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ACKERMANN’S FUNCTION IN ITERATIVE FORM:
A PROOF ASSISTANT EXPERIMENT

LAWRENCE C. PAULSON

Abstract. Ackermann’s function can be expressed using an iterative algorithm, which
essentially takes the form of a term rewriting system. Although the termination of this
algorithm is far from obvious, its equivalence to the traditional recursive formulation—
and therefore its totality—has a simple proof in Isabelle/HOL. This is a small example of
formalising mathematics using a proof assistant, with a focus on the treatment of difficult
recursions.

§1. Introduction. The past few years have seen significant achievements in
the mechanisation of mathematics [3], using proof assistants such as Coq and
Lean. Here we examine a simple example involving Ackermann’s function:
on how to prove the correctness of a system of rewrite rules for computing
this function, using Isabelle. The article also includes an introduction to the
principles of implementing a proof assistant.

Formal models of computation include Turing machines, register
machines and the general recursive functions. In such models, computations
are reduced to basic operations such as writing symbols to a tape, testing
for zero or adding or subtracting one. Because computations may terminate
for some values and not others, partial functions play a major role and
the domain of a partial function (i.e., the set of values for which the
computation terminates) can be nontrivial [10]. The primitive recursive
functions—a subclass of the recursive functions—are always total.

In 1928, Wilhelm Ackermann exhibited a function that was obviously
computable and total, yet could be proved not to belong to the class of
primitive recursive functions [10, p. 272]. Simplified by Rózsa Péter and
Raphael Robinson, it comes down to us in the following well-known form:

A(0, n) = n + 1,
A(m + 1, 0) = A(m, 1),

A(m + 1, n + 1) = A(m,A(m + 1, n)).
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In 1993, Szasz [16] proved that Ackermann’s function was not primitive
recursive using a type theory based proof assistant called ALF.

Isabelle/HOL [13, 14] is a proof assistant based on higher-order logic.
Its underlying logic is much simpler than the type theories used in Coq for
example. In particular, the notion of a recursive function is not primitive to
higher-order logic but is derivable. We can introduce Ackermann’s function
to Isabelle/HOL as shown below. The specification invokes internal machin-
ery to generate a low-level definition and derive the claimed identities from it.
Here Suc denotes the successor function for the natural numbers (type nat).
fun ack :: "[nat,nat] ⇒ nat" where
"ack 0 n = Suc n"

| "ack (Suc m) 0 = ack m 1"

| "ack (Suc m) (Suc n) = ack m (ack (Suc m) n)"

It is easy to see that the recursion is well defined and terminating. In every
recursive call, either the first or the second argument decreases by one,
suggesting a termination ordering: the lexicographic combination of < (on
the natural numbers) for the two arguments.

Nevertheless, it’s not straightforward to prove that Ackermann’s function
belongs to the class of computable functions in a formal sense. Cutland
[6, pp. 46–47] devotes an entire page to the sketch of a construction to show
that Ackermann’s function could be computed using a register machine,
before remarking that “a sophisticated proof” is available as an application
of more advanced results, presumably the recursion theorem. This raises the
question of whether Ackermann’s function has some alternative definition
that is easier to reason about, and in fact, iterative definitions exist. But then
we must prove that the recursive and iterative definitions are equivalent.

The proof is done using the function definition facilities of Isabelle/HOL
and is a good demonstration of their capabilities to the uninitiated. But first,
we need to consider how function definitions are handled in Isabelle/HOL
and how the later relates to symbolic logic.

§2. Recursive function definitions in Isabelle/HOL. Isabelle’s higher-order
logic is a form of Church’s simple type theory [5]. As with Church, it is based
on the typed �-calculus with function types (written α → � : Greek letters
range over types) and a type of booleans (written bool). Again following
Church, the axiom of choice is provided through Hilbert’s epsilon operator
�x.φ, denoting some a such that φ(a) if such exists and otherwise any value.

For Church, all types were built up from the booleans and a type
of individuals, keeping types to the minimum required for consistency.
Isabelle/HOL has a multiplicity of types in the spirit of functional
programming, with numeric types nat , int , real , among countless others.
Predicates have types of the form α → bool , but for reasons connected with
performance, the distinct but equivalent type α set is provided for sets of
elements of type α.

Gordon [7] pioneered the use of simple type theory for verifying
hardware. His first computer implementation, and the later HOL Light
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[9], hardly deviate from Church. Constants can be introduced, but they
are essentially abbreviations. The principles for defining new types do not
stretch things much further: they allow the declaration of a new type
corresponding to what Church would have called “a non-empty class given
by a propositional function” (a predicate over an existing type). These
principles, some criticisms of them and proposed alternatives are explored by
Arthan [2].

The idea of derivations schematic over types is already implicit in
Church (“typical ambiguity”), and in most implementations is placed
on a formal basis by including type variables in the calculus. Then all
constructions involving types can be schematic, or polymorphic, allowing
for example a family of types of the form α list , conventionally written
in postfix notation. Refining the notion of polymorphism to allow
classes of type variables associated with axioms—so-called axiomatic type
classes—is a major extension to Church’s original conception, and has
required a thoroughgoing analysis [12]. However, those extensions are
not relevant here, where we are only interested in finite sequences of
integers.

There are a number of ways to realise a logical calculus on a computer. At
one extreme, the implementer might choose a fast, unsafe language such as C
and write arbitrarily complex code, implementing algorithms that have been
shown to be sound with respect to the chosen calculus. Automatic theorem
provers follow this approach. Most proof assistants, including Isabelle, take
the opposite extreme and prioritise correctness. The implementer codes
the axioms and inference rules of the calculus in something approaching
their literal form: providing syntactic operations on types and terms while
encapsulating the logical rules within a small, dedicated proof kernel. This
LCF architecture [8] requires a safe programming language so that the proof
kernel—which has the exclusive right to declare a formula to be a theorem—
can be protected from any bugs in the rest of the system.

Formal proofs are frequently colossal, so most proof assistants provide
automation. In Isabelle, the auto proof method simplifies arithmetic
expressions, expands functions when they are applied to suitable arguments
and performs simple logical reasoning. Users can add automation to Isabelle
by writing code for say a decision procedure, but such code (like auto

itself) must lie outside the proof kernel and must reduce its proofs to basic
inferences so that they can pass through the kernel. In this way, the LCF
architecture eliminates the need to store the low-level proofs themselves, a
vital space saving even in the era of 32 GB laptops.

Sophisticated principles for defining inductive sets, recursive functions
with pattern matching and recursive types can be reduced to pure higher-
order logic. In accordance with the LCF architecture, such definitions are
translated into the necessary low-level form by Isabelle/HOL code that lies
outside the proof kernel. This code defines basic constructions, from which
it then proves desired facts, such as the function’s recursion equations.

In mathematics, a recursive function must always be shown to be
well defined. Non-terminating recursion equations cannot be asserted
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unconditionally, since they could yield a contradiction: consider f(m, n) =
f(n,m) + 1, which implies f(0, 0) = f(0, 0) + 1. Isabelle/HOL’s function
package, due to Krauss [11], reduces recursive function definitions to
inductively defined relations. A recursive function f is typically partial, so
the package also defines its domain Df , the set of values for which f obeys
its recursion equations.1

The idea of inductive definitions should be familiar, as when we say the
set of theorems is inductively generated by the given axioms and inference
rules. Formally, a set I (Φ) is inductively defined with respect to a collection
Φ of rules provided it is closed under Φ and is the least such set [1]. In
higher-order logic, I (Φ) can be defined as the intersection of all sets closed
under a collection of rules: I (Φ) =

⋂
{A | A is Φ-closed}. The minimality

of I (Φ), namely that I (Φ) ⊆ A if A is Φ-closed, gives rise to a familiar
principle for proof by induction. Even Church [5] included a construction
of the natural numbers. Isabelle provides a package to automate inductive
definitions [15].

Krauss’ function package [11] includes many refinements so as to
handle straightforward function definitions—like the one shown in the
introduction—without fuss. Definitions go through several stages of
processing. The specification of a function f is examined, following the
recursive calls, to yield inductive definitions of its graph Gf and domain
Df . The package proves that Gf corresponds to a well-defined function
on its domain. It is then possible to define f formally in terms of Gf and
to derive the desired recursion equations, each conditional on the function
being applied within its domain. The refinements alluded to above include
dealing with pattern matching and handling easy cases of termination, where
the domain can be hidden. But in the example considered below, we are
forced to prove termination ourselves through a series of inductions.

For a simple example [11, Section 3.5.4], consider the everywhere
undefined function given by U (x) = U (x) + 1. The graph is defined
inductively by the rule

(x, h(x)) ∈ GU =⇒ (x, h(x) + 1) ∈ GU .
Similarly, the domain is defined inductively by the rule

x ∈ DU =⇒ x ∈ DU.
It should be obvious thatGU andDU are both empty and that the evaluation
rule x ∈ DU =⇒ U (x) = U (x) + 1 holds vacuously. But we can also see
how less trivial examples might be handled, as in the extended example that
follows.

§3. An iterative version of Ackermann’s function. A list is a possibly empty
finite sequence, written [x1, ... , xn] or equivalently x1 # ··· # xn # []. Note
that # is the operation that extends a list from the front with a new element.

1Since there are no partial functions in higher-order logic, f(x) yields an arbitrary value
if x �∈ Df .
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430 LAWRENCE C. PAULSON

We can write an iterative definition of A in terms of the following recursion
on lists:

n # 0 # L −→ Suc n # L,

0 # Sucm # L −→ 1 #m # L,
Suc n # Sucm # L −→ n # Sucm #m # L,

the idea being to replace the recursive calls by a stack. We intend that a
computation starting with a two-element list will yield the corresponding
value of Ackermann’s function:

[n,m] −→∗ [A(m, n)].

An execution trace for A(2, 3) looks like this:

3 2
2 2 1
1 2 1 1
0 2 1 1 1
1 1 1 1 1
0 1 0 1 1 1
1 0 0 1 1 1
2 0 1 1 1
3 1 1 1
2 1 0 1 1
1 1 0 0 1 1
0 1 0 0 0 1 1
1 0 0 0 0 1 1
2 0 0 0 1 1
3 0 0 1 1
4 0 1 1
5 1 1
4 1 0 1
3 1 0 0 1
2 1 0 0 0 1
1 1 0 0 0 0 1
0 1 0 0 0 0 0 1
1 0 0 0 0 0 0 1
2 0 0 0 0 0 1
3 0 0 0 0 1
4 0 0 0 1
5 0 0 1
6 0 1
7 1
6 1 0
5 1 0 0
4 1 0 0 0
3 1 0 0 0 0
2 1 0 0 0 0 0
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1 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0
3 0 0 0 0 0 0
4 0 0 0 0 0
5 0 0 0 0
6 0 0 0
7 0 0
8 0
9

We can regard these three reductions as constituting a term rewriting
system [4], subject to the proviso that they can only rewrite at the front of
the list. Equivalently, each rewrite rule can be imagined as beginning with
an anchor symbol, say �:

� # n # 0 # L −→ � # Suc n # L,

� # 0 # Sucm # L −→ � # 1 #m # L,
� # Suc n # Sucm # L −→ � # n # Sucm #m # L.

A term rewriting system is a model of computation in itself. But
termination isn’t obvious here. In the first rewrite rule above, the head of
the list gets bigger while the list gets shorter, suggesting that the length
of the list should be the primary termination criterion. But in the third
rewrite rule, the list gets longer. One might imagine a more sophisticated
approach to termination based on multisets or ordinals; these however could
lead nowhere because the second rewrite allows 0 # 1 # L −→ 1 # 0 # L and
often these approaches ignore the order of the list elements.

Although some natural termination ordering might be imagined to exist,2

this system is an excellent way to demonstrate another approach to proving
termination: by explicit reasoning about the domain of definition. It is easy,
using Isabelle/HOL’s function definition package [11].

§4. The iterative version in Isabelle/HOL. We would like to formalise
the iterative computation described above as a recursive function, but we
don’t know that it terminates. Isabelle allows the following form, with the
keyword domintros , indicating that we wish to defer the termination proof
and reason explicitly about the function’s domain. Our goal is to show that
the set is universal (for its type).

2René Thiemann has kindly run some tests using rewrite system termination checkers.
Without the anchors, the rewrite system is non-terminating because rewrite rules can be
applied within a list. With the anchors, no currently existing termination checker reaches a
conclusion.
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function (domintros) ackloop :: "nat list ⇒ nat" where
"ackloop (n # 0 # L) = ackloop (Suc n # L)"

| "ackloop (0 # Suc m # L) = ackloop (1 # m # L)"

| "ackloop (Suc n # Suc m # L) = ackloop (n # Suc m # m # L)"

| "ackloop [m] = m"

| "ackloop [] = 0"

The domain, which is called ackloop dom , is generated according to the
recursive calls. It is defined inductively to satisfy the following properties3:

ackloop dom (Suc n # L) =⇒ ackloop dom (n # 0 # L)

ackloop dom (1 # m # L) =⇒ ackloop dom (0 # Suc m # L)

ackloop dom (n # Suc m # m # L) =⇒ ackloop dom (Suc n # Suc m # L)

ackloop dom [m]

ackloop dom []

For example, the first line states that if ackloop terminates for Suc n # L

then it will also terminate for n # 0 # L , as we can see for ourselves by
looking at the first line of ackloop . The second and third lines similarly
follow the recursion. The last two lines are unconditional because there is
no recursion.

It’s obvious that ackloop dom holds for all lists shorter than two
elements. Its properties surely allow us to prove instances for longer lists
(thereby establishing termination of ackloop for those lists), but how? At
closer examination, remembering that ackloop represents the recursion of
Ackermann’s function, we might come up with the following lemma:

ackloop dom (ack m n # L) =⇒ ackloop dom (n # m # L)

This could be the solution, since it implies that ackloop terminates on the
list n #m # L provided it terminates on A(m, n) # L, a shorter list. And
indeed it can easily be proved by mathematical induction on m followed by
a further induction on n. Ifm = 0 then it simplifies to the first ackloop dom

property:

ackloop dom (Suc n # L) =⇒ ackloop dom (n # 0 # L)

In the Sucm case, after the induction on n, the n = 0 case simplifies to

ackloop dom (ack m 1 # L) =⇒ ackloop dom (0 # Suc m # L)

but from ackloop dom (ack m 1 # L) the induction hypothesis yields
ackloop dom (1 # m # L) , from which we obtain ackloop dom (0 #

Suc m # L) by the second ackloop dom property. The Suc n case is also
straightforward

ackloop dom (ack (Suc m) (Suc n) # L) =⇒ ackloop dom (Suc n # Suc m # L)

It needs the third ackloop dom property and both induction hypotheses.
The details are left as an exercise.

In Isabelle, the lemma proved above can be proved in one line, thanks
to a special induction rule: ack.induct . The definition of a function f in
Isabelle automatically yields an induction rule customised to the recursive

3For clarity, Suc 0 has been replaced by 1 .
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calls, derived from the inductive definition of Gf . For ack , it allows us to
prove any formula P(x, y) from the three premises

∀n P(0, n),

∀m [P(m, 1) =⇒ P(m + 1, 0)],
∀m n [P(m + 1, n) ∧ P(m,A(m + 1, n)) =⇒ P(m + 1, n + 1)].

Using this induction rule, our lemma follows immediately by simple
rewriting:

lemma ackloop dom longer:

"ackloop dom (ack m n # L) =⇒ ackloop dom (n # m # L)"

by (induction m n arbitrary: L rule: ack.induct) auto

Let’s examine this proof. In the induction, P(m, n) is the formula

∀L [ ackloop dom (ack m n # L) =⇒ ackloop dom (n # m # L) ]

In most difficult case, P(m + 1, n + 1), the left-hand side is

ackloop dom (ack (Suc m) (Suc n) # L)

→ (by evaluation)
ackloop dom (ack m (ack (Suc m) n) # L)

→ (second induction hypothesis)
ackloop dom (ack (Suc m) n # m # L)

→ (first induction hypothesis)
ackloop dom (n # Suc m # m # L)

→ (definition of ackloop dom)
ackloop dom (Suc n # Suc m # L)

And this is the right-hand side of P(m + 1, n + 1).
It must be stressed that when typing in the Isabelle proof shown above for

lemma ackloop dom longer , I did not have this or any derivation in mind.
Experienced users know that properties of a recursive function f often have
extremely simple proofs by induction on f.induct followed by auto (basic
automation), so they type the corresponding Isabelle commands without
thinking. We are gradually managing to shift the burden of thinking to the
computer.

§5. Completing the proof. Given the lemma just proved, it’s clear that
every list L satisfies ackloop dom by induction on the length l of L: if l < 2
then the result is immediate, and otherwise it has the form n #m # L′, which
the lemma reduces to A(m, n) # L′ and we are finished by the induction
hypothesis.

A slicker proof turns out to be possible. Consider what ackloop is actually
designed to do: to replace the first two list elements, n and m, by A(m, n).
The following function codifies this point.

fun acklist :: "nat list ⇒ nat" where
"acklist (n#m#L) = acklist (ack m n # L)"

| "acklist [m] = m"

| "acklist [] = 0"
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As mentioned above, recursive function definitions automatically provide
us with a customised induction rule. In the case of acklist , it performs
exactly the case analysis sketched at the top of this section. So this proof
is also a single induction followed by automation. Note the reference to
ackloop dom longer , the lemma proved above.

lemma ackloop dom: "ackloop dom L"

by (induction L rule: acklist.induct) (auto simp: ackloop dom longer)

It is possible to reconstruct the details of this proof by running it interactively,
as was done in the previous section. But perhaps it is better to repeat that
these Isabelle commands were typed without having any detailed proof in
mind but simply with the knowledge that they were likely to be successful.

Now that ackloop dom is known to hold for arbitrary L , we can issue
a command to inform Isabelle that ackloop is a total function satisfying
unconditional recursion equations. We mention the termination result just
proved.

termination ackloop

by (simp add: ackloop dom)

The equivalence between ackloop and acklist is another one-line
induction proof. The induction rule for ackloop considers the five cases
of that function’s definition, which—as we have seen twice before—are all
proved automatically.

lemma ackloop acklist: "ackloop L = acklist L"

by (induction L rule: ackloop.induct) auto

The equivalence between the iterative and recursive definitions of
Ackermann’s function is now immediate.

theorem ack: "ack m n = ackloop [n,m]"

by (simp add: ackloop acklist)

We had a function that obviously terminated but was not obviously
computable (in the sense of Turing machines and similar formal models)
and another function that was obviously computable but not obviously
terminating. The proof of the termination of the latter has led immediately
to a proof of equivalence with the former.

Anybody who has used a proof assistant knows that machine proofs
are generally many times longer than typical mathematical exposition. Our
example here is a rare exception.
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