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Abstract

In this paper we consider the splitting method first introduced in rare event analysis. In
this technique, the sample paths are split intoR multiple copies at various stages to speed
up the simulation. Given the cost, the optimization of the algorithm suggests taking
all the transition probabilities to be equal; nevertheless, in practice, these quantities are
unknown. We address this problem by presenting an algorithm in two phases.
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1. Introduction

The study of rare events is an important area in the analysis and prediction of major risks
such as earthquakes, floods, air collision risks, etc. Two main approaches are used in the
study of these major risks, the statistical analysis of the collected data and the modeling of the
processes that led to the accident. The statistical analysis of the extreme values needs a long
observation time, owing to the very low probability of the events considered. The modeling
approach consists first in formalizing the system considered and then in using mathematical
(see [1] and [16]) or simulation tools to obtain some estimates.

Analytical and numerical approaches are useful, but may require many simplifying assump-
tions. On the other hand, Monte Carlo simulation is a practical alternative when the analysis calls
for fewer simplifying assumptions. Nevertheless, obtaining accurate estimates of rare event
probabilities, say about 10−9 to 10−12, using traditional techniques requires a huge amount of
computing time.

Many techniques for reducing the number of trials in Monte Carlo simulations have been
proposed, such as importance sampling (see, e.g. [5] and [10]) or trajectory splitting. In
trajectory splitting we suppose that there exists some well-identifiable intermediate system
states that are visited much more often than the target states themselves and behave as gateway
states to reach the rare event. Thus, we consider a decreasing sequence of events Li leading to
the rare event L:

L = LM+1 ⊂ LM ⊂ · · · ⊂ L1.

Then P(L) is given by

P(L) = P(L | LM)P(LM | LM−1) · · · P(L2 | L1)P(L1),

where, on the right-hand side, each conditioning event is ‘not rare’. For the applications we
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430 A. LAGNOUX-RENAUDIE

have in mind, these conditional probabilities are in general not available explicitly. However,
we do know how the particles evolve from level Li to the next level Li+1 (e.g. Markovian
behavior).

The principle of the algorithm is to at first simultaneously run several particles starting
from level Li ; after a while, some of these particles will have evolved ‘badly’, whereas the
remaining particles will have evolved ‘well’, i.e. succeeded in reaching the threshold Li+1.
The ‘bad’ particles are then moved to the positions of the ‘good’ particles, and so on until L is
reached. In this way, the more promising particles are favored. Unfortunately, this algorithm
is hard to analyze directly because of the interaction introduced between the particles and may
be difficult to apply. Examples of this class of algorithm can be found in [2] with the ‘go with
the winners’ scheme, in [7] and [11] in the context of approximate counting, and in [4], [6],
and [8] in a more general setting.

All the abovementioned algorithms nevertheless have a common base which is simpler to
analyse and is called the branching splitting model. In the branching splitting technique we
make a {0, 1} Bernoulli trial to check whether or not the set event L1 has occurred. In the case
when L1 has occurred we split the trial into R1 Bernoulli subtrials, and, for each subtrial, we
check whether or not event L2 has occurred. This procedure is repeated at each level, until L is
reached. If an event level is not reached, neither is L, and we stop the current retrial. Using N
independent replications of this procedure, we have then considered NR1 · · ·RM trials, taking
into account, for example, the fact that if we fail to reach level Li at the ith step, the Ri · · ·RM
possible retrials also fail. Clearly, the particles reproduce and evolve independently.

An unbiased estimator of P(L) is given by the quantity

P̂ = NL

N
∏M
i=1 Ri

,

where NL is the total number of trajectories having reached the set L. As this algorithm can
be represented by N independent Galton–Watson branching processes (Zn)n, as in [12], the
variance of P̂ can be derived, and depends on the probability transitions and on the mean
numbers (mi) of the particle successes at each level. Following the heuristics presented in [17]
and [18], an optimal algorithm is derived by minimizing the variance of the estimator for a
given budget (computational cost), defined as the expected number of trials generated during
the simulation, where each trial is weighted by a cost function.

The optimization of the algorithm [12] suggests taking all the transition probabilities to be
equal to a constant denoted by P0 and taking the splitting numbers equal to the inverse of this
constant. We then deduce the number of thresholds,M , and, finally,N is given by the cost. This
result is not surprising since it means that the branching processes are critical Galton–Watson
processes. In other words, optimal values are chosen in such a way as to balance the loss of
variance from too little splitting and the exponential growth in the computational effort from
too much splitting.

Some practical problems arise when applying the optimal algorithm to models issued from
concrete problems. First, the optimal splitting number can be a noninteger. In [13], the author
proposed three algorithms to address this problem. For the applications we have in mind, the
thresholds Li are fixed but the conditional probabilities are unknown (however, we know how
the particles evolve from level Li to the next level Li+1). Moreover, we assume here that
the conditional probabilities lie in some compact interval [a, b] ⊂ (0, 1). This hypothesis
is essential, as otherwise nothing can be done algorithmically. In practice, this hypothesis is
implicitly assumed but not explicitly stated.
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A two-step branching splitting model 431

We propose here an algorithm in two phases, based on the branching splitting model. The
first phase is a learning phase in which we sample ρN particles. The algorithm proceeds as in
the classical branching splitting method with splitting numbers (R0

i )i=1,...,M chosen arbitrarily
at the start. In the second phase we run N − ρN particles which we evolve as in the first phase,
but with the splitting number estimators of the optimal splitting numbers (Ri)i=1,...,M ; the
estimators are obtained during the first learning phase and follow the optimal rule given in [12].
Owing to the complexity of the formulae, when the cost C goes to ∞, we will simply carry out
an asymptotic study. Assuming that the transition probabilities lie in a compact interval implies
that the particle cost is bounded from below and from above, which means that we can carry
out the study whenN goes to ∞. A precise analysis shows that we will dedicate asymptotically
µsC

2/3 particles to the learning phase and C/Copt − µsC
2/3 particles to the second phase,

where Copt is a constant defined in Section 4.1 and µs is derived from the optimization of
the algorithm, i.e. assuming that the number of particles generated during the learning phase
behaves as µα(C)C1−α , where we will take α = 1

3 . Moreover, we note thatN is linear in C, so
dedicating µsC2/3 particles to the first phase amounts to dedicating λsN2/3 particles for some
λs depending on µs .

