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NUMBERS OF CONJUGACY CLASSES
IN SOME FINITE CLASSICAL GROUPS

I.G. MACDONALD

In this paper we calculate the number of congugacy classes in the

following finite classical groups: GL (F ) ; PGL (F ) ,

SL (F J , and more generally G\j ) , where G is any algebraic

group isogenous to SL ; PSL [F J ; U [F _J ; PU (F A ,
q n q q

SU (F .) and more generally C(F „) where G is any group

isogenous to SU over F ; and PSU (F _) .

Introduction

Let G be a semisimple algebraic group isogenous to SL and let k

be a finite field. In this paper we calculate the number of conjugacy

classes in the finite group G(k) of Ac-rational points of G , for all

choices of G and k . The result is as follows. If G is the image of

SL under a central isogeny of degree / , and e = n/f , then the number

of conjugacy classes in G(k) is

summed over all pairs of positive integers d , d^ such that d

(respectively d ) divides f and q - 1 (respectively e and q - 1 ),
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24 I.G. MacdonaId

and the notation is as follows:- q is the number of elements in k ; a

is the number of conjugacy classes in GL [k) ; and for any positive

integers n and r ,

• (») = «r T T (i-P'r)

p\n

(product over the primes dividing n ), so that <j> is Euler's

ij)-function.

In particular, the expression

40&-I. *'"""«
gives the number of conjugacy classes in PGL (fc) (respectively SL (k) )

when r = 1 (respectively r = 2 ) . These two formulas were also found by

Wai I [7].

For convenience of exposition, we deal with these two cases first, in

§2 and §3 respectively, and the general case in §1*. We also calculate in §5

the number of conjugacy classes in the simple group PSL (k) . Finally, in

§6, we establish analogous formulas for unitary groups. For example, if

& 2
 i s the quadratic extension of k and if y is the number of

conjugacy classes in the unitary group U (fêJ , the expression

d\(n,q+l)

gives the number of conjugacy classes in PU [k ) (respectively SU (fep) )

when r = 1 (respectively r = 2 ).

We conclude this introduction with a few remarks on notation and

terminology. A partition is any finite or infinite sequence

A = (A , Ag, ...) of integers such that A > Ag > ... > 0 and

|A| = £ A. < « . The non-zero A. are called the parts of A , and we

denote by m.(A) , for each i 2 1 , the number of parts A. equal to i .

If A, y are partitions, A u p denotes the partition for which
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C o n j u g a c y c l a s s e s in f i n i t e g r o u p s 25

m.(\ u p) = m.{\) + m.{]l) , and s i m i l a r l y f o r any s e t of p a r t i t i o n s .
1r If If

Finally, for any finite group G , we denote by e(C) the number of

conjugacy classes in G .

1. Conjugacy classes in GLn(fc)

Let g 6 GL (k) . Then g acts on the vector space k , and hence

defines on k a fe[t]-module structure (where t is an indeterminate)

such that t.v = gv for v (. kn . Let V denote this k[t]-module. It
y

is clear that two elements g, h € GL (X) are conjugate in GL (k) if and

only if the fe[t]-modules V and V, are isomorphic. The conjugacy

classes in GL (k) are therefore in one-one correspondence with the

isomorphism classes of fe[t]-modules V such that

(i) dim,/ = n ,

K.

(ii) tv = 0 implies v = 0 .

Now k[t] is a principal ideal domain, and therefore V is a direct

y

sum of cyclic modules of the form k[t]/(f) , where m 2 1 and / is an

irreducible monic polynomial in k[t] , the polynomial t being excluded,

and (/) is the ideal generated by / in k[t] . Let $ denote the set

of these polynomials. Then we may write

(i.i) v s e *[*]/(/)

where the direct sum is over all f 6 $ and integers i > 1 , and the

exponents satisfy A (/) 2 A (/) 5 ... £ 0 , so that

A(/) = (A1(/), A2(f), ...) is a partition for each / € $ . Since

dim, (&[£]/(/) ) = m deg(/) , the partition-valued function A on $ must

satisfy

(1.2) I |A(/)|deg(/) = n .
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26 I .G. Macdona Id

The conjugacy classes of GL (k) are thus in one-one correspondence with

the partition-valued functions X on $ which satisfy (1.2).

For later use it is convenient to modify this parametrization. Let k

be an algebraic closure of k , and let M = k* he its multiplicative

group. The Frobenius automorphism F : x •* x (where q = Card(fc) ) acts

on M , and the roots in k of a polynomial / € $ form a single F-orbit

in M , and conversely. We may therefore replace X by the partition-

valued function p on M defined by M(X) = \{f) , where / is the

minimal polynomial of x over k . The condition (1.2) becomes

(1.3) I |u(*)| = n

xlM

and moreover p must satisfy

(l.U) li(fts) = p(x)

for all x € M . The conjugacy classes in GL {k) are now parametrized by

partition-valued functions y on M satisfying (1.3) and (l.1*).

The function \i rather than X arises when we decompose the k[t]-
module V = V ®, k , for we have

9 9 K

vA*)
(1.5) v * ® k[t]/(t-x) t'

9 x,i

(direct sum over all x € M and i 2 1 ).

Now define polynomials u. by

(1.6) u. =

where m.(y(x)] is the number of parts equal to i in the partition

u(x) , for each i > 1 . Clearly w.(0) = 1 , and u. € k[t] by virtue of

(l.lt). Moreover, if g € GL (k) is in the conjugacy class parametrized by

y , we have

(1.7) det(l-t^) = *
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Conjugacy c l a s s e s in f i n i t e groups 27

For the character is t ic polynomial of g i s

and therefore

TT(i-**)|lJW| = T W
x$M

The sequence of polynomials u = (w, , u?, ...) determines the

function u by (1.6), and hence the conjugacy class. The u. must

satisfy

(1.8) u. € k[t] , w.(0) = 1 {i > 1)

and

(1.9) £ £ deg u. = n

i>l

(by (1.3) or (1.7)). It follows that the conjugacy classes of GL (k) are

in one-one correspondence with the set of sequences u = [u , «„, ...)

which satisfy (1.8) and (1.9).

If deg(w.) = n . , so that by (1 .7) ,

is a partition of n , we call v the type of the conjugacy class

corresponding to u . In terms of \x , we have

(1.10) v = U \i(x) .
xZM

The number of polynomials u. of degree n. which satisfy (1.8) is

n. n .-1
q V - q if n. > 0 (and is 1 if n. = 0 ) . Hence the number

of conjugacy classes of type v in GL (k) is

n. n.-l

(1-lD % = T T (<? V~q t )
n >0
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28 1.G. MacdonaId

and the total number of conjugacy classes in GL (k) is

(1.12) cn - e(GLn(k)j =

Since q1 - qn~l is the coefficient of t" in {l-t){l-qt)~X , if

n > 0 , it follows from ( l . l l ) and (1.12) that the generating function for

the numbers c is

(1.13)
n=0 r=l 1-qt

This formula i s due to Feit and Fine [ / ] .

If we combine (1.13) with the well-known identity

oo oo -p

we obtain

We can transform this further, as follows. From the identity

fl+at*] = y s,sys+x)/z •

k=X
TT [l-tj) - 1

with a = -t , we obtain

T T [x-tk] = i (-i)Vs+s(s+l)/2rr (I-^)-1

and hence (l.lU) becomes

OO 00

r=0 s=0

y ^_1jSt(s+l)(r+s/2)

= I
r=0

q t -
1-t

from which it follows that c is a polynomial in q of the form
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n r a a-1 . fc+1 &•>
° n = R - W + < ? + . . . + « ? + ? ) + •••

where a = [%(«-l)] , £> = [|w] , and the terms not written at the end have

degree less than b . Also, from Euler's pentagonal number theorem, the

constant term in e is 0 unless n is of the form %m(3"H-l) for some
n

m € Z , in which case a = (-1)

Finally, all the c (n > l) are divisible by q - 1 , as one sees

by putting q = 1 in (1.13).

