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ABSTRACT. Ice flow numerical models are essential for predicting the evolution of ice sheets in a
warming climate. Recent research emphasizes the need for higher-order and even full-Stokes flow
models, instead of the traditional shallow-ice approximation, whose assumptions are not valid in certain
critical areas. These higher-order models are, however, computationally intensive and difficult to use at
the continental scale. Here we present a new technique, the Tiling method, to couple ice flow models
of varying orders of complexity. The goal of the method is to limit the spatial extent of where higher-
order models are applied to reduce the computational cost, while maintaining the model precision. We
apply this method on synthetic geometries to demonstrate its practical use. We first use a geometry
for which all models yield the same results to check the consistency of the method. Then we apply
our method to a geometry for which a full-Stokes model is required in the vicinity of the ice front. Our
results show that the hybrid models present significant improvements over mono-model approaches and
reduce computational times.

INTRODUCTION
Several ice flow models of increasing orders of complexity
have been developed to model the dynamics of ice-
sheet systems (Hutter, 1982; Blatter, 1995; Pattyn, 2003;
Hindmarsh, 2004). All these models are derived from the
same momentum-balance and incompressibility equations,
i.e. the full-Stokes equations, using an appropriate simpli-
fying kinematics hypothesis. Several studies describe the
model properties and their domain of validity (Hindmarsh,
2004; Gudmundsson, 2008; Dukowicz and others, 2010;
Morlighem and others, 2010; Schoof and Hindmarsh, 2010).
Simplified flow models reduce the computational cost by
simplifying the ice dynamics and make it possible to run
large-scale simulations with limited computational resources
(MacAyeal, 1992; Marshall and Clarke, 1997). Higher-order
models allow a better representation of the ice dynamics, but
at a higher computational cost. More importantly, however,
the gain in precision from these models depends on the flow
regime of the ice. In some regions, the gain in precision of
higher-order models may be significant or critical (e.g. near
the grounding line of a glacier or near an ice divide). But in
other regions, the gain in precision may not be significant
at all. Hybrid models that combine different orders of
complexity in different regions are therefore highly desirable,
because they offer a compromise between capturing the
correct dynamics in critical regions while minimizing the
computational cost.
Hybrid modeling has been used by Hulbe and

MacAyeal (1999) to model the West Antarctic ice sheet.
This evolutive thermodynamic model couples inland-ice,
ice-stream and ice-shelf dynamics using the shallow-ice
approximation (SIA) for the inland ice (Hutter, 1982) and

the shelfy-stream approximation (SSA) for ice streams and
ice shelves (MacAyeal, 1989).
Pollard and DeConto (2009) used the same approxima-

tions to model the evolution of the Antarctic ice sheet
during the last 5 × 106 years, with SIA for grounded ice
and SSA for floating ice. As longitudinal stresses are not
included in the SIA, the two models cannot be directly
coupled, and are solved consecutively. In order to capture the
grounding-line effects, Pollard and DeConto (2009) used a
mass-flux constraint at the transition between the twomodels
(Schoof, 2007). This mass-flux condition enables ice mass-
flux continuity at the transition between the two models, but
does not correspond to a two-way coupling between them.
Another approach to hybrid modeling (Bueler and Brown,

2009) combines SSA and SIA simultaneously everywhere
on the glacier. SSA is used as a sliding law for SIA and a
parameter is adjusted to balance the amount of ice motion
due to SSA and SIA, from pure SSA on floating parts of the ice-
sheet domain, to pure SIA when ice is frozen at the bedrock
interface.
These models can be considered a first step toward

introducing a new generation of hybrid models in ice-sheet
modeling; here we propose a method to go a step further.
We present a new technique, inspired by the Arlequin
framework (Ben Dhia, 1998; Ben Dhia and Rateau, 2001,
2005), to strongly couple mechanical models of varying
orders of complexity, in particular, of higher complexity than
the models described above. First, we discuss the basic
ice flow models and how we implemented them. These
models are (1) a two-dimensional (2-D) SSA; (2) a three-
dimensional (3-D) higher-order (HO) model; and (3) the
full-Stokes (FS) model. We then describe the new coupling
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technique, called the Tiling method, to couple SSA, HO
and FS. We demonstrate its use on synthetic geometries,
discuss the results and draw conclusions on the use of the
Tiling method in ice-sheet flow modeling and its extension
to transient models.

METHODS
Ice flow equations
Ice flow models are all derived from the same classical
momentum-balance equation, where acceleration and Cori-
olis effects are considered negligible:

∇ ·σ + ρg = 0 (1)

where ∇ · σ is the divergence vector of the stress tensor,
σ, ρ the ice density and g the acceleration due to gravity.
Ice is considered incompressible and the continuity equation
reads:

Tr (ε̇) = 0 (2)

where Tr (ε̇) is the trace of the strain-rate tensor, ε̇. As ice
is being treated as a viscous incompressible material (e.g.
Cuffey and Paterson, 2010) its behavior law only involves
the deviatoric stress and we introduce the pressure, p,
as a Lagrange multiplier to ensure that the equation of
incompressibility is satisfied:

σ′ = 2με̇ (3)

where μ is the viscosity (scalar as the ice is assumed to
be isotropic) and σ′ the deviatoric stress tensor such that
σ′ = σ+ pI, with I the identity tensor. The viscosity follows
Glen’s flow law (Glen, 1955), a particular type of Norton–
Hoff law:

μ =
B

2ε̇
n−1
n
e

(4)

where ε̇e is the effective strain rate, n is Glen’s coefficient,
usually taken as n = 3 (Cuffey and Paterson, 2010), and B is
the ice hardness. Equations (1–4) are strong equations set in
the domain occupied by the ice and denoted Ω.

Boundary conditions
The air pressure being negligible, a stress-free condition is
applied at the upper surface:

σ · n = 0 (5)

with n the outward unit normal to the boundary of the glacier.
Water pressure is applied at the ice/water interface (including
the ice front, Γi):

σ · n = ρwgz n (6)

where ρw is the water density and z the elevation with
respect to sea level. At the ice/bedrock interface we specify
the normal velocity and the tangential force. A Weertman
friction law (Cuffey and Paterson, 2010) is applied to model
basal friction:

τb = −α2vb (7)

where τb = (σ · n)|| are the tangential components of
external forces, vb the tangential velocity at the ice/bedrock
interface and α a friction coefficient. We ensure that no
ice penetrates into the bedrock using a non-interpenetration
condition at this ice/bedrock interface: the velocity normal
to the ice/bedrock interface is set to zero. We use non-
homogeneous Dirichlet boundary conditions based on the

observed velocity for the rest of the border (lateral boundaries
where there is no ice front).

Common approximations
We use Cartesian coordinates,

(
x, y , z

)
, with z the vertical

axis, and write (u, v ,w ) for the three components of the
velocity vector, u. The FS approach directly solves Eqns (1)
and (2) with no simplification. For an incompressible
material in terms of velocity components, this system, set
in Ω, reads:⎧⎪⎨

⎪⎩
∇ · [μ (∇u+∇uT)]−∇p + ρg = 0

∂u
∂x

+
∂v
∂y

+
∂w
∂z

= 0
(8)

A simplified 3-D model derived from these equations,
known as the higher-order model (HO) (Blatter, 1995; Pattyn,
2003), makes two assumptions: (1) the horizontal gradients
of vertical velocities are negligible compared to the vertical
gradients of horizontal velocities:

ε̇xz =
1
2
∂u
∂z
; ε̇yz =

1
2
∂v
∂z

(9)

and (2) the bridging effect (Van der Veen andWhillans, 1989)
is neglected so the third equation of the full-Stokes system,
set in Ω, reduces to

∂

∂z

(
2μ

∂w
∂z

)
− ∂p

∂z
− ρg = 0 (10)

Using these assumptions in the momentum equations, the
horizontal vector-valued velocity field is decoupled from the
vertical component and the pressure. It is a solution of

∂

∂x

(
4μ

∂u
∂x
+2μ

∂v
∂y

)
+

∂

∂y

(
μ
∂u
∂y
+μ

∂v
∂x

)
+

∂

∂z

(
μ
∂u
∂z

)
=ρg

∂s
∂x

∂

∂x

(
μ
∂u
∂y
+μ

∂v
∂x

)
+

∂

∂y

(
4μ

∂v
∂y
+ 2μ

∂u
∂x

)
+

∂

∂z

(
μ
∂v
∂z

)
=ρg

∂s
∂y

(11)
where s is the ice upper surface elevation.
The 2-D shallow-shelf or shelfy-stream approximation

(SSA) was first derived from the full-Stokes equations
(Eqns (8)) by MacAyeal (1989). In addition to the assumptions
made for HO, vertical shear is neglected:

ε̇xz = 0; ε̇yz = 0 (12)

Using these assumptions, the horizontal components of
velocity, u and v , do not depend on z. Integration from the
bed to the surface, set in the mean section ω of Ω, gives the
model equations

∂

∂x

[
2Hμ̄

(
2
∂u
∂x

+
∂v
∂y

)]
+

∂

∂y

[
Hμ̄

(
∂u
∂y

+
∂v
∂x

)]

= ρgH
∂s
∂x

+ τbxδsheet

∂

∂y

[
2Hμ̄

(
2
∂v
∂y

+
∂u
∂x

)]
+

∂

∂x

[
Hμ̄

(
∂u
∂y

+
∂v
∂x

)]

= ρgH
∂s
∂y

+ τbyδsheet

(13)
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Compute uh

Initial velocity u = uh +w

Compute w

a uh,Φ = l (Φ)

Solution u = uh+w

∂w

∂z
= −div uh

Viscosity

Compute us

Initial velocity us

as (us,Φ) = ls (Φ)

Solution us

Viscosity
convergence

convergence

Fig. 1. Convergence algorithms used for SSA or HO (left) and FS (right).

where H is the ice thickness, μ̄ the depth-averaged viscosity,
(τbx , τby ) the components of τb and δsheet a function equal
to 1 on the ice sheet and 0 on the ice shelf. The basal
friction is generally assumed to be horizontal only, which
gives τbx = −α2u and τby = −α2v .
In the SSA and HO models, the equations are decoupled

and the vertical velocity is computed separately by solving
the incompressibility equation (Eqn (2)) once the horizontal
components are known.
SIA is not discussed in our study because it neglects lateral

shear. The mechanical equations of a region treated with SIA
are consequently not affected by changes that take place in
another region and hence no coupling method is necessary
to compute the velocities of such areas.

Numerical implementation
All these models are implemented in the massively par-
allelized finite-element Ice Sheet System Model (ISSM)
(Morlighem and others, 2010; Larour and others, 2012). We
use MINI prismatic elements (Gresho and Sani, 2000) for FS
to fulfill the compatibility Ladyzhenskaya–Babuška–Brezzi
condition. We employ linear P1 triangular elements for SSA
and P1 prismatic elements for HO.
These three models (SSA, HO and FS) rely on a nonlinear

behavior law (Eqn (4)) and we use a fixed-point or Picard’s
method (Reist, 2005) to solve them (Fig. 1).
The finite-element implementation of the models de-

scribed above relies on the variational/weak formulations
of their respective field equations, associated with their
boundary conditions. Subscripts s, p and m refer to FS, HO
and SSA, respectively. Let Vs, Vp and Vm be the kinematically
admissible fields associated with these problems. The varia-
tional formulations for the three problems are, respectively,

find us ∈ Vs, up ∈ Vp and um ∈ Vm such that
∀φs ∈ Vs as (us,φs) = ls (φs) (14)

∀φp ∈ Vp ap
(
up,φp

)
= lp

(
φp

)
(15)

∀φm ∈ Vm am (um,φm) = lm (φm) (16)

The expressions of the bilinear forms, as, ap and am, as well
as the linear forms, ls, lp and lm, are detailed in the Appendix.
These forms respectively represent the virtual work of internal
and external forces (e.g. Zienkiewicz and Taylor, 1989, for
more details on the finite-element method).

Tiling method
The three aforementioned models represent three levels of
complexity that do not require the same computational
resources. We wish to couple these different models of ice
flow to minimize the computational cost, while maintaining
accuracy. Developing new techniques for coupling models
and scales of complex mechanical or physical problems is an
active research area in the fields of computational mechanics
and physics.
The method we present here is inspired by the Arlequin

framework developed by Ben Dhia (1998) (see also Ben Dhia
and Rateau, 2005). It is based on a blending zone where two
different models are strongly blended, hence the name Tiling
method. Here we outline the main ideas of this approach by
considering a generic problem.
Let Ω be the model domain and V the set of kinematically

admissible fields for Ω. We write a and l the bilinear and
linear forms associated with the variational formulations, and
aΩ and lΩ their restriction to Ω. The generic problem to solve
is:

Find u ∈ V , ∀φ ∈ V aΩ (u,φ) = lΩ (φ) (17)
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V2 (Ω2)

model superposition

V1 (Ω1) Ωt

Fig. 2. Separation of the domain into two subdomains.

Instead of solving this mono-model problem with the
finite-element method, the idea is to first reformulate the
problem using a domain decomposition. We consider two
subdomains of Ω, denoted Ω1 and Ω2, such that

Ω = Ω1 ∪ Ω2 (18)

These two subdomains overlap in a transition zone. The
overlapping region, denoted Ωt, is called the blending zone
or superposition zone. It is defined by (Fig. 2)

Ωt = Ω1 ∩ Ω2 �= ∅ (19)

Let V1 and V2 be the sub-spaces of kinematically
admissible fields for the two subdomains, such that V = V1+
V2. The solution, u, is taken as the sum of the contributions
of velocity from the two subdomains (Fig. 3):

u ∈ V (
Ω
)
=

(V1 (Ω1) + V2
(
Ω2

))
u = u1 |Ω1 + u2 |Ω2

(20)

In order to have a continuous solution, u, we need to
impose additional boundary conditions on the boundary of
the blending zone, ∂Ωt. All points on ∂Ωt have homogeneous
Dirichlet conditions for one of the two contributions (Fig. 3).
For the sake of simplicity, and without limiting the extent
of the method, we detail here these additional Dirichlet
conditions in the specific case where one subdomain is
strictly embedded in Ω, i.e. no node of this first subdomain
is on the border of the domain, ∂Ω. Under these conditions,
the additional Dirichlet conditions (Fig. 3) are

u1 |Ω1 = 0 on ∂Ω1 ∩ ∂Ωt
u2 |Ω2 = 0 on ∂Ω2 ∩ ∂Ωt

(21)

The kinematically admissible fields are now

Vt1 = {u1 |Ω1 ∈ V1
(
Ω1

)
, u1 |Ω1 = 0 on ∂Ω1 ∩ ∂Ωt}

Vt2 = {u2 |Ω2 ∈ V2
(
Ω2

)
, u2 |Ω2 = 0 on ∂Ω2 ∩ ∂Ωt} (22)

If we use the bilinearity of a, the linearity of l, and if
we decompose the test function, φ, on the two spaces,
the problem formulation using the domain decomposition
becomes:

Find u = u1 |Ω1 + u2 |Ω2 ∈ (Vt1 + Vt2) ,

∀φ = φ1 |Ω1
+φ2 |Ω2

∈ (Vt1 + Vt2) :

Ωt

u2 |Ω2

u1 |Ω1

u

Fig. 3. Example of solution in one dimension. The solution u
is the sum of u1 and u2 on the blending zone. Homogeneous
Dirichlet conditions are imposed on the border of the blending zone
following Eqn (21).

aΩ1
(
u1 |Ω1 ,φ1 |Ω1

)
︸ ︷︷ ︸

model 1

+ aΩ2
(
u2 |Ω2 ,φ2 |Ω2

)
︸ ︷︷ ︸

model 2

+ aΩt
(
u1 |Ωt ,φ2 |Ωt

)
+aΩt

(
u2 |Ωt ,φ1 |Ωt

)
︸ ︷︷ ︸

model coupling

= l
(
φ1 |Ω1

)
︸ ︷︷ ︸
model 1

+ l
(
φ2 |Ω2

)
︸ ︷︷ ︸
model 2

(23)
The coupling terms allow the coupling of u1 and u2 in the
blending zone.
The basic idea of the Tiling method consists of taking

advantage of this new formulation to introduce two different
mechanical models on the two subdomains, Ω1 and Ω2.
Schematically, let a1,Ω1 , a2,Ω2 and l1,Ω1 , l2,Ω2 be the bilinear
and linear forms associated with the variational formulations
of the two mechanical models in their respective domains.
Let a1−2,Ωt and a2−1,Ωt be the transition blending bilinear
forms in the transition domain, Ωt. We define a weak multi-
model formulation associated with the Eqn (23) problem by:

Find u = u1 |Ω1 + u2 |Ω2 ∈ (Vt1 + Vt2) ,

∀φ = φ1 |Ω1
+φ2 |Ω2

∈ (Vt1 + Vt2) :

a1,Ω1
(
u1 |Ω1 ,φ1 |Ω1

)
︸ ︷︷ ︸

model 1

+ a2,Ω2
(
u2 |Ω2 ,φ2 |Ω2

)
︸ ︷︷ ︸

model 2

+ a1−2,Ωt
(
u1 |Ωt ,φ2 |Ωt

)
+ a2−1,Ωt

(
u2 |Ωt ,φ1 |Ωt

)
︸ ︷︷ ︸

model coupling

= l1,Ω1
(
φ1 |Ω1

)
︸ ︷︷ ︸

model 1

+ l2,Ω2
(
φ2 |Ω2

)
︸ ︷︷ ︸

model 2

(24)

We see that the final formulation is the sum of the
two mono-model formulations and there are two additional
coupling terms, a1−2,Ωt (u1,φ2) and a2−1,Ωt (u2,φ1), on the
left-hand side. These terms, which will be detailed for the
coupling of different models, are nonzero only for the
elements inside the blending zone, where both u1 and u2
are simultaneously nonzero. In the blending zone, the two
models are employed simultaneously. The additional terms
that combine the models in Eqn (24) ensure the continuity
of the solution and the two-way coupling. Elements outside
this zone are treated as mono-model.
This method is easily parallelizable and requires limited

modifications of an existing code, as the additional coupling
terms must be taken into account only in the blending
zone. However the continuous problem is singular because
of the existence of the volume blending zone where
the two models are used simultaneously, leading to an
infinite redundant set of equations. We take advantage of
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Fig. 4. Scheme representing the iterations done for a hybrid FS/HO
model.

the problem discretization to overcome this redundancy
problem.

Domain discretization
In order to tackle the redundancy issue for finite-element
discretization of the continuous problem, Eqn (24), our basic
idea consists of reducing the blending zone to only ‘one
layer’ of elements, so that all nodes of Ωt are on the border of
this zone, ∂Ωt. Each node is associated with only one model
except on ∂Ωt, where one of the two models is constrained.
Therefore, u1 and u2 are never simultaneously computed
on the same node. Under these conditions, the discretized
problem is regular. This domain discretization is necessary
to avoid having multiple solutions of the same continuous
problem and therefore guarantees uniqueness of the solution.

Coupling the shelfy-stream approximation (SSA) with
higher-order (HO) models
SSA and HO solve the same system of decoupled equations,
the latter with a 3-D model and the former with a 2-D depth-
integrated model. Coupling them with the Tiling method is
relatively straightforward, even if some adjustments must be
made at the 2-D/3-D transition.
Let Ωm be the domain where SSA is applied, and Ωp the

HO domain, Ωm and Ωp being a partition of Ω in the sense of
Eqns (18) and (19). First, homogeneous Dirichlet conditions
must be added as specified in the previous section:

um |Ωm = 0 on ∂Ωm ∩ ∂Ωt
up |Ωp

= 0 on ∂Ωp ∩ ∂Ωt (25)

where um is the velocity associated with SSA, and up the
velocity associated with HO.
Second, two different models coexist in the transition

zone and special care must be given to the treatment of

ice viscosity in this area. Indeed, the viscosity depends on
the effective strain rate (Eqn (4)) and this strain rate is not
constant with depth in the transition zone because of the
contribution of HO. We use the most general viscosity law,
the one used in HO, for both models in the blending zone,
μ (u) = μ

(
um + up

)
.

Coupling the higher-order (HO) model with
full-Stokes (FS) formulations
Let Ωp be the domain where HO is applied and Ωs the
FS domain. The coupling between FS and HO is more
challenging than that between SSA and HO. FS solves the
three components of the velocity and the pressure, whereas
HO decouples the horizontal and vertical components of the
velocity. Coupling FS to HO horizontal equations therefore
ensures the continuity of u and v , but not of w . To ensure
the continuity of the vertical velocity, we must include a
vertical velocity component inHO that is coupled to FS in the
blending zone. We use an iterative algorithm with an a priori
estimate of the HO vertical velocity, which is updated at each
iteration using the incompressibility equation, so that vertical
and horizontal velocities of HO remain consistent. The
pressure, being a Lagrange multiplier, cannot be constrained
on the boundary of the blending zone. It is therefore left
free for the entire domain, Ωs. The additional boundary
conditions are

up = vp = wp = 0 on ∂Ωp ∩ ∂Ωt
us = vs = ws = 0 on ∂Ωs ∩ ∂Ωt

(26)

where (us, vs,ws) and (up, vp,wp) are the velocity com-
ponents of HO and FS, respectively. Let φp and φs be
kinematically admissible fields for HO and FS. For each
iteration of the viscosity, the equation to solve is

ap,Ωp
(
uhp,φp

)
+ as−p,Ωt

(
uhs ,φp

)
+ ahp−s,Ωt

(
ũhp,φs

)
+as,Ωs (us,φs) = lp,Ωp

(
φp

)
+ ls,Ωs (φs)− avp−s,Ωt

(
wp,φs

)
(27)

where ap and as are the bilinear forms associated with HO
and FS, lp and ls the linear forms associated with HO and
FS. as−p,Ωt , a

h
p−s,Ωt and a

v
p−s,Ωt are the transition blending

bilinear forms in the transition domain, Ωt. us is the velocity
and pressure of FS (us, vs,ws,ps), uhp and u

h
s are the horizontal

velocity of HO and FS (respectively (up, vp) and (us, vs)), ũ
h
p

andwp the horizontal and vertical velocities of HO extended
with zeros so that they become FS kinematically admissible
(respectively (up, vp, 0, 0) and (0, 0,wp, 0)).
In this configuration, coupling terms are added both to the

left-hand side to couple uhp to FS terms and on the right-hand
side to ensure the continuity with wp.
To update the vertical velocity of HO, the incompressibility

equation must be solved in the HO part of the domain,
including the blending zone. The incompressibility equation
must be satisfied for the total velocity, sum of FS and HO:

∂wp
∂z

= − ∂

∂x

(
up + us

)− ∂

∂y

(
vp + vs

) − ∂ws
∂z

(28)

The schematic in Figure 4 summarizes how these iterations
are performed and how the a priori vertical velocity is
updated.
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Fig. 5. Top view of velocity components of a square ice shelf for three ice flow models: SSA, HO and a hybrid SSA/HO model. (a) u for
SSA; (b) u for hybrid; (c) u for HO; (d) v for SSA; (e) v for hybrid; (f) v for HO.

Coupling the shelfy-stream approximation (SSA) with
full-Stokes (FS) solutions
Coupling SSA to FS combines the problems encountered in
the two previous couplings. In the blending zone, we use
a viscosity, μ, that varies with depth, even for SSA. The
horizontal equations of SSA and FS equations are solved
simultaneously, which ensures continuity of the horizontal
velocity. We use an a priori estimate of the vertical velocity
for SSA, which is updated at each iteration of the viscosity,
similarly to that done for HO/FS coupling (Fig. 4).

APPLICATIONS
To validate the method, we first verify that the Tiling method
is consistent when coupling one model to itself (e.g. SSA with
SSA or FS with FS). Results found when coupling each model
to itself are exactly identical to mono-model results.
There are some configurations for which all three approx-

imations (SSA, HO and FS) are valid and yield the same
results. The results performed with hybrid models must be
similar to results found with mono-models. Here we use a
1000km long square ice shelf in hydrostatic equilibrium, in
which the thickness varies between 1000 and 300m at the
ice front. We constrain the velocity (homogeneous Dirichlet
conditions) on three edges, and water pressure is applied
on the fourth edge to simulate an ice front. We use three
different models: SSA, HO and a hybrid SSA/HO model. In
the hybrid model, SSA elements are used on the left half
and HO elements on the right half; a layer of elements
combines both approximations at the transition. Figure 5
shows horizontal surface velocity components for the three
models. Both components are identical for SSA and HO, as
well as for the hybrid model. On the hybrid model (Fig. 5b
and e), the blending is impossible to detect visually.
In a second experiment, we test the ability of the Tiling

method to combine models. This experiment consists of an

ice flow over a flat bed. The ice sheet is 1000 km long and
500m thick on average. Similarly to the previous experiment,
we constrain the velocity (0 and 100ma−1 in the x and
y directions, respectivity) on three edges and apply water
pressure on the fourth edge. Next to the ice front, a very
rough bed is introduced, with bumps and hollows whose
typical length scale is equal to one ice thickness (Fig. 6).
This experiment is useful for testing the Tiling method, as
HO and FS do not yield the same results; HO (Fig. 7d and g)
is nearly unaffected by the rough bed, contrary to FS (Fig. 7f
and i), as some 3-D effects are captured by this model.
The difference in velocity between the two models varies
between 50 and 100ma−1 at the ice front and decreases
upstream. A hybrid model that combines FS elements on
and around the rough bed area, and HO on the rest of
the domain is employed (Fig. 7b). The velocity computed
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Fig. 6. Geometry of the rough bed experiment showing the rough
bed close to the ice front and the flat upper surface.

https://doi.org/10.3189/2012JoG11J195 Published online by Cambridge University Press

https://doi.org/10.3189/2012JoG11J195


782 Seroussi and others: Instruments and methods

Higher-order

y 
(k

m
)

a
0 500 1000

0

200

400

600

800

1000
Hybrid model (HO+FS)

bb
 

 

0 500 1000
0

200

400

600

800

1000
Full−Stokes

c
0 500 1000

0

200

400

600

800

1000

y 
(k

m
)

d
0 500 1000

0

200

400

600

800

1000

ee
0 500 1000

0

200

400

600

800

1000

 

 

f
0 500 1000

0

200

400

600

800

1000
u (m a −1)

−100

−50

0

50

100

x (km)

y 
(k

m
)

g
0 500 1000

0

200

400

600

800

1000

x (km)

h
0 500 1000

0

200

400

600

800

1000

x (km)

 

 

i
0 500 1000

0

200

400

600

800

1000
v (m a −1)

100

150

200

250

300

350

Higher-order

Full−Stokes

Blending zone

Fig. 7. Top view of the square ice sheet, showing the type of model applied and the velocity components for three ice flow models: HO,
FS and hybrid model (HO/FS) using a polar stereographic projection. The type of elements is vertically extruded so it is similar for each
element of the column. (a) Type of elements used for HO; (b) type of elements used for hybrid; (c) type of elements used for FS; (d) u for
HO; (e) u for hybrid; (f) u for FS; (g) v for HO; (h) v for hybrid; (i) v for FS.

with the hybrid model (Fig. 7e and h) is almost identical to
the FS velocity, and the model transition is seamless. The
computational time is 15.7 s for the HO model, 70.3 s for
the FS model and 23.7 s for the hybrid model. Since the area
over which FS is applied is spatially limited, the number of
degrees of freedom is reduced considerably. As a result, the
hybrid model is significantly faster than a pure FS model.

DISCUSSION
Using simplifications of the ice flow equations reduces
the computational time required to run numerical models,
which is useful for large-scale modeling, but it has been
shown that these approximations fail to reproduce certain
critical aspects of ice dynamics. It is therefore essential
to first determine where each model is valid, and where
sophisticated models are required.
Hindmarsh (2004) and Gudmundsson (2008) describe the

effects of small-amplitude perturbations in boundary data to
ice flow solutions. They show that SIA correctly reproduces
the effect of long-wavelength perturbations at low slip ratios.
Higher-order approximations that include longitudinal stress
improve the accuracy of the results and can be used at
smaller wavelengths. For wavelengths smaller than about
five ice thicknesses (depending on other parameters like slip
ratios) no approximation is able to reproduce FS correctly.
It has also been shown that modeling of grounding-line
dynamics, a fundamental aspect of glacier flow dynamics,
requires sophisticated, higher-order models (Vieli and Payne,
2005; Nowicki and Wingham, 2008; Durand and others,

2009; Morlighem and others, 2010). Devising criteria that
define the area of validity for each approximation of the FS
equations is still an active area of research.
The Tiling method is a numerical technique that enables

a strong coupling of different approximations of the ice
flow equations by constructing hybrid models that combine
different mechanical models. Its simplicity and ease of
implementation in existing codes makes it an invaluable
technique for continental-scale modeling, as it allows use
of computationally expensive models only where they are
required. The successful application of the Tiling method
on the rough bed experiment shows that it is possible
to correctly capture the dynamics that only sophisticated
models can reproduce in critical areas, while reducing
the computational time by using simpler models where
they are valid. With the Tiling method implemented in
ISSM (Morlighem and others, 2010, 2011; Seroussi and
others, 2011; Larour and others, 2012), it is possible to
envision a continental modeling of Greenland or Antarctica
that only uses sophisticated models in the grounding-
line regions, and simplified models elsewhere. With our
current computational resources, it is not practical to run FS
simulations of ice-sheet flow in Antarctica at high resolution.
In this paper, we have relied on a direct solver: MUMPS

(MUltifrontal Massively Parallel sparse direct Solver). When
using iterative solvers, one should use block-preconditioning
to make sure that each subdomain is properly conditioned.
This will improve the scalability of the problem. We
expect the gain in computational time to increase in
such cases.
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All the applications presented in this paper are diagnostic
simulations (fixed geometry), in which only the velocity
is computed. However, this technique can be easily
extended to transient simulations. The coupling in the stress-
balance equation induced by the Tiling method does not
change the way in which the energy-balance and mass-
balance equations are solved. The Tiling method enables
computation of a 3-D velocity field that incorporates
contributions from both models that can be directly used
in the thermal- or mass-transport equations, regardless of
the coupling. The velocity in the energy-balance and mass-
transport models is simply taken as the total velocity in the
case of the hybrid model. Solving for the ice velocities is
generally the most time-consuming component of a transient
model, as it involves the largest number of degrees of
freedom and requires solving a nonlinear problem. The
gains made in computational time by using a hybrid model
approach to solve for the ice velocity will directly improve
the overall efficiency of transient simulations.
We expect this method to treat the problem of grounding-

line migration more efficiently. The area where FS is applied
can be spatially limited to the grounding-line region, as FS is
required to resolve the position of the grounding line using
a contact approach (Nowicki and Wingham, 2008; Durand
and others, 2009).
The potential utility of hybrid models that combine these

approximations is significant. FS is needed in some critical
areas, but current computational resources do not always
allow for its use at a continental scale. Hybrid models have
the potential to greatly improve physical accuracy, despite
computational resource constraints, by combining models
in their domain of validity, while preserving computational
cost. Moreover, we see that the hybrid model behaves
‘better’ than a pure FS model. The FS equations are
saddle-point problems that lead to symmetric but indefinite
stiffness matrices in the finite-element formulation, contrary
to simpler models that produce positive definite matrices.
Solving for large saddle-point problems requires the use
of, for example, Krylov subspace methods, that converge
slowly and are more prone to failure. FS models are therefore
numerically less stable than simpler models that do not rely
on amixed formulation (Dukowicz, 2012; Perego and others,
2012). Furthermore, it is difficult to run a FS model on real
geometries, because it can quickly diverge from the initial
state if the mesh is too coarse in some regions, or if the
configuration changes too rapidly. Simpler models are more
robust. Thus, hybrid models have the potential to improve
robustness by limiting the areas over which FS is employed.
The next step is to improve our knowledge and under-

standing of these ice flow models, their domain of validity in
particular, for both idealized and real geometries. Criteria
need to be devised to determine what approximations to
use. The regions in which each approximation is employed
should then automatically evolve with time, based on these
physical criteria.

