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NUMBERS OF CONJUGACY CLASSES
IN SOME FINITE CLASSICAL GROUPS

I.G. MacponALD

In this paper we calculate the number of congugacy classes in the

following finite classical groups: GLn(Fq] ; PGLn(Fq)’
SLn(FqJ , and more generally G[Fq) , Where (G 1is any algebraic
group isogenous to SL_ ; PSLn[Fq) ; Un[F o) s PUn(F 2) s
q q
SUn(F 2) and more generally G(F 2) where G 1is any group
q q

isogenous to SU ~ over Fq ; and PSUn(qu]

Introduction
Let (¢ be a semisimple algebraic group isogenous to SLn and let k

be a finite field. In this paper we calculate the number of conjugacy
classes in the finite group G(k) of k-rational points of G , for all
choices of G and k . The result is as follows. If G is the image of

SLn under a central isogeny of degree f , and e = n/f , then the number

of conjugacy classes in G(k) is

(q-l)—l (dl)¢2ﬁ12]cn/dld2

r ¢
1

dl’d2

summed over all pairs of positive integers dl, d2 such that dl

(respectively d2 )} divides f and q - 1 (respectively e and qg-1),
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24 |.G. Macdonald

and the notation is as follows:- ¢ is the number of elements in k ; cn
is the number of conjugacy classes in GLh(k) ; and for any positive
integers n and r ,
0p(n) =" TT (1¢7)
pln
(product over the primes dividing n ), so that ¢l is Euler's

¢-function.

In particular, the expression

(g-1)7% ¢ (d)e
¥ dl(ngq-l) rnyd

gives the number of conjugacy classes in PGLn(k) (respectively SLn(k) )

when r =1 (respectively r =2 ). These two formulas were also found by
wall [7].

For convenience of exposition, we deal with these two cases first, in
§2 and §3 respectively, and the general case in §4. We also calculate in §5

the number of conjugacy classes in the simple group PSLn(k) . PFinally, in

§6, we establish analogous formulas for unitary groups. For example, if

k is the quadratic extension of kX and if Yn is the number of

2

conjugacy classes in the unitary group Un(k2J , the expression
(@™ T ey, ,
d|(n,q+1)
gives the number of conjugacy classes in PUn(kg] (respectively SUn(kzl ]
when r =1 (respectively r =2 ).
We conclude this introduction with a few remarks on notation and
terminology. A partition is any finite or infinite sequence
A= (Al’ Aps ...) of integers such that Al ZA,2...20 and
|A| = Z:Ai < «© ., The non-zero Ai are called the parts of A , and we
denote by mi(A) , for each 7 2 1 , the number of parts Aj equal to 7 .

If A, u are partitions, A U u denotes the partition for which
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Conjugacy classes in finite groups 25

mi(A u )= mi(X) + mi(U) , and similarly for any set of partitions.

Finally, for any finite group G , we denote by ¢(G) the number of

conjugacy classes in G .
1. Conjugacy classes in GLn(k)

Let g € GLn(k) . Then g acts on the vector space kn , and hence

defines on k7 a k[t)-module structure (where ¢ is an indeterminate)
such that t.v = gv for v € kn . Let Vé denote this k[t]-module. It
is clear that two elements g, A € GLn(K) are conjugate in GLn(k) if and
only if the k[t]-modules Vé and Vh are isomorphic. The conjugacy
classes in GLn(k) are therefore in one-one correspondence with the
isomorphism classes of k[t]l-modules V such that

(i) dimkV =n,

(ii) tv = 0 implies v =10 .

Now k[t] is a principal ideal domain, and therefore Vé is a direct

sum of cyclic modules of the form k[£1/(f)" , where m>1 and f is an
irreducible monic polynomial in k[t] , the polynomial ¢ being excluded,
and (f) is the ideal generated by f in k[t] . Let ¢ denote the set

of these polynomials. Then we may write

A (F)
(1.1) V= @ k[t]l/(f)
g f.i

2

where the direct sum is over all f € & and integers 7 = 1 , and the

exponents satisfy Al(f) > A2(f) > ... 20, so that

MSF) = (Xl(f), Xg(f), ...) is a partition for each f € & . Since

dimk(k[t]/(f)m) = m deg(f) , the partition-valued function A on ¢ must

satisfy

(1.2) Y M) |deg(f) =n .
fed
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26 | .G. Macdonald

The conjugacy classes of GLn(k) are thus in one-one correspondence with

the partition-valued functions A on ¢ which satisfy (1.2).

For later use it is convenient to modify this parametrization. Let k

be an algebraic closure of k , and let M = k* ve its multiplicative

group. The Frobenius automorphism F : x + x7 (where g = Card(k) ) acts
on M , and the roots in k ofa polynomial f € ¢ form a single F-orbit
in M , and conversely. We may therefore replace A by the partition-

valued function Y on M defined by u(x) = A(f) , where f is the

minimal polynomial of x over k . The condition (1.2) becomes
(1.3) Y Julz)] =n
xeM

and moreover | must satisfy

(1.4) u(Fx) = u(x)

for all x € M . The conjugacy classes in GLn(k) are now parametrized by
partition-valued functions u on M satisfying (1.3) and (1.4).

The function u rather than A arises when we decompose the k(t1-
module Vg = Vg ®k k , for we have

— _ u(z
(1.5) V= ® k[t]/(t-x)
g x,%

(direct sum over all x €M and < =1 ).

Now define polynomials ui by

m (u(x))
(1.6) u, = [T (1-tx)
T€M
where m, (u(x)) is the number of parts equal to % in the partition
u(z) , for each 72> 1 . Clearly ui(O) =1, and u, ¢ k[t] by virtue of

{(1.4). Moreover, if g € GLn(k) is in the conjugacy class parametrized by

U , we have

(1.7) det(1-tg) = | | ui(t)i .

=1
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Conjugacy classes in finite groups 27

For the characteristic polynomial of g is

det(t-g) =T | f(t)lx(f7| - T-T'(t_x)lu(x)l
fFeo zeM

and therefore

det(1-tg) = 1-1'(1-tx)|”(x)| = T_T'ui(t)i .
xeM i1

The sequence of polynomials u = (ul, U ..] determines the

2’
function M by (1.6), and hence the conjugacy class. The u; must

satisfy
(1.8) u, €k[t] , ui0)=1 (£21)
and

(1.9) Y 1 deg u, =n

=1
(by (1.3) or (1.7)). It follows that the conjugacy classes of GLn(k) are
in one-one correspondence with the set of sequences u = (uI, u2, ...)

which satisfy (1.8) and (1.9).

if deg(ui) =n, , so that by (1.7),
n.on
v=[122..)

is a partition of n , we call Vv the type of the conjugacy class

corresponding to u# . In terms of u , we have

(1.10) v= U plz) .
xeM

The number of polynomials u; of degree n. which satisfy (1.8) is

n. n.-1
q“-q® it m;>0 (andis 1 if n,=0). Hence the number

of conjugacy classes of type Vv in GLn(k) is

(1.11) =TT [@a°4 %)

https://doi.org/10.1017/50004972700006882 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700006882

28 1.G. Macdonald

and the total number of conjugacy classes in GLn(k) is

(1.12) e = clGL (k)] = e
(oL, (%)) v}E

n v
=n

Since q" - "' is the coefficient of ' in (1-t)(1-q#)™> , if
n >0 , it follows from (1.11) and (1.12) that the generating function for

the numbers cn is

- n 2 1-t”
(1.13) c(t) = ¥ et = =
n=0 r=1 1-qt

This formula is due to Feit and Fine [1].
If we combine (1.13) with the well-known identity
TT -1 ~,—|—r ky-1
(l“qt ) Z q (l—t ) >
k=1
we obtain
b k
r.r
(1.1k) c(e) = Y gt [ (a-t%)
r=0 k>r
We can transform this further, as follows. From the identity

had 8 .
TT (ead) = F a6 D/2TT (-7

s§20 J=1

r
with a = ~t" , we obtain

]_T-(l-th =T _1)5rsYe (s+1)/2 TﬁT'[l-tj)-l

k>r s20 J=1

and hence (1.14) becomes

"
8

[=-]
c(t) qr Z (-1) s (s+1)(r+s/2) T—T (1 tJ
r=0 =0 J=1
= E - ikl . gt
r=0 1-t (1-¢) (1-¢7)

from which it follows that cn is a polynomial in ¢q of the form
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e =q - (q

a a-1 b+l b
a +q )

+ ... +¢q +q
where a = (%(n-1)] , b= [%n] , and the terms not written at the end have
degree less than b . Also, from Euler's pentagonal number theorem, the

constant term in cn is O wunless n is of the form #%m(3m+l) for some
. . m
m € Z , in which case e, = (-1)" .

Finally, all the cn (n 2 1) are divisible by q - 1 , as one sees

by putting g =1 in (1.13).
In Table 1 below we list the polynomials cn for 0=n =12 , and in

Table 2 the polynomials c¢' = cn/(q—l) for 1 sn <12 .

'
n

TABLE 1
co =1
cl =q -1
ey = q2 -1
- 3
03 q -4
_ b
¢, =49 -4
Cc = q5 - q2 -qg+1
5
o = b _ 2
-4 -4
e = qT _ q3 _ q2 +1
T
_ 8 3 2
08 =q -q -9 *q
L
09 = 49 -q - q3 +q
c=10 Y 3,
10 q -q -9 q
11 4 2
cll =q - qS -q - 43 +q +gq
12 Y 2
012 =q - qS -q +qg +q-1
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TABLE 2
ci =1
el =q+1
ey = q2 +q
ey = @ +q°+q
b 3 2

cg=q +q +q -1

cé = q5 + qh + q3 + q2

eq = Lrdrd v

6 4
eg = g +a®+q +qa +q>-q

8 6 o2
cg = q * P g -4 - q

8 6 L o2
o = Prqa+qd +q+@+q -q -q

10 8 6 2
00+ v +q 4P - -2 - g

o
[}

e[y = R SN LR LR LN L L UL}
. k
2 PGLn( )
The group k* acts on GLn(k) by multiplication, and hence on the
set of conjugacy classes in GLn(k) . The conjugacy classes of PGLn(k)
may be identified with the orbits of this action. If £ € k* 1is such that

£g 1is conjugate to g in GOL (k) , then det(g) = det(Zg) = £* det(g) ,

so that €' =1 .

If the conjugacy class of g in GLn(k) is represented by a sequence
u = (ul(t), u2(t), ...) of polynomials as in §1, then the conjugacy class
of &g 1is represented by Eu = [ul(gt), ue(gt), o)

For each d dividing n , let “d(k) denote the group of dth roots

of unity in k . The order of ud(k) is
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hd = (d, q-l)

(highest common factor). A sequence u (ul(t), ue(t), ...) is fixed by

ud(k) if and only if &u = u for all £ € k* such that Ed =1, that is

to say if and only if ui(t) € k[td] for all < . It follows that the

number of conjugacy classes in GLn(k) fixed by ud(k) is ¢, 4 and

therefore the number for which the isotropy group is exactly ud(k) is
1]

dZ' ud"e, a0

where p is the Mobius function and the sum is over all divisors d’ of

n/d . But if the isotropy group is ud(k) , the number of elements in the
orbit is (q—l)/hd . Hence the total number of orbits, that is, the number

of conjugacy classes in PGLn(k) , is

(2.1) ¢, = c(pcL, (k) =§ Y uld"e, g0

hdu(d’)cr;/ddy )

where the sum is over all pairs of positive integers d, d’ such that dd’

divides n .

An alternative formula for Z# is

(2.2) En =§¢(d)cé/d

wvhere ¢ 1is Euler's function and the sum is over the divisors d of

(g-1, n) = hn .

This is a consequence of the following lemma. For each positive

integer k and positive integer n we define
(2.3) 6,(n) = n" TT' (1-277)
pln

where the product on the right is over the prime factors of n; ¢r(n)
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r
is the number of elements of order 7 in the abelian group (Z/nZ) .

When r =1 , ¢l = ¢ 1is Euler's function; when r = 2 , ¢r is Jordan's

generalization of Euler's function.

(2.4) Let N be a positive integer. Then

(v, uln/d) = ¢_(n) if nlv,
d%; r

0 otherwise.

Proof. The function d =+ (N, d)* is multiplicative, that is,

V.
(v, dd")" = (#, d)"(w, d")" if (d, d’') =1 . Hemce it n =T ]p," is
7

the prime factorization of #»n we have

z

» vi r vi—l r
(N, d)'win/d) =] [IV, D. ) —[N, P )
dTn i i
If n does not divide N , at least one of the factors on the right is
zero. If n divides N , the product on the right is just ¢r(n) . //
If wve take r» =1 and N =q -1 in (2.4), we have

% h(n/d) = ¢(n) if nlg-1 ,
din

=0 otherwise.
Substitution of this result in (2.1) gives (2.2).
From (2.2), the generating function for the numbers Z; is (with

ey =1)

(2.5) T(t) = S gt L s(dyc (4
: ngo " a-1 dlﬁy\:-l (9

where C(t) is the generating function (1.13).

In Table 3 we list the values of Cn for 1 =n =10 . They are

easily computed from (2.1) and Table 2.
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TABLE 3
e =1
Eé =q + h2
Eé = q2 +q+ h3 -1
EL = q3 + q2 + h2q + hh -1
25 = qh + q3 + q2 + h5 -2
Eé =q° + qb + q3 + h2q2 + (h2+h3-2]q + hg - hy
E} = q6 + q5 + qh + q3 -q + h7 -2

_ 6 y 2
= +a @ v +hg v (hr1)a” 4 (-2la + By - A

e q8 + q7 + q6 + qS + qh + (h3—2](q2+q] +h -h

9 9 3
- 8 6 4 2
¢ = q9 +q + qT +q + q5 + h2q + (hg-l)q3 + (h2-2)q
+ (hs-z)q + {np-2h,41)
3. Sln(k)
For each partition v = (vl, ey vr) of n , let hv denote the
highest common factor of ¢ -1 and v, v2, ey vr .

(3.1) The nwmber of GLn(k)-conjugacy classes of type v contained in
3 ! = -
s (k) s hel =he /(q 1) .
Proof. Consider a conjugacy class ¢ of type VvV represented as in
§1 by a sequence of polynomials u = (ul(t), u2(t), ...} , where

n.

7
u, = ait + ...+ 1 (ai € k*, n, = mi(v)) . Prom (1.7), the class ¢ is

contained in SLn(k) (that is, its elements have determinant 1 ) if and
only if | a; = (<) .
71

Let S be the set of positive integers <7 such that ni >0, so
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that s = |S| is the number of different parts of v . Consider the

homomorphism ¢ : (k*)® + k* defined by
n i
(@);es> 1" TTay .
If C and K are the cokernel and kernel of ¢ , the exact sequence
1K+ (k)% >kt >01

shows that |K| = (q-l)s-l]CI . Also C 1is the quotient of k* by the
subgroup generated by the <th powers for all < € S , that is to say by
the vjth powers (1 =j =»r) . Hence C is a cyclic group of order

h, , and so x| = (q-l)s-lhv . It follows that the number of Gln(k)-

conjugacy classes of type V contained in SLn(k) is

n.-1
-1
(¢-1)%n TTq® =he,/(g-1) . /1
v i vV
€5

Next we need to know how many SLn(k)—conjugacy classes are contained
in a GLn(k)—class. For this purpose we shall use the following lemma:
(3.2) Let G, H be finite groups, 6 : G > H a surjective homomorphism,
K the kermel of &8 . Let X be a set on which G acts. Then for each
x € X, the G-orbit of x in X splits up into

n, = ICoker(GlGx)l
K-orbits, where Gx 18 the subgroup of G which fizxes x .

Proof. Since K 1is a normal subgroup of G , the K-orbits contained

in (G.x are permuted transitively by G , and therefore the number of them

is
G/G_|
le.z| _ 19780 gk ]_J(ﬂj_r
n, = = = = = |coker (8|6 ) |
x  |K.x| ]K/K;T' ]Gx/Kx] (G, )
since K =K n Gx is the kernel of 6|Gx . //

We shall apply (3.2) with G = GLn(k) , H=k* and & the

determinant homomorphism (so that K = SLn(k) ) and x = SLn(k) with G
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acting by inner automorphisms.
(3.3) Let g € sSL (k) and let 2(g) be the centralizer of g in
oL (k) . If v = (vl, ey vr) is the type of g , then det(2(g)) <s

the subgroup P, of k* generated by the v th, ..., V,th powers.

1

Proof. As in §1, let V= v; be the Kk[t]-module defined by g . We

have
V= ® V(x) »
xeM
where
_ _ U,I:(x)
(1) (x) = & k[t]/(t-x)
121

is the characteristic submodule of V consisting of the elements of V

killed by some power of ¢ - x .

If h € Z(g) , each submodule V(x) is stable under h and therefore

decomposes relative to the action of % : say
(2) Viz) = @ Wz, y)
yeM

vhere V(x, y) 1is the subspace of elements of V(x) killed by some power
of h -y , and is a submodule of V(x) because h is a module
automorphism of V . Let w(x, y) be the type of V(x, y) , so that

i "i(xsy)
(3) Wz, y) = @ K[t]/(t-x) :
121

From (1), (2) and (3) it follows that

wz) = U m(x, y)

yeM

and therefore
(L) v= U iz) = U m(z, y)

xeM x,y

On the other hand, the determinant of h|V(x, y) is

yAinv(zy) _ =y |
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and therefore

(5) det(;:l) = -l_l- yl“(x,y)l .

XY

From (L) and (5) it is clear that det(h) ¢ P, , for all h o€ 2(g)

To show that det(Z(g)) is the whole of Pv , it is enough to show

V.
that we can choose h € Z(g) so that det(h) =& J for any & € k* and
any J 21 . Suppose that vj = Ai(f) in the notation of §1. Then Vé

v,
has a direct summand isomorphic to k[t]/(f) ¢ , and it is enough to

v,
produce an automorphism of this cyclic module with determinant § J . In

the field kf = k[t]/(f) , choose an element { whose norm (from kf to

k) is £ 3; if £ is the image in kf of a polynomial 3z(t) € k[t] ,

v,
then multiplication by 2(%) will induce an automorphism of k[¢]/(f) J

with the required determinant. //
From (3.2) and (3.3) it follows that each GLn(k)-conJugacy class of

type Vv contained in SLn(k) is the union of
(k* : P) =h

SLn(k)-conjugacy classes. Hence from (3.1) the total number of conjugacy

classes in SLn(k) is
-~ 2
(3.1) g, =c(sL, (k) = % he!
v[=

Now it is clear from (1.11) that if %k divides each part v, of v

| - 1] 2 Y .
we have el = cv/k , where v/k 1is the partition (vl/k, v2/k’ ...)

Hence if we define
e =zcr
n
v Vv

summed over all partitions v of n such that the highest common factor
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of Vv.,, Vv is 1 , we have

e' = c' = c"
v d’
7 [ d%;

and therefore by Mdobius inversion

cg = d%; u(d)cé/d .

Now in (3.L4) the possible values of hv are hd , for d dividing n ,

and hence (3.4) takes the form
- 2
e = hWe”, .
n d%:n d°n/d
that is,

~  _ 2 ’
(3-5) cn = d’zd' hdU(d )cr'z/dd' .

Comparison of (3.5) with (2.1) shows that En is derived from Z? by

replacing each coefficient hd by hs . Hence En for 1 =7n =10 can
be read off from Table 3.

From (3.5) and (2.L4) we deduce an alternative formula for 5n :

(3.6) e, = % ¢2(d)c7;/d

- -
summed over all divisors d of (q—l, n) = hn . Hence the generating

function for the 5n (with 50 =1 ) is

(3.7) i) = % 3=t T oD
n=0 dlg-1

-1 -q+2

(since ¥  ¢,(d) (¢-1)2 ).

d|g-1
REMARKS. 1. PFrom (3.1) it follows that the number of GLn(k)—classes

contained in SLn(k) is
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ey
v]=n

vhich by the same argument that led from (3.4) to (3.5) is equal to

L, a0y

and hence is equal to ;; : in other words, the number of GLn(k)-classes
contained in SLn(k) is equal to the number of conjugacy classes in
PGLn(k) . This fact was first observed by Lehrer [Z].

2. Instead of counting conjugacy classes we could instead have
counted the irreducible representations of SLn(k) , using the

parametrization of [3], §5. The details are rather similar to those of
this section and lead (fortunately) to the same result (3.5) or (3.6).

4. Other groups isogenous to SLn

Let e, f be positive integers such that ef =#n . Let A, Dbe the

kernel of the homomorphism § : GLn x GLl + GL, defined by

1

8(g, z) = x %et(qg) ,
and let Be be the image of the homomorphism ¢ : GLl -> GLn X GLl defined

by
elx) = [xln, mf)

Then Be is isomorphic to GL

1 and is a closed normal subgroup of Ae .

Let G =A /B
e e’ e

The mapping g + (g, 1) embeds 8L, in A, , hence defines a
homomor phism SLn -+ Ae > Ge , which is easily seen to be surjective, with
kernel uf'ln , where uf is the group of fth roots of unity. Hence Ge
is a connected algebraic group isogenous to SLn . In particular,

Gl = PGLn and Gh = SLn
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Now let k% be a finite field, and consider the group Ae(k) of
k-rational points of the algebraic group Ae . We define the type of an
element (g, z) in GLn(k) x k* (or of its conjugacy class) to be the
type of g (hence a partition of n ).

(4.1) For each partition v = (vl, cens vr) of n , the number of

conjugacy classes of type v in Ae(k) 18

2

h e
e,v v’

cees V

re .
whe he v »

k]

is the highest common factor of q -1, e , and v

Proof. The same argument as in (3.1) shows that the number of

GL (k) x k*-conjugacy classes of type Vv contained in A4 (k) is h_ e .
n e e,v Vv

Next, by applying the lemma (3.2) to the homomorphism
§ : GLn(k) x k* » k* | we see that the GLn(k) x k*-conjugacy class of an

element (g, e) € A (k) of type Vv splits up into |coker (6]2(g) x k*)|
Ae(k)-conjugacy classes. By (3.3), the group 6(2(g) x k*) is the

subgroup Pe of k* generated by the v

sV

lth, ceny vrth and eth

povers, and therefore

|coker (8]2(g) x k*)) = (k* : P, v) =h . //

We have now to pass from Ae(k) to the group Ge(k) . Since Be is

connected, it follows from Lang's theorem ([5], §10) that
Ge(k)éé Ae(k)/Be(k) ~ Ae(k)/k* . The conjugacy classes of Ge(k) may

therefore be identified with the orbits of k* acting on the set of

conjugacy classes of Ae(k) , the action of %k* on Ae(k) being given by

£.(g, z) = (gg, &fx)

If £ € k* fixes the class of (g, z) in Ae(k) , we must have

x = Ef; , 80 that & ¢ uf(k) . As in §2, if the conjugacy class of ¢ in
GLn(k) is represented by a sequence u = (ul(t), uz(t), ...] of

polynomials u, € k(t] , then the conjugacy class of Eg is represented by
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Eu = [ul(Et), ue(Et), ...] ; also deg u, = mi(v) wvhere Vv is the type
of g .
Suppose that ud(k) , where d is a divisor of f , fixes the

conjugacy class of (g, ) in Ae(k) . Then each u; must be a

polynomial in td , and therefore d divides each mi(v) . Let d\v
denote the partition of n/d such that mi(d\v) = mi(v)/d . Since Vv and
d\v have the same parts (with different multiplicities), we have

he,v = he,d\v . Hence the number of Ae(k)-conjugacy classes of type Vv

for which the isotropy group is exactly ud(k) is, by (4.1),

2 '
he,\)dZ' u(d )cdd'\\)

summed over all divisors d' of f/d such that dd' divides each mi(v)
{so that the partition dd’\v is defined). Since lud(k)| = hd , there
are (q-l)/hd elements in each orbit, and hence the total number of
conjugacy classes in the group Ge(k) is
2
(L.2) e(6 (k) = h Y o onudel, .,
e Iv]=n e,v d.d’ d dd'\v

in which the first sum is over all partitions v of n , and the second is
over all pairs of positive integers d, d’' such that dd' divides f and

each mi(v) . By (2.4), the expression (L.2) is equal to

2 '
(4.3) IV%=" e v 3—-: db[dl)cdl\\)
1

where dl runs through the common divisors of f, ¢ - 1 and the mi(v) .

Since #

e = he,dl\v , (k.3) can be rewritten in the form

where dl runs through the divisors of hf and Vv through the partitions
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of n/dl . As in §3, the inner sum is equal to
z b5(d,)e;
g _ve2 n/dld2
2
where d2 runs through the divisors of he . Hence

(k.4) The number of conjugacy classes in the group Gé(k) ig

G (k)] = old. ), (d !
e(6,(x) dlgdz (1) 2( 2)cn/dld2

summed over pairs of positive integers dl, d. such that dl divides h

2 f

and d2 dzétdes he .

REMARKS. 1. When f =1 and e =»n (respectively e =1 and
f=n ) the group Gé(k) is SLn(k) (respectively PGLn(k) ), and the
expression (4.4) reduces to (3.6) (respectively (2.2)).

2. From (4.4) and (2.4) we deduce an alternative formula for

. c(Ge(k)) :
g — 2
(L.5) e(G (k) = Y ula Ju(a,)h, o h et
e 1 2’"b_,f b,,e n/ajab.b
al,az,bl,b2 1 2 1727172
summed over all quadruples a;s @, bl’ b2 of positive integers such that
ala2b1b2 divides n , where hbl’f [respectively hb2,e ) is the highest

common factor of bl’ f and q -~ 1 (respectively b2, e and q-1).

When e =n and f =1 (respectively e=1 and f=n ), the formila
(4.5) reduces to (3.5) (respectively (2.1)).