In Table 1 below we list the polynomials c for 0 £ n S 12 , and in

Table 2 the polynomials a' = a /(q-l) for 1 £ n S 12 .

TABLE 1

= q - 1

= q2 - 1

= q3 - q

= qk - q

5 2
= < 7 - < 7

6 2
= 9 *

- q2 + 1

c
8

 =

C10
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30 I . G . MacdonaId

e'2 = q +

TABLE 2

h o p

c£ = c? + q5 + q - 1

5 I4. -s p

"6 = <r + <? + < r + <?
c ^ = q + <?5 + <? + c?3 - <? - 1

°Q = q1 + q + q5 + q + q3 - q

, 8 7 6 5 1* 2
c ^ = < ? + £ ? ' + q + < 7 + < 7 - <7 - <7

, 9 8 7 6 5 1 + 2
1 0 = £ ? + c ? + c ? + q + 4 + 1 -^

2. PGLjk)

The group k* acts on GL (k) by multiplication, and hence on the

set of conjugacy classes in GL (k) . The conjugacy classes of PGL (k)
n n

may be identified with the orbits of this action. If E, € k* is such that

E,g is conjugate to g in GL (k) , then det(g) = de t (^) = £* det(g) ,

so that t± = 1 .

If the conjugacy class of g in GL (k) is represented by a sequence

u = [u At), uAt), ...) of polynomials as in §1, then the conjugacy class

of E,g is represented by %,u = [uA£,t), uA.l,t), . . . ) .

For each d dividing n , let UJW denote the group of <ith roots

of unity in k . The order of ]iAk) is
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hd = (d, q-l)

(highest common factor). A sequence u = [u At), uAt), ...) is fixed by

y,(k) if and only if £,u = u for all £ € fc* such that ET = 1 , that is

to say if and only if u.(t) € k[t J for all i . It follows that the

number of conjugacy classes in GL {k) fixed by M J W is c ,-, , and

therefore the number for which the isotropy group is exactly Vj(k) is

where \i is the Mobius function and the sum is over al l divisors d' of

n/d . But if the isotropy group is VAk) , the number of elements in the

orbit is (q-l)/h-, . Hence the total number of orbits, that i s , the number

of conjugacy classes in PGL (k) , is

(2.1)

where the sum is over all pairs of positive integers d, d' such that dd'

divides n .

An alternative formula for a is
n

(2.2)

where (J> is Euler's function and the sum is over the divisors d of

(q-l, n) = hn .

This is a consequence of the following lemma. For each positive

integer k and positive integer n we define

(2.3) « (n) = nv Jl [l-p-p)
p\n

where the product on the right is over the prime factors of n; $ (n)
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32 I .G. MacdonaId

is the number of elements of order n in the abelian group (Z/nZ)

When T = 1 , <t>. = $ is Euler's function; when r 2 2 , <(> is Jordan's

generalization of Euler's function.

(2.*0 Let N be a positive integer. Then

dfvin/d) = cj> (n) if n\N ,T (N,
d\n

= 0 otherwise.

Proof. The function d •+ (N, d)V is multiplicative, that is,

v.
{N, dd'f = (N, d)r(N, d'f if (d, d') = 1 . Hence if n = T T p / is

the prime factorization of n we have

I
If n does not divide N , at least one of the factors on the right is

zero. If n divides N , the product on the right is just <J> (n) . //

If we take r = 1 and N = q - 1 in (2.1*), we have

X hMn/d) = 4>(n) if n\q-X ,
d\n d

= 0 otherwise.

Substitution of this result in (2.1) gives (2.2).

From (2.2), the generating function for the numbers a is (with

% -13

(2.5) C{t) = £ ctn = -ij I
n=0 n q L d\q-l

where C(t) is the generating function (1.13).

In Table 3 we list the values of

easily computed from (2.1) and Table 2.

In Table 3 we list the values of C for 1 - n £ 10 . They are
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TABLE 3

q2 + q + h3 - 1

c = qk + q3 + q2 + h - 2

C J, Q O

e"T=<? + q5 + q + q3 - q + h^ - 2

o 2 2 H o 2

- 9 8 7 6 5 , 4 r, \ 3 r , , 2
C 1 0 = q + q + q + q + q hZq + ( • h 2 " 1 ^ + ^h2 ' q

3. SI (k)

For each part i t ion v = (v., . . . , v ) of n , l e t h denote the

highest common factor of q - 1 and V-, \> , , v

(3.1) The number of GL (k)-conjugacy classes of type v contained in

Proof. Consider a conjugacy class e of type v represented as in

§1 by a sequence of polynomials u - (uAt), uJ.t), . . . J , where

n.
u. = a.t x + . . . + 1 (a. € fc*, n. = m.(v)) . From (1.7) , the class e i s

contained in SL (k) ( that i s , i t s elements have determinant 1 ) if and

only if J~[ a1. = (-1)" .

Let S be the set of positive integers i such that n. > 0 , so
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34 1.6. Macdona I d

tha t s = |£ | i s the number of different parts of V . Consider the

homomorphism <f> : (k*) •*• k* defined by

If C and K are the cokernel and kernel of ((> , the exact sequence

1 •+ K •* (k*f + k* * C - 1

shows that \K\ = (q-l)S~ \c\ . Also C is the quotient of k* by the

subgroup generated by the ith powers for all i € S , that is to say by

the v .th powers (1 - j S r) . Hence C is a cyclic group of order
3

h^ , and so |x| = {q-l)S~Xhv . It follows that the number of Gl^k)-

c o n j u g a c y c l a s s e s o f t y p e v c o n t a i n e d i n SL {k) i s

(q-if-\ TT

L {

T

Next we need to know how many SL (fc)-conjugacy classes are contained

in a GL (k)-class. For this purpose we shall use the following lemma:

(3.2) Let G, H be finite groups, 6 : G •* H a surjective homomorphism,

K the kernel of 6 . Let X be a set on which G acts. Then for each

x € X , the G-orbit of x in X splits up into

nx = |Coker (6 | ffj |

K-orbits, where G is the subgroup of G which fixes x .
X

Proof. Since if is a normal subgroup of G , the K-orbits contained

in G.x are permuted transitively by G , and therefore the number of them

is

since K = K n G i s the kernel of S\G . II
X X X

We shall apply (3.2) with G = GL {k) , H = k* and 6 the
n

determinant homomorphism (so that K = SL (fe) J and X = SL (fe) with G
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acting by inner automorphisms.

(3.3) Let g € SL (k) and let Z(g) be the aentralizer of g in

Ghn{k) . If v = [\>x, ..., \>p) is the type of g , then det(z(g)J is

the subgroup P of k* generated by the v th , — , v th powers.

Proof. As in §1, l e t ~V = ~V be the £[i]-module defined by g . We

have

7 = 0 V(x) ,

where

(1) V(x) as _@ *[*]/( t-x) *

is the characteristic submodule of V consisting of the elements of V

killed by some power of t - x .

If h € Z(g) , each submodule V{x) is stable under h and therefore

decomposes relative to the action of h : say

(2) T(x) = 0 7(x, y)

where f(x, y) is the subspace of elements of V(x) killed by some power

of h - y , and is a submodule of 7(x) because ft is a module

automorphism of V . Let IT(X, y) be the type of V{x, y) , so that

(3) V(x, y) a @ £[*]/(*_*) l

i>l

From ( l ) , (2) and (3) i t follows t h a t

u(x) = U ir(x, y)
ytM

and therefore

W v = U u(x) = U ir(ar, y) .

xtM x,y

On the other hand, the determinant of h\v(x, y) is

dim7(x,i/) _ U(x,y)\

https://doi.org/10.1017/S0004972700006882 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700006882


36 I .G. Macdona Id

and therefore

(5) det(fc) =

From (U) and (5) it is clear that det(Tz) € P , for all h € Z{g) .