The paper is organized as follows. In Section 2 we briefly recall the general settings and
some previous results on the branching splitting model. In Section 3 we present some useful
analytical results. In Section 4 we study the two-step branching splitting model and derive
optimal parameters. In Section 5 we implement the two-step algorithm on an approximate
Ornstein–Uhlenbeck process. Finally, in Section 6 we conclude and discuss the merits of this
approach and potential directions for further research.

2. Previous results and general settings

2.1. Optimal branching splitting model

As mentioned in the introduction and following [12], we consider N independent Galton–
Watson branching processes (Z(i)n )n≥0, i = 1, . . . , N , where, for each i, Z(i)n is the number of
particles derived from the ith particle (Z(i)0 =1) that reached level Ln. Then, letting Ri be the
sampling number at level i,

P̂ := 1

N

N∑
i=1

Q̃i, where Q̃i = Z
(i)
M+1

R1 · · ·RM .

To simplify the notation, we will consider only the case in which N = 1 in the following, i.e.
we will consider the process (Zn)n≥0 with Z0 = 1. We have the following relation:

Zn+1 =
Zn∑
j=1

X
(j)
n ,

where, for each n, the random variables (X(j)n )j≥1 are independent and identically distributed
(i.i.d.) with common law satisfying a binomial distribution with parameters (Rn, Pn+1) for
n ≥ 1 and a Bernoulli distribution with parameter P1 for n = 0. For more details on Galton–
Watson and branching processes, we refer the reader to [3], [9], and [15].
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432 A. LAGNOUX-RENAUDIE

Let us introduce the following quantities:

r0 = 1, ri = R1 · · ·Ri, i = 1, . . . ,M,

p0 = 1, pi = P1 · · ·Pi, i = 1, . . . ,M + 1,

m0 = P1, mi = Pi+1Ri, i = 1, . . . ,M,

where ri represents the weight of a particle having reached Li , pi is the probability of the
particle reaching Li starting from 0, and mi is the mean number of offspring of an individual
in the ith generation. Integrating N , the variance of P̂ is given by (see [12] for details)

var(P̂ ) = P(L)2

N

M∑
i=0

(
1

pi+1
− 1

pi

)
1

ri
.

In [12], the three-step minimization of the variance of P(L) for a given budget C, defined as
the mean number of particles generated during the simulation, i.e.

C = N

M∑
i=0

ripi,

leads to the optimal parameters of the algorithm: first we derive the optimal N and the optimal
splitting numbers, Ri , then the optimal transition probabilities, Pi , and finally the optimal
number of thresholds, M . In the case where the transition probabilities are fixed, the first step
of the optimization leads to

Ri =
√

1

PiPi+1

√
1 − Pi+1

1 − Pi
for i = 1, . . . ,M,

N = C
√

1/P1 − 1∑M+1
i=1

√
1/Pi − 1

.

Using these relations, the variance has the following expression:

var(P̂ ) = P(L)2

N

(
1

P1
− 1

) M∑
i=0

ripi = P(L)2

N2

(
1

P1
− 1

)
C. (2.1)

2.2. Settings

2.2.1. The two-step branching splitting model. In this paper, the transition probabilities are
considered to be unknown but to belong to some interval [a, b] ⊂ (0, 1). In practice, we can
propose values for a and b using specific knowledge of the process or a previous learning
simulation. Arbitrarily choose M + 1 numbers P 0

i in [a, b]. Let

R0
i = 1√

P 0
i P

0
i+1

√
1 − P 0

i+1

1 − P 0
i

for i = 1, . . . ,M,

and introduce the following notation:

r0
0 = 1, r0

i = R0
1 · · ·R0

i , i = 1, . . . ,M.
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Figure 1: The two-step branching splitting model.

Remark 2.1. The analytical complexity of the calculation prevents us from making a precise
analysis, and, when the costC goes to ∞, we are only able to derive asymptotic results. But the
fact that the Pis lie in the compact interval [a, b] ⊂ (0, 1) implies that the ratioC/N is bounded
from above and from below, allowing us to carry out an asymptotic study when N goes to ∞.
Note also that the total number of particles is in reality a random variable: in practice, a given
budget is fixed at the start and we sample particles until the budget is consumed; hence, the
randomness of N .

We propose here an algorithm in two phases: the first phase is a learning phase in which
the splitting numbers are (R0

i )i=1,...,M while the second phase uses estimators of (Ri)i=1,...,M
obtained in the learning phase. More precisely, we have N particles that we split into two
groups of ρN and N − ρN particles. The two-step branching splitting model then proceeds as
follows (see also Figure 1).

Phase 1: sample ρN particles. The particles having reachedL1 are split intoR0
1 subtrials that

we evolve from L1. The particles having reached L2 are split into R0
2 subtrials that we evolve

fromL2. This procedure is repeated untilL is reached. From step i (i = 1, . . