) allows us to present the mod-
uli space of hyperelliptic Klein surfaces of given topological type as a quotient of a
Teichmüller space.

Proof of Theorem 3.1. The map φ : T (Γ ′) → Mh(g, k, ε) defined as φ([α]) =
[m([α])]mod(Γ ) is obviously surjective. Moreover, if φ([α]) = φ([β]) for some [α] and [β] in
T (Γ ′), then [β ◦ i] = [α ◦ i ◦ ϕ] for some ϕ ∈ aut(Γ ), and so there exists g ∈ G such that
α◦i◦ϕ = cg ◦β◦i, where cg denotes conjugation by g. Hence, if j = cg ◦β, then α(i(Γ )) =
j(i(Γ )). This implies, by the uniqueness of the hyperelliptic involution, that the groups
α(Γ ′) and j(Γ ′) coincide, since both are isomorphic to Γ ′ and contain α(i(Γ )) = j(i(Γ ))
as a subgroup of index 2. Thus ψ = α−1 ◦ j ∈ aut(Γ ′, Γ ) and [α ◦ ψ] = [j] = [β].

From the above and Corollary 8.9 and Theorem 9.12 of [10], it follows that the map

φ̂ :
T (Γ ′)

mod(Γ ′, Γ )
−→Mh(g, k, ε),

induced by φ, is a homeomorphism. �
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4. The modular group mod(Γ ′)

As we have already said, our goal in this paper is to compute the group mod(Γ ′, Γ ). This
will be done in the next section and, as a first step in this direction, we now compute
mod(Γ ′).

Let D be the closed unit disc, and let us fix two sets, A1 ⊂ Do = interior of D

and A2 ⊂ ∂D, of cardinality r and s, respectively. Obviously, the set Σ = Σr,s of
autohomeomorphisms ϕ of D, such that ϕ(A1) = A1 and ϕ(A2) = A2, is a group under
composition. Two elements ϕ and ψ in Σ are said to be equivalent, and denoted ϕ ∼ ψ,
if there exists a homotopy

H : I ×D → D,

where I is the closed interval [0, 1], such that H0 = ϕ, H1 = ψ, and for each t ∈ I:

Ht(∂D) = ∂D, Ht(A1) = A1 and Ht(A2) = A2.

The quotient Σ/ ∼ is the modular group modr,s(D) of the punctured disc, and the
following proposition is an easy consequence of the results of Zieschang [13].

Proposition 4.1. The groups modr,s(D) and mod(Γ ′) are isomorphic.

For every s > 2, let us label A2 = {b0, . . . , bs−1}, and let Gs be the group of contiguity-
preserving permutations of A2 (of course, b0 and bs−1 are contiguous). Clearly, G2 is the
cyclic group of order 2 generated by σ : bi 7−→ b1−i, and for s > 2, Gs is the dihedral
group Ds of order 2s generated by the rotation ρ : bi 7−→ bi−1, 1 6 i 6 s−1; b0 7−→ bs−1,
and the symmetry σ : bi 7−→ bs−i−1, 0 6 i 6 s− 1.

From Macbeath [9], the restriction ϕ | A2 of each ϕ ∈ Σ occurs in Gs, and in fact one
gets a group epimorphism

π : modr,s(D)→ Gs : [ϕ] 7−→ ϕ | A2.

To see this, we only need to observe that for a homotopy H : I ×D −→ D with H0 = ϕ

and H1 = ψ, and every point x ∈ A2, the image H(I ×{x}) is a connected subset of A2,
i.e. a unique point yx ∈ A2, and so ϕ(x) = H(0, x) = yx = H(1, x) = ψ(x). Consequently,
Gs is isomorphic to the quotient modr,s(G)/ ker π.

Proposition 4.2. If s > 2, the group mod(Γ ′) = modr,s(D) is a semidirect product
Gs ∝ ker π.