To show that det[z(g)) is the whole of P , it is enough to show

v .
that we can choose h € Z(g) so that det(h) = £ 3 for any £ € fe* and

any j 2 1 . Suppose that v. = X.(/) in the notation of §1. Then V
3 *• y

v-
has a direct summand isomorphic to k[t]/(f) " , and it is enough to

v .
produce an automorphism of this cyclic module with determinant £ . In

the field k~ = k[t]/(f) , choose an element C, whose norm (from kf to

k ) is £ ; if t, is the image in k~ of a polynomial z(t) i k[t] ,

v.
then multiplication by z{t) will induce an automorphism of k[t]/(f) J

with the required determinant. //

From (3.2) and (3.3) it follows that each GL (fe)-conjugacy class of

type v contained in SL (k) is the union of

Ik* : P j = hv

SL (fe)-conjugacy classes. Hence from (3.1) the total number of conjugacy

classes in SL (k) is
n

(3.10
\\>\=n

Now i t i s clear from ( l . l l ) that i f k divides each part v . of v

we have a' = e ' , , , where v/k i s the par t i t ion (v /k, v Ik, . . . ) .

Hence if we define

e " = To'
n v v

summed over a l l partitions v of n such that the highest common factor
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of V , V , . . . i s 1 , we have

'- " |vi. < •
and therefore by Mobius inversion

n d\n n/d

Now in (3.1*) the possible values of h are h, , for d dividing n ,

and hence {3^} takes the form

~% = d\ h^/d;

that is,

Comparison of (3.5) with (2.1) shows that S is derived from a by

2
replacing each coefficient h, by h, . Hence a for 1 S n < 10 can

a d n
be read off from Table 3.

From (3.5) and (2.k) we deduce an alternative formula for 5 :

(3-6)

summed over all divisors d of (<?-l, n) = h . Hence the generating

function for the 5 (with cQ = 1 ) i s5

(3.7) ~C(t) = I 3 / = -±3- I 4>2W)c(td) -q
n=0 4 k

(since £ * (d) = (^-l)2 ) .

REMARKS. 1. From (3.1) i t follows that the number of GL (fe)-classes
n

contained in SL (k) isn
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Y ho'
IT V V

which by the same argument that led from (3.*») to (3.5) is equal to

d}d,
 hd*d'K/<M>

and hence is equal to a : in other words, the number of GL (k)-classes

contained in SL (k) is equal to the number of conjugacy classes in

PGL (k) . This fact was first observed by Lehrer [2].
n

2. Instead of counting conjugacy classes we could instead have

counted the irreducible representations of SL (k) , using the

parametrization of [3], §5. The details are rather similar to those of

this section and lead (fortunately) to the same result (3.5) or (3.6).

4. Other groups isogenous to SL

Let e, f be positive integers such that ef = n . Let A be the

kernel of the homomorphism 6 : GL x GL -+• GL defined by

6{g, x) = x~edet(g) ,

and let B be the image of the homomorphism e : GL •+ GL x GL defined

ln, a/j .

Then B i s isomorphic to GL , and i s a closed normal subgroup of A

Let G = A IB .e e e

The mapping g •*• (g, l) embeds SL in A , hence defines a
ft &

homomorphism SL •+ A -»• G , which i s easily seen to be surject ive, with
Yt G 6

kernel y~. 1^ , where y, is the group of fth roots of unity. Hence G

is a connected algebraic group isogenous to SL . In particular,

£, = PGL and G = SL .
I n n n
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How let k be a finite field, and consider the group A (k) of

fe-rational points of the algebraic group A& . We define the type of an

element (g, x) in GL (fe) x k* (or of its conjugacy class) to be the

type of g (hence a partition of n ).

(U.I) For each partition v = (v1> ..., vy) of n , the number of

conjugacy classes of type v in Ag(k) is

where h is the highest common factor of q - 1, e , and v^, ..., vp .

Proof. The same argument as in (3.1) shows that the number of

GL {k) x fc*-conjugacy classes of type v contained in A {k) is h c .
ft 6 & j V v

Next, by applying the lemma (3.2) to the homomorphism

6 : GL (k) x k* •*• k* , we see that the GL (k) x fe^-conjugacy class of an

element (g, e) t A (k) of type v splits up into |Coker (6 \-Z(g) x k*) \

Ag(k)-conjugacy classes. By (3.3), the group &[Z{g) x k*) is the

subgroup P of k* generated by the v th, ..., v th and eth

powers, and therefore

|Coker(6|Z(?) x k*) | = [k* : PgJ = h&^ . //

We have now to pass from A {k) to the group G (k) . Since B is

connected, it follows from Lang's theorem ([5], §10) that

G(k) s A (k)/B(k) s AJk)/k* . The conjugacy classes of G {k) may

therefore be identified with the orbits of k* acting on the set of

conjugacy classes of A (k) , the action of k* on A (k) being given by

£.(«?, x ) = (C<?, E,fx) .

If £ € k* fixes the class of (g, x) in A (k) , we must have

x = E, x , so that £ € R~(fc) . As in §2, if the conjugacy class of g in

GLn(k) is represented by a sequence u = [uAt), uj.t), ) of

polynomials u. € k[t] , then the conjugacy class of tg is represented by
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%,u = [u (££), u2(££) , . . . ) ; also deg u^ = mj.v) where v i s the type

of g .

Suppose that P J ( ^ ) > where d i s a divisor of / , fixes the

conjugacy class of {g, x) in A (k) . Then each u. must be a
6 1
6

polynomial in t , and therefore d divides each m.(v) . Let d\v

denote the partition of n/d such that m.(d\v) = m.(v)/d . Since v and

d\\> have the same parts (with different multiplicities), we have

h = h ,> . Hence the number of A (k)-conjugacy classes of type V
& y V 6 yd W 6

f o r w h i c h t h e i s o t r o p y g r o u p i s e x a c t l y U J ( ^ ) i s , b y ( U . l ) ,

summed over all divisors d' of fid such that dd' divides each w.(v

(so that the partition dd'\v is defined). Since |Uj(&) | = h-, , there

are {q-l)/h, elements in each orbit, and hence the total number of

conjugacy classes in the group G (k) is

in which the first sum is over all partitions v of n , and the second is

over all pairs of positive integers d, d' such that dd' divides / and

each m.(v) . By (2.U), the expression (1*.2) is equal to

C».3)
|vj=n ' dx 1

where d. runs through the common divisors of f, q - 1 and the w.(v)

Since h = /i , % , (̂ -3) can be rewritten in the form

where cL runs through the divisors of hn. and v through the partitions
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of n/d . As in §3, the inner sum is equal to

\

where do runs through the divisors of h . Hence

{k.k) The number of aonjugaay classes in the group G {k) is

a{Geik)] 'did

summed over pairs of positive integers d , d such that d divides hj.

and d- divides h .
2 e

REMARKS. 1. When f = 1 and e = n (respectively e = 1 and

f=n) the group G (k) is SL (k) (respectively PGL (k) ), and the

expression (4.U) reduces to (3.6) (respectively (2.2)).

2. From ('t.'O and (2.it) we deduce an alternative formula for

o[Ge{k)) :

summed over a l l quadruples a , a~, b , b of positive integers such that

aia2fc1^2 d i v i d e s n > where h^ ~ (respectively h, ) i s the highest

common factor of b , f and q - 1 (respectively b , e and q - 1 J.

When e = n and / = 1 (respectively e = 1 and / = n ) , the formula

(!*.5) reduces to (3.5) (respectively (2 .1) ) .