CONCLUSION
We have described the Tiling method, a new method to
strongly couple different mechanical models of varying
orders of complexity in a finite-element framework. We
detail its application and particularities in the case of
coupling in pairs of three widely used ice flow models: the

SSA model, the HO model and the FS model. We use this
approach to demonstrate its efficiency for modeling the ice
flow for idealized geometries using ISSM. Excellent results
are obtained with the hybrid models compared with FS
solutions, proving that accurate modeling can be realized
with current computational resources if we do not try to use
FS at all costs. A better understanding of the assumptions
made in each ice flow model as well as their domain of
validity is now required, to extend this method to other
simulations.
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APPENDIX
Full-Stokes model variational formulation
The full-Stokes equations are derived from the momentum-
balance and incompressibility equations and acceleration is
considered negligible:
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(A1)

We use boundary conditions:

Ice/water interface Γw : σ · n = ρwg min (0, z)n

Upper surface Γs : σ · n = 0
Ice/bedrock interface Γb : τb = −α2vb

wb = ub
∂b
∂x

+ vb
∂b
∂y

Other borders Γu : u = v = w = 0
(A2)

where n is the outward-pointing normal vector, ρw the water
density, (u, v ,w ) the velocity components, b the ice lower
surface, τb the tangential components of external forces, vb
the tangential velocity at the ice/bedrock interface and α a
friction coefficient.
Let V be the space of kinematically admissible velocity

fields and P be the space of admissible pressure fields:

V =
{
φs ∈

[
H1 (Ω)]3 ,φs = 0 on Γu}

P =
{
q ∈ L2 (Ω)} (A3)

where L2 (Ω) is the space of square integrable functions
defined in Ω and H1 (Ω) is the Hilbert space of all
functions of L2 (Ω) whose first derivatives are also in
L2 (Ω). Using this space allows the derivation of the
variational formulation. For the full-Stokes equations, this
formulation is:

Find us ∈ (V×P ) , ∀φs∈ (V × P ) as (us,φs) = ls (φs) (A4)

with:
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(A5)

ls (φs) =
∫
Γw
pwn ·φs dΓ−

∫
Ω
ρgφs dΩ (A6)

where us =
(
u, v ,w , p

)T
and φs =

(
φx ,φy ,φz ,q

)T
.
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Higher-order model variational formulation
The higher-order model is based on the equations developed
by Blatter (1995) and Pattyn (2003):
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where s is the upper surface elevation. For this model we use
the boundary conditions:

Ice/water interface Γw: σ′ · n =[
ρwg min (0, z)−ρg (s−z)]n

Upper surface Γs: σ′ · n = 0
Ice/bed interface Γb: τb = −α2vb

Other borders Γu: u = v = 0
(A8)

where n is the outward-pointing normal vector, ρ the ice
density, ρw the water density, (u, v ) the horizontal velocity
components, τb the tangential components of external
forces, vb the tangential velocity at the ice/bedrock interface
and α a friction coefficient. The ice pressure is taken equal
to the lithostatic pressure.
Let Vp be the space of kinematically admissible fields and

Γu the part of the border, ∂Ω, where Dirichlet conditions are
applied:

Vp =
{
φp ∈

[
H1 (Ω)]2 , φp = 0 on Γu} (A9)

The variation formulation for the higher-order model is:

Find up ∈ Vp, ∀φp ∈ Vp ap
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(A12)
where up = (u, v )T, φp =

(
φx ,φy

)T
, pw is water

pressure applied at the ice/water interface Γw, Γb the
ice/bedrock interface and

(
nx , ny

)
the outward-pointing

normal components.

Shelfy-stream approximation variational formulation
The shelfy-stream approximation is based on the equations
developed by MacAyeal (1989) set in Ω:
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where s is the upper surface elevation and δsheet a function
equal to 1 on the ice sheet and 0 on the ice shelf and
τb = (τbx , τby ) the tangential components of external forces
at the ice/bedrock interface. We use the following boundary
conditions for the shelfy-stream approximation:

Ice front γi : σ
′n = pwn =

[
1
2
ρgH2 − 1

2
ρwg min

(
b, 0

)2]
n

Other borders γu : u = v = 0
(A14)

where n is the outward-pointing normal vector, ρ the ice
density, ρw the water density, H the ice thickness, b the
ice lower surface elevation, (u, v ) the horizontal velocity
components, γi the mean section of the ice front and γu the
mean section where Dirichlet conditions are applied. The
boundary condition at the ice front is depth-integrated.
Let Vm be the space of kinematically admissible velocity

fields and Γu the part of the border, ∂Ω, where Dirichlet
conditions are applied:

Vm =
{
φm ∈

(
H1 (ω)

)2
, φm = 0 on γu

}
(A15)

The variation formulation for the shelfy-stream approxima-
tion is:

Find um ∈ Vm, ∀φm ∈ Vm am (um,φm) = lm (φm) (A16)

with:

am (um,φm) =
∫
Ω
2Hμ̄

(
2
∂u
∂x

+
∂v
∂y

)
∂φx
∂x

dΩ

+
∫
Ω

[
Hμ̄

(
∂u
∂y

+
∂v
∂x

)
∂φx
∂y

+ 2Hμ̄

(
2
∂v
∂y

+
∂u
∂x

)
∂φy

∂y

]
dΩ

+
∫
Ω

[
Hμ̄

(
∂u
∂y

+
∂v
∂x

)
∂φy

∂x
− (

τxφx + τyφy
)
δsheet

]
dΩ

(A17)

lm(φm)=
∫
γi

pw
(
nxφx+nyφy

)
dΓ−

∫
Ω
ρgH

(
∂s
∂x

φx+
∂s
∂y

φy

)
dΩ

(A18)
where um = (u, v )T, φm =

(
φx ,φy

)T
, pw is depth-integrated

water pressure applied at the ice front γi and (nx , ny ) the
outward-pointing normal components.
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Hybrid shelfy-stream/higher-order formulation
The elements outside the blending zone are not affected by
the coupling, contrary to the elements in the blending zone,
Ωt, because the coupling terms are equal to zero outside
the blending zone. The bilinear forms associated with the
coupling terms that must be added within the blending zone
are

am−p
(
um |Ωt ,Φp |Ωt

)
=

∫
Ωt

(
4μ

∂um
∂x

+ 2μ
∂vm
∂y

)
∂φpx

∂x
+ μ

(
∂um
∂y

+
∂vm
∂x

)
∂φpx

∂y
dΩ

+
∫
Γb

α2umφpx dΓ +
∫
Ωt
μ

(
∂um
∂y

+
∂vm
∂x

)
∂φpy

∂y

+
(
2μ

∂um
∂x

+ 4μ
∂vm
∂y

)
∂φpy

∂y
dΩ +

∫
Γb

α2vmφpy dΓ

(A19)

ap−m
(
up |Ωt

,Φm |Ωt

)
=

∫
Ωt

(
4μ

∂up
∂x

+ 2μ
∂vp
∂y

)
∂φmx
∂x

+ μ

(
∂up
∂y

+
∂vp
∂x

)
∂φmx
∂y

dΩ

+
∫
Γb

α2upφmx dΓ +
∫
Ωt
μ

(
∂up
∂y

+
∂vp
∂x

)
∂φmy

∂y

+
(
2μ

∂up
∂x

+ 4μ
∂vp
∂y

)
∂φmy

∂y
dΩ +

∫
Γb

α2vpφmy dΓ (A20)

with (um, vm) the horizontal components of the shelfy-stream
velocity, (up, vp) those of the higher-order model, (φmx ,φmy )
the components of the shelfy-stream admissible velocity
field, φm, and (φpx ,φpy ) those of the higher-order admissible
velocity field, φp.

Hybrid higher-order/full-Stokes formulation

The terms ap,Ωp
(
uhp |Ωp

,Φhp |Ωp

)
, as,Ωs

(
us |Φs ,Φs |Ωs

)
,

bs,Ωs
(
p |Ωs

,Ψs |Ωs

)
, lp,Ωp

(
Φhp |Ωp

)
and ls,Ωs

(
Φs |Φs

)
in Eqn (27) are the usual terms of HO and FS formulations.
The other terms are additional terms due to the coupling of
the two models. In the previous equation, Φhp =

(
φx ,φy

)
and Φs =

(
φx ,φy ,φz , q

)
.

These terms are:

as−p,Ωt
(
uhs ,Φ

h
p

)
=
∫
Ωt

[(
4μ

∂us
∂x

+ 2μ
∂vs
∂y

)
∂φx
∂x

+
(
μ
∂us
∂y

+ μ
∂vs
∂x

)
∂φx
∂y

+ μ
∂us
∂z

∂φx
∂z

]
dΩ

+
∫
Ωt

[(
μ
∂us
∂y

+ μ
∂vs
∂x

)
∂φy

∂x

+
(
4μ

∂vs
∂y

+2μ
∂us
∂x

)
∂φy

∂y
+ μ

∂vs
∂z

∂φy

∂z

]
dΩ

(A21)
if we write

(
φx ,φy

)
the components of Φhp.

ahp−s,Ωt
(̃
uhp,Φs

)
=
∫
Ωt

[(
2μ

∂up
∂x

)
∂φx
∂x

+
(
μ
∂up
∂y

+μ
∂vp
∂x

)
∂φx
∂y

+
(
μ
∂up
∂z

)
∂φx
∂z

]
dΩ

+
∫
Ωt

[(
μ
∂up
∂y

+ μ
∂vp
∂x

)
∂φy

∂x

+
(
2μ

∂vp
∂y

)
∂φy

∂y
+
(
μ
∂vp
∂z

)
∂φz
∂z

]
dΩ

+
∫
Ωt

[(
μ
∂up
∂z

)
∂φz
∂x

+
(
μ
∂vp
∂z

)
∂φz
∂y

]
dΩ

+
∫
Ωt

[
−∂up

∂x
− ∂vp

∂y

]
q dΩ

(A22)
if we write

(
φx ,φy ,φz , q

)
the components of Φs.

avp−s,Ωt
(̃
uvp,Φs

)
=
∫
Ωt

[(
μ
∂wp
∂x

)
∂φx
∂z

]
dΩ

+
∫
Ωt

[(
μ
∂wp
∂y

)
∂φz
∂z

]
dΩ

+
∫
Ωt

[(
μ
∂wp
∂x

)
∂φz
∂x

+
(
μ
∂wp
∂y

)
∂φz
∂y

+
(
2μ

∂wp
∂z

)
∂φz
∂z

]
dΩ

+
∫
Ωt

[
−∂wp

∂z

]
q dΩ

(A23)
if we write

(
φx ,φy ,φz ,q

)
the components of Φs.
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