3. The group GLn(k) acts by inner automorphisms on Ae(k)

h.(g, x) = (hgh-l, x) . This action fixes Be(k) pointwise, and hence
defines an action of GLn(k) on the group Ge(k) . The method used to

prove (4.4) shows that the number of GLn(k)—orbits in Ge(k) is

(4.6) Y ¢e(d)e(d)er
dd, * (@) n/dyd,
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summed over pairs of positive integers dl’ d2 such that dl divides hf

and d2 divides he . Since (4.6) is unaltered by interchange of e and

f , it follows that the number of GLn(k)-orbits is the same in Ge(k) and
Gf(k) . This result generalizes Remark 1 of §3.

For a related result, see Lehrer [2].

5. PSLn(k)

Let PSLn(k) denote the quotient of SLn(k) by its centre
un(k).ln . The conjugacy classes of PSLn(k) may be identified with the

orbits of un(k) acting on the set of conjugacy classes of SLn(k) . From

§3, the number of conjugacy classes of type V in SLn(k) is h506 , for
each partition Vv of 7 . It follows as in §4 that the number of SLn(k)-
classes for which the isotropy group is ud(k) , where d is a divisor of

n , is

2
hv 3; u(d')céd’\v

summed over all divisors d’ of =n/d such that dd’' divides each

mi(v) . The number of elements in each orbit is (un(k) : ud(k)] = hn/hd .

and hence we obtain the total number of conjugacy classes in PSLn(k) :

~ . 2
& = e(psy (k) = = he Y hau(d)e!
n n hn [v]=n v da d dd’'\v

in which the first sum is over all partitions v of »n , and the second is
over all pairs of positive integers d, d' such that dd' divides n and

each mi(v) . This formula can be turned around in the same way as in §i

to give
& =L
(5.1) c, =5 L ¢(dl)¢2(d2]c’;/dd
n dl,d2 172

summed over all pairs of divisors dl, d2 of g -1 such that dld2

divides 7n ; and equivalently
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42 =L
(5.2) e, =

n a.,a,,b_ b

u(ayJulay)n, hb en/a Lagh
12727172

l 2

summed over all quadruples b b2 of positive integers such that

ay» 9ps Py»

a1a2b1b2 divides n .

In Table 4 below we list the values of En for 1 =n <8 ; these

are straightforward to calculate from (5.2) and Table 2.

TABLE 4
e, =1
, = = (q+bh,-3)
2 S h, W2

2
~ _l_ 2
c3 =% [q +q+5h 5)

3
A 2
e, = ;;L_l; [q3+q +q( hh 3J+hh+hh+3h 5]
- _ L 2 _
c5 = h5 [q +q +q +7h5 8]
-~ 1
cg = iy [q +q"+q+q% (b ,-3)%q (¥ +5h-9) +5 (vn,-3) (h3-l)]

3
[q +q5+q +q -q+9h7—10)

Q)
[}

-
I'“ -

ow
-
o)

q +q +q +q +q (hh 3)+q (hh —h)+q [hh+hh+3h -6]

2,2 ,2
+h2hh+h8-hh*3h2hh+h8~3hh-llh2+9} .

6. Unitary groups

Let k2 be the unique quadratic extension of k contained in k .

The unitary group U [ 2) is the subgroup of all g € GL (k2) such that

=t -1 = a9
Fg = g ~ , where (Fg)ij =955 -

(6.1) Every conjugacy class of G = GLn(k) which intersects U = v, (k2)

does so in a single conjugacy class of U .
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t -
Proof. Let o be the endomorphism of G defined by go = "(Fg) 1 ,
so that U 1is the group of fixed points of O . Suppose that u € U and

g € G are such that gug-l € U ; we have to show that u and gug'l are
conjugate 'in U .

Since gug-l € U , we have gug_l = g%g™% , so that g-,lgo €G, , the
centralizer of u in G . Now centralizers in G are connected ([4],
III, 3.22), and O(Gu) c Gu because u = uo ; since the kernel of O is

finite it follows that o|Gu is surjective, and hence by Lang's' theorem

(C£5], §10) the mapping h - 2% from G, to G is surjective. Hence

-1

we have g-lg0 = 7% for some h ¢ G, » which shows that v = gh ™ evUu

and therefore gug_l = gh-luhg'l = vl . Hence u and gug_l are
conjugate in U . //

In particular, if two elements of Un(k2) are conjugate in GLn(kz) .
they are conjugate in Uﬁ(kz] . It follows that the conjugacy classes of
Un(kz) are parametrized bijectively by the partition-valued functions u
on M= k* which satisfy (1.3) and u(x‘q] = p(x) for all x € M in
place of (1.4) . Equivalently, as in §1, each conjugacy class of Uh(kg)
may be represented by a sequence of polynomials u = (ul(t), u2(t), ...]

with coefficients in k2 which satisfy (1.9) and are such that ui(O) =1

and the set of roots of each ’ui is steble under z + x 7 (in place of

(1.8)). We define the type Vv 'of a conjugacy class in Uh(kz] as in §1

n. n
@l22..)

to be the partition of n , where ni = deg ui . It is

easily seen that the number of possibilities for ui of degree ni is

n. n.-1
q"+q® if m >0 (amd 1 if 7 =0), so that the number of

conjugacy classes of type Vv in Un(k2) is
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(6.2) “TT @iq®)

n >0

or equivalently

(v)

(6.2") Y, = 4 q+1)?

where 1{v) is the number of parts of v and p(v) is the number of

unequal parts. Hence the total number of conjugacy classes in Un(kQ) is

=N

(6.3) =ec(v (%)) = .
3 Yn ( n( QJ) IV% Yv

Since qn + qn—'l is the coefficient of ¢°' in (1+t)/(l-qt)-l , if

n >0 , it follows from (6.2) and (6.3) that the generating function for

the numbers Yn is

(6.4) I(t) = Z v, 'ﬂ' 144"
n=0 r=1 1-qt
This formula is due to Wall [6].
Each Y, (n 21) is a polynomial in g , divisible by (g+1)
one sees for example by putting ¢ = -1 in (6.L4). Let Yé = Yn/(q+l) , SO

that from (6.2') and (6.3) we have

?’l

(6.5) v' = | %: p(v)(q+l)p(v) -1
=n

In Table 5 (p. 46) we list the polynomials Yé for 1 <=7n <10 . They are
easily calculated from the formula (6.5).

The formulas of §§2-5 all have their analogues for the unitary groups.

Since the proofs are the same, we shall merely state the results.

For any positive integer d , let ng; denote the highest common
factor of d and q + 1 .

(i) PUn(k2) . Corresponding to (2.1) we have

(6.6) Y, = c(PUn(kz]] = dzd' ngh(d' )Y, a0
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summed over all pairs of positive integers d, d’' such that dd’' divides

n , or alternatively
(6.7) Y, =§¢(d)v’;/d

summed over the divisors d of n, = (n, q+1) . Hence the generating

function for the ?n is (with 70 =1)

(6.8) Te) = ¥ 7.6 = L T ear(d
n‘—l-:o n q+l d|q+1 ()

where T(%) is the generating function (6.4).
TABLE 5

r -

Y, =1

Yo =q+1

yé=q2+q+2

, 2

Yh=q +q +3g+2

Yé:q +q +3q2+hq+3

Ye=4q *aqa +3q +5¢° +6q + b

3 2
Y7=q +q  +3g +59° +83° +9g +5
T 6 s+5qh+9C{3+12‘q2+13q+6

vj=a® +q" +3¢° +5q° + 99" + 14g® + 198° + 179 + 8

6 5

Yo =@ +a>+ 3 +5a° +9¢° +15¢" + 22¢% + 214% + 23¢ + 10

(i1) SUn(kz) . In place of (3.5) and (3.6) we obtain
~ 2
(6.9) Y, = (s, (k) = dzd, ngd )Y, ag

so that ;n is obtained from ?n by replacing each nd by nd , and

equivalently
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(6.10) Y, = g 05(d)Y,) 4

summed over the divisors d of nn . Consequently the generating function

for the ¥ is (with ¥, =1)

(6.11) F(¢) = - - o ()T () - q .
nég nooqrl d|§i1 2T - a

(iii) Groups isogenous to su, . If Fe is the quotient of SU by
its central subgroup isomorphic to uf (where ef =n as in §i) then in

place of (4.4) we find

(6.12) afr_(x = o(d,)e,(d,)y!
( e( 2)) dlz,:dz ( l) 2( 2) n/dldQ

summed over pairs of positive integers dl, d2 such that dl divides nf
and d2 divides n,
(iv) sy, (k,) . This is the quotient of SU, (k,) by its centre, and

in place of (5.1) the number of its conjugacy classes is

(6.13) Y, = olesy (k) =7 T old)e v g

1
" d d,
summed over all pairs of divisors dl, d2 of g + 1 such that dld2

divides n .
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