Proof. In order to show that modr,s(D) is a semidirect product of Gs and kerπ it
suffices to define a section ϕ : Gs → modr,s(D) of π. Since ρ and σ are the generators of
Gs (or just σ if s = 2) it is enough to construct ϕ(ρ) = ρ̂ and ϕ(σ) = σ̂. In fact, using
the isomorphism between modr,s(D) and mod(Γ ′), we shall first construct ρ̂ and σ̂ as
elements in mod(Γ ′). For this purpose, let us denote by

{x1, . . . , xr, e, c0, . . . , cs}
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ρ∼

ρ∼ (2)

ρ∼ (3)

ρ∼ (4)

ρ∼ (1)s

1

2

3 r r

Figure 1. The automorphism ρ̃.

a set of canonical generators of Γ ′, where each xi is elliptic of order 2, e is hyperbolic,
each cj is a reflection and

(cjcj+1)2 = 1; x1 . . . xr.e = 1; e−1c0ecs = 1.

We fix this notation throughout the paper.
Let us consider the automorphisms of Γ ′ induced by the assignments:

ρ̂ : xi 7→ xi; e 7→ e; c0 7→ ecs−1e
−1; cj 7→ cj−1, 1 6 j 6 s;

σ̂ : x1 7→ x1; xi 7→ yixiy
−1
i , 2 6 i 6 r; e 7→ e−1; c0 7→ e−1c1e;

cj 7→ cs−j+1, 1 6 j 6 s,

 (4.1)

where yi = x1 . . . xi−1 for 2 6 i 6 r.
Given the point bj+1 ∈ A2 as the intersection of the axes of the reflections cj and cj+1,

then π(ρ̂)(bj+1) is the intersection of the axes of ρ̂(cj) = cj−1 and ρ̂(cj+1) = cj , i.e

π([ρ̂])(bj+1) = bj = ρ(bj),

and so π([ρ̂]) = ρ. Analogously π([σ̂]) = σ, and we say that [ρ̂] and [σ̂] represent ρ and
σ, respectively. Note that [ρ̂]s = [σ̂]2 = 1.

The classes [ρ̂], [σ̂] can be represented as the automorphisms ρ̃, σ̃ of the orbifold
X/〈φ〉 shown in Figures 1 and 2. The automorphisms given by ρ̃ and σ̃ in the orbifold
fundamental group of X/〈φ〉 are exactly ρ̂ and σ̂. �

We shall now obtain a presentation by generators and relations of modr,s(D). For this
purpose we compute ker π and we study first the case s > 2. Then, the elements in kerπ

are represented by homeomorphisms of D (which leave the boundary ∂D invariant),
and fix s > 4 points in ∂D, and so all of them preserve the orientation. Let ∆ =
D \ A1 and Fr be the free group generated by X1, . . . , Xr. The braid group Br of the
plane E2 is the subgroup of the automorphism group aut(Fr) of Fr consisting of those
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    reflection
on the line l
σ~

l

r

Figure 2. The automorphism σ̃.

automorphisms of Fr which fix the product X1 . . . Xr and map each generator Xi to a
conjugate of some generator Xj . If we denote by I(Br) = Br ∩ inn(Fr) the intersection
of Br with the subgroup of inner automorphisms of Fr, Birman [2] proved the existence
of an epimorphism

θ : homeo(∆; ∂∆) −→ Br

I(Br)

from the group homeo(∆; ∂∆) of homeomorphisms of ∆ leaving ∂∆ invariant, onto the
quotient Br/I(Br), whose kernel consists of those homeomorphisms homotopic to the
identity. Thus, since

ker π ≈ homeo(∆; ∂∆)
ker θ

≈ Br

I(Br)
,

it is enough to describe this last quotient. With the notation in Magnus [11]:

Br = 〈δ1, . . . , δr−1 : δiδj = δjδi if |i− j| > 2; δiδi+1δi = δi+1δiδi+1 and 1 6 i 6 r − 2〉;
A∗r =

Br

I(Br)
= 〈δ1, . . . , δr−1 : δiδj = δjδi if |i− j| > 2;

δiδi+1δi = δi+1δiδi+1, 1 6 i 6 r − 2; (δ1, . . . , δr−1)r = 1〉,
where A∗0 = A∗1 is the trivial group. Note also that A∗2 = Z/2Z.

By (4.1) we know how to represent the generators of Ds as elements in mod(Γ ′); to
understand the meaning of the semidirect product Ds ∝ A∗r we must provide an explicit
presentation of the generators δj of A∗r as elements in mod(Γ ′). Let r > 2, and for every
1 6 j 6 r − 1, let αj : Γ ′ −→ Γ ′ be the automorphism induced by the assignment

xj 7→ xj+1; xj+1 7→ xj+1xjxj+1; xi 7−→ xi if j 6= i 6= j + 1;

e 7−→ e; ck 7−→ ck for 0 6 k 6 s.

}
(4.2)
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It is easy to check that αj ρ̂ = ρ̂αj and αj σ̂αj = σ̂. Summarizing, and since A∗r is trivial
if r < 2, we can now give a presentation for modr,s(D) if s > 2.

Theorem 4.3.

(i) If s > 2 and r > 2, then modr,s(D) = Ds ∝ A∗r , where

Ds ∝ A∗r = 〈δ1, . . . , δr−1, ρ, σ : ρs = σ2 = 1; δiδj = δjδi if |i− j| > 2;

δiδi+1δi = δi+1δiδi+1, 1 6 i 6 r − 2; (δ1 . . . δr−1)r = 1;

δjρ = ρδj ; δjσδj = σ, 1 6 i 6 r − 1〉.

(ii) If s > 2 and r < 2, then modr,s(D) = Ds.

Moreover, formulae (4.1) and (4.2) show the way the generators of mod(Γ ′) can be
expressed as (classes of) automorphisms of Γ ′.

The cases s = 2 and s = 0 follow similar arguments as the previous one. We just sketch
the proof, pointing out the specific facts for these cases.

Assume now that s = 2, and let us denote by R the reflection of the disc D whose axis
is the line joining the two points in A2. Each homeomorphism of D whose restriction to
A2 is the identity is homotopic to either R or the identity, and so we get an epimorphism,

η : kerπ −→ Z/2Z : [ϕ] 7−→
{

1, if ϕ is homotopic to R,

0, otherwise,

whose kernel is A∗r . Hence, ker π is a semidirect product ker π = Z/2Z ∝ A∗r . Moreover,
if r > 2, let µ̂ : Γ ′ −→ Γ ′ be the automorphism of Γ ′ induced by the assignment

µ̂ : x1 7→ x1; xi 7→ yixiy
−1
i , 2 6 i; e 7→ e−1;

c0 7→ e−1c1e; ck 7→ c3−k, k = 1, 2,

}
(4.3)

where yi = x1 . . . xi−1.
It is boring, but straightforward, to check that µ̂ is actually an automorphism of Γ ′ of

order 2 such that αjµ̂αj = µ̂, 1 6 j 6 r − 1, where α1, . . . , αr−1 are the automorphisms
of Γ ′ defined in (4.2). Moreover, η([µ̂]) = 1.

Also, with the notation of (4.1), one can check that (σ̂µ̂)2 is an inner automorphism of
Γ ′ (conjugation by xr · xr−1 . . . x1), and so, if µ is the class of µ̂, mod inn(Γ ′), we obtain
that if s = 2 and r > 2, then

ker π = Z/2Z ∝ A∗r = 〈δ1, . . . , δr−1, µ : µ2 = 1, δiδj = δjδi if |i− j| > 2;

δiδi+1δi = δi+1δiδi+1, for 1 6 i 6 r − 2;

(δ1 . . . δr−1)r = 1; δiµδi = µ, 1 6 i 6 r − 1〉.
Consequently, if r > 2,

modr,2(D) = Gs ∝ ker π = Z/2Z ∝ ker π = Z/2Z ∝ (Z/2Z ∝ A∗r).
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Theorem 4.4.

(i) If s = 2 and r > 2, modr,2(D) = D2 ∝ A∗r , where

D2 ∝ A∗r = 〈σ, µ, δ1, . . . , δr−1 : σ2 = µ2 = (σµ)2 = 1, δiδj = δjδi if |i− j| > 2;

δiδi+1δi = δi+1δiδi+1, for 1 6 i 6 r − 2; (δ1 . . . δr−1)r = 1;

δiµδi = µ, δiσδi = σ, for 1 6 i 6 r − 1〉.

(ii) If s = 2 and r 6 1, modr,2(D) = D2.

To finish this section we compute modr,0(D). Each homotopy class in modr,0(D) con-
tains a representative ϕ with a fixed point p ∈ ∂D = S1. Hence, if ϕ∗ denotes the
automorphism of the fundamental group π1(S1) = Z with base point p induced by the
restriction ϕ | S1, one gets an epimorphism

modr,0(D)→ Z/2Z = aut(π1(S1)) : [ϕ] 7→ ϕ∗,

with kernel A∗r (this epimorphism can be described in the same way as η in the case
s = 2). Hence modr,0(D) = Z/2Z ∝ A∗r , where the generator ς of Z/2Z can be seen as
the class, mod inn(Γ ′), of the automorphism ς̂ : Γ ′ → Γ ′ induced by the assignment

x1 7→ x1, xi 7→ yixiy
−1
i , for 2 6 i 6 r; e 7→ e−1; c0 7→ e−1c0e. (4.4)

It is easy to check that δjςδj = ς, and so we have the following theorem.
Theorem 4.5.

(i) If s = 0 and r > 2, then

modr,0(D) = Z/2Z ∝ A∗r
= 〈ς, δ1, . . . , δr−1 : ς2 = 1, δiδj = δjδi if |i− j| > 2;

δiδi+1δi = δi+1δiδi+1, for all 1 6 i 6 r − 2;

(δ1 . . . δr−1)r = 1; δiςδi = ς, for 1 6 i 6 r − 1〉.

(ii) If s = 0 and r < 2, then modr,0(D) = Z/2Z.

5. The hyperelliptic mapping class group maph(g, k, ε)

We have introduced the mapping class group maph(g, k, ε) of hyperelliptic Klein surfaces
of fixed topological type (g, k, ε). The group maph(g, k, ε) is isomorphic to the relative
modular group

mod(Γ ′, Γ ) =
aut(Γ ′, Γ )
inn(Γ ′)

,

which is a subgroup of the modular group

mod(Γ ′) =
aut(Γ ′)
inn(Γ ′)

that we computed in the previous section.
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Let p : Γ ′ → Z/2Z be an epimorphism with ker p = Γ . It is clear that an automor-
phism f ∈ aut(Γ ′) occurs in aut(Γ ′, Γ ) if and only if p ◦ f = p. We use this to prove the
following theorem.

Theorem 5.1.

(i) If s = 0, then mod(Γ ′, Γ ) = mod(Γ ′) = Z/2Z ∝ A∗r .

(ii) If s = 2, then mod(Γ ′, Γ ) = A∗r .

(iii) If s > 2, then mod(Γ ′, Γ ) = Ds/2 ∝ A∗r .

Proof. (i) If s = 0, the epimorphism p is defined by

p : c0 7→ 0; xi 7→ 1; 1 6 i 6 r; e 7→
{

0, if r is even,

1, if r is odd.

With the notation in (4.2) and (4.4) it is easy to check the equalities p ◦ αj = p,
1 6 j 6 r − 1 and p ◦ ς̂ = p. Thus, from Theorem 4.5 it follows that mod(Γ ′, Γ ) =
mod(Γ ′) = Z/2Z ∝ A∗r .

(ii), (iii) Now let s 6= 0. Then p : Γ ′ → Z/2Z is defined by

p : cj 7→
{

1, if j is even,

0, if j is odd,
xi 7→ 1, 1 6 i 6 r;

e 7→
{

0, if r is even,

1, if r is odd.

With the notation of (4.1), (4.2) and (4.3), one easily checks that p ◦ αj = p, 1 6 j 6
r− 1; p ◦ σ̂ = p; but p ◦ ρ̂ 6= p, if s > 2 and p ◦ µ̂ 6= p; p ◦ σ̂ 6= p if s = 2. Thus, if we write
mod(Γ ′) = Ds ∝ A∗r = (Z/sZ ∝ Z/2Z) ∝ A∗r , then mod(Γ ′, Γ ) = Ds/2 ∝ A∗r if s > 2,
and mod(Γ ′, Γ ) = A∗r if s = 2. �

Remark 5.2. Of course, from the proof above the semidirect product Ds/2 ∝ A∗r if
s > 2 is easily presented by generators and relations using the presentations given in
theorem 4.3.

6. Some consequences

(1) If g = 0, then r = 0 and s = 2k > 2, and so the hyperelliptic mapping class group
maph(0, k, 2) = Dk.

(2) If g 6 2 and ε = 1, then

maph(g, k, 1) =


Dk, if g = 1, k > 1,

Z/2Z, if g = 2, k = 1,

Dk ∝ Z/2Z, if g = 2, k > 1.
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(3) Since A∗r is not finite for r > 3 and we just consider Klein surfaces of algebraic
genus p > 2, i.e. εg + k > 3, the cases quoted in (1) and (2) are the only ones in
which the hyperelliptic mapping class group maph(g, k, ε) is finite.

(4) In particular, since every Klein surface of algebraic genus p = 2 is hyperelliptic, the
mapping class groups

map(g, k, ε) ' maph(g, k, ε)×Z/2Z

if εg + k = 3, and since k > 0, from the precedent analysis, it follows that they are
finite unless g = k = 1, ε = 2.

(5) Birman and Chillingworth [3] studied the homeotopy group H(X) of a non-orient-
able surface X, i.e. the quotient H(X) = G(X)/D(X) of the group G(X) of all
autohomeomorphisms of X under the subgroup D(X) of homeomorphisms isotopic
to the identity. In particular, they proved the following theorem (see [3, Theorem 3].

Theorem 6.1 (Birman–Chillingworth). Let X be the sum of three projective
planes. The homeotopy group H(X) of X has the following presentation:

H(X) = 〈A, B, Y : ABA = BAB; Y AY −1 = A−1; Y BY −1 = B−1; Y 2 = (ABA)4 = 1〉.
To finish the paper we give another proof of this result with some extra information.
First of all, notice that h = (ABA)2 has order 2 and it is easy to check that it

is a central element of H(X). Let a, b, y be the classes of A, B, Y mod 〈h〉. Then
(ab)3 = ababab = (aba)2 = 1, and so

H(X) = 〈h〉 ×G(X),

where
G(X) = 〈a, b, y : aba = bab; aya = y; byb = y; y2 = 1, (ab)3 = 1〉.

On the other hand, the NEC group Γ uniformizing X admits a set {z1, z2, z3} of
canonical generations which are glide reflections satisfying the relation z2

1z2
2z2

3 = 1, and

H(X) = mod(Γ ) =
aut(Γ )
inn(Γ )

.

In this case g = 3, k = 0, ε = 1, and so, by (2.2), r = 3, s = 0.
Hence, the group Γ ′ containing Γ as a subgroup of index 2 has a set of canonical

generators {x1, x2, x3, e, c} and the restriction map r : aut(Γ ′, Γ ) → aut(Γ ) : f 7→ f | Γ
is a group isomorphism. However, if x ∈ Γ ′ \ Γ , the inner automorphism

cx : Γ ′ → Γ
′
: ϕ 7→ xϕx−1

is a trivial element in mod(Γ ′, Γ ), but r(cx) induces a non-zero element of mod(Γ ). In
other words, we have a group epimorphism

mod(Γ )→ mod(Γ ′, Γ ) : [f ] 7→ [r−1(f)],
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whose kernel is the group of order 2 generated by the class of r(cx). Consequently

H(X) = mod(Γ ) = Z/2Z ∝ mod(Γ ′, Γ )

and we are going to see that this is, in fact, a direct product.
We remark that the surface X has no boundary, but since it has genus 3, then the

quotient of X by the hyperelliptic involution has boundary and then we can apply The-
orem 4.5. Then

mod(Γ ′, Γ ) = 〈τ, δ1, δ2 : δ1δ2δ1 = δ2δ1δ2; δiτδi = τ, i = 1, 2; τ2 = (δ1δ2)3 = 1〉.
In fact τ , δ1 and δ2 are the classes mod inn(Γ ′) of the following automorphisms of Γ ′

(see (4.2) and (4.4)):

α1 :



x1 7→ x2,

x2 7→ x2x1x2,

x3 7→ x3,

e 7→ e,

c 7→ c;

α2 :



x1 7→ x1,

x2 7→ x3,

x3 7→ x3x2x3,

e 7→ e,

c 7→ c;

τ̂ :



x1 7→ x1,

x2 7→ x1x2x1,

x3 7→ x1x2x3x2x1,

e 7→ e−1,

c 7→ e−1ce.

To compute the restrictions r(α1), r(α2) and r(τ̂) we must write the generators zi of
Γ in terms of the ones of Γ ′. It is not hard to see that

z1 = cx1; z2 = x1cx1x2; z3 = x2x1cx1x2x3.

From this it follows immediately that

z2z3 = x2x3; z1z2 = x1x2; z1z
2
2z3 = x1x3.

These relations are useful to compute the restrictions of α1, α2 and τ̂ which are also
denoted by α1, α2 and τ̂ :

α1 :


z1 7→ z2

1z2,

z2 7→ z−1
2 z−1

1 z2,

z3 7→ z3;

α2 :


z1 7→ z1,

z2 7→ z2
2z3,

z3 7→ z−1
3 z−1

2 z3;

τ̂ :


z1 7→ z−2

3 z−2
2 z−1

1 ,

z2 7→ z1z
2
2z2

3z−1
2 z−1

1 ,

z3 7→ z1z2z
−1
3 z−1

2 z−1
1 .

Moreover, x1 ∈ Γ ′ \ Γ and so the automorphism ĥ of Γ given by ‘conjugation by x1’
is defined by

ĥ :


z1 7→ z−1

1 ,

z2 7→ z1z
−1
2 z−1

1 ,

z3 7→ z1z
2
2z−1

3 z−1
2 z−1

1 .

Now, ĥ commutes with α2 and τ̂ . Moreover, if w = z1z2, then ĥ ◦ α1 = Cw ◦ (α1 ◦ ĥ),
where Cw denotes ‘conjugation by w’. Thus, if h is the class of ĥ mod inn(Γ ), h commutes
with δ1, δ2 and τ , and so

H(X) = (Z/2Z = 〈h〉)×mod(Γ ′, Γ ).
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Notice also that δ1, τ and δ2h generate mod(Γ ), because (δ1 · (δ2h))3 = h. Hence, the
assignment

τ 7→ y; δ1 7→ a; δ2 7→ b

induces an isomorphism between G(X) and mod(Γ ′, Γ ).
In this way we have reproved Theorem 6.1, with an explicit representation of a set of

generators of H(X), which are not those given by Birman and Chillingworth, as classes
of automorphisms of the NEC group Γ that uniformizes X.
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