3. The group GL(k) acts by inner automorphisms on A (fe) :
ft Q

h.(g, x) = (hgh~ , x) . This action fixes B (k) pointwise, and hence

defines an action of GL(k) on the group GIk) . The method used to

prove (!».!*) shows that the number of GL (fc)-orbits in G (k) is
Tl 6

dVd2
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summed over pairs of positive integers d , d such that d divides h.

and d divides h . Since (1».6) is unaltered by interchange of e and
2 &

f , i t follows that the number of GLw(fc)-orbits is the same in Gg(k) and

G~{k) . This result generalizes Remark 1 of §3.

For a related result , see Lehrer [2].

5. PSL (k)n

Let PSL (k) denote the quotient of SL (k) by its centre

y (&).l . The conjugacy classes of PSL (k) may be identified with the

orbits of \l (k) acting on the set of conjugacy classes of SL (k) . From

§3, the number of conjugacy classes of type v in SL (fe) is h a^ , for

each partition v of n . It follows as in §1* that the number of SL (fe)-

classes for which the isotropy group is vJ^k) , where d is a divisor of

n , is

summed over all divisors d' of n/d such that dd' divides each

m.(v) . The number of elements in each orbit is (y (k) : vAk)) = h /h, ,

and hence we obtain the total number of conjugacy classes in PSL (k) :

o = cfPSL (fc)l = ̂- T h2 Y hMd')o',s
n n n K |vT=n v d%> d M Xv

in which the first sum is over all partitions v of n , and the second is

over all pairs of positive integers d, d' such that dd' divides n and

each m.(v) . This formula can be turned around in the same way as in §U

to give

summed over all pairs of divisors d , d^ of q - 1 such that d dp

divides n ; and equivalently
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(S 2) C = •*' * / U \a \M\O, I rl-t fl-t Cf . T. i_
Yl h i_ i_ 1 2 t? O YllCL CLr\D On

71 CL 9Ci 9D jD 1 2 1 2 1 2

summed over all quadruples a , a^, b , i>2 of positive integers such that

a aj> b divides n .

In Table h below we list the values of 3 for 1 £ n £ 8 ; these

are straightforward to calculate from (5-2) and Table 2.

TABLE 4

i

Sc = T~ q •W°+tT+7fc1.-8

C 6 =

^8

6. Unitary groups

Let kg be the unique quadratic extension of k contained in k .

The unitary group U (&„) is the subgroup of all g (. GL (&„) such that

Fg = V 1 , where (Fg)^. = ̂ . .

(6.1) Every aonjugacy class of G = GL (fe) which intersects U = U (fep)

does so in a single conjugacy class of V .
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Proof. Let 0" be the endomorphism of G defined by g = (Fg)~ ,

so that U is the group of fixed points of O . Suppose that u € U and

g € G are such that gug~ € V ; we have to show that u and gug~ are

conjugate in U .

Since gug~ € U , we have gug~ = g ug~ , so that g~ g 6 G , the

centralizer of u in G . Now centralizers in G are connected ([4],

III, 3.22), and a(<? ) c G because u = u° ; since the kernel of a is

finite it follows that o\G is surjective, and hence by Lang's theorem

([5], §10) the mapping h •*• h~ h from G to G is surjective. Hence

we have g~ g = h~ h for some h € G , which shows that u = gh~ € U

and therefore gug = gh uhg = vuv . Hence u and gug are

conjugate in U . //

In particular, if two elements of U [k ) are conjugate in GL (k ) ,

they are conjugate in £/ [k ) . It follows that the conjugacy classes of

V [k2) are parametrized bijectively by the partition-valued functions u

on M = H* which satisfy (1.3) and u(x"^) = u(x) for all x € M in

place of (l.U) . Equivalently, as in §1, each conjugacy class of U (kj\
n v 2'

may be represented by a sequence of polynomials u = [u At), u (t), . . . )

with coefficients in k- which satisfy (1.9) and are such that w.(0) = 1

and the set of roots of each ' u. i s stable under x •*• x~^ (in place of

( l . 8 ) J . We define the type v 'of a conjugacy class in U (&„) as in §1

n l n2
t o be the par t i t ion (l 2 . . . ) of n , where n . = deg u. . I t i s

eas i ly seen that the number of poss ib i l i t i es for u. of degree n. i s

n. n .-1
qV + qV if n. > 0 (and 1 if n. = 0 ) , so that the number of

conjugacy classes of type v in U [k ) is
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n. n .-1

(6.2) Y = T 7 to v*q ̂ )

or equivalently

(6.2M Yv -

where l(v) is the number of parts of V and p(v) is the number of

unequal parts. Hence the total number of conjugacy classes in U [k J is

(6.3) Yn = o[Un(k2)) - ̂  yv .

Since q1 + q1'1 is the coefficient of tn in (l+t)/(l-qt)'1 , if

n > 0 , it follows from (6.2) and (6.3) that the generating function for

the numbers y is

(6.U) ru) = / ^

n=0 r=i l-^t

This formula is due to Wall [6].

Each Y (n 2 l) is a polynomial in q , divisible by (q+l) , as

one sees for example by putting q = -1 in (6.U). Let y' = y /(q+l) , so

that from (6.2') and (6.3) we have

(6.5) Y' = I ^ V u
|v|=n

In Table 5 (p. ^6) we list the polynomials Y' for 1 £ n < 10 . They are

easily calculated from the formula (6.5).

The formulas of §§2-5 all have their analogues for the unitary groups.

Since the proofs are the same, we shall merely state the results.

For any positive integer d , let n , denote the highest common

factor of d and q + 1 .

(i) P t L ^ ) • Corresponding to (2.1) we have

(6.6) \ = c{vvn[k
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summed over all pairs of positive integers d, d' such that dd' divides

n , or alternatively

(6.7) \-

summed over the divisors d of n = (n, q+1) . Hence the generating

function for the y is (with yQ = 1 )

(6.8) r(t) = I ynt
n = ̂ - I Hd)v[td) ,

n=0 H d\q+l

where T(t) i s the generating function (6.U).

TABLE 5

Y { - 1

y^= q + 1

y^ = q2 + q + 2

Y^ = q3 + q2 + 3q + 2

y£ = q1* + <73 + 3q2 + Ufl + 3

y's = q + q + 3<? + 5q + 6q + h

y' = c?6 + q5 + 3qU + 5<?3 + 8c?2 + % + 5

Y^ = q1 + q 6 + 3q5 + 5c?1* + 9q3 + 12q2 + 13<7 + 6

Y' = q + q1 + 3q + 5q5 + 9q + lU^3 + 19^2 + VJq + 8

Y i o = q9 + q 8 + 3 q 7 + 3q6 + 9 £ ? 5 + 15qk + 2 a ? 3 + 2 7 q 2 + 23q + 1 0

( i i ) SU (?c2) . In p l a c e of (3 .5 ) and (3 .6) we ob ta in

(6.9) YM = o[8Un[kJ) - ^ ^

- — 2
so that Y i s obtained from y by replacing each n . by IT, , and
equivalently
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(6.10) Y. = E «

summed over the divisors d of ri Consequently the generating function

for the Y is [with yn = 1 1n 0 '

(6.11) fit) = H / = i I *2ld)T[t
d) - q .

n=0 n q X d\q+l d

(iii) Groups isogenous to SO . If T is the quotient of SU by

its central subgroup isomorphic to V- (where ef = n as in §U) then in

place of (U.I*) we find

l d

summed over pairs of positive integers d. , d. such that d divides n̂ -

and d divides n .

(iv) PSU [k ) . This is the quotient of SU [k ) by its centre, and

in place of (5.1) the number of its conjugacy classes is

(6.13) yn = «(PSUn(/g) d ld *{*J

summed over all pairs of divisors d , d of q + 1 such that

divides n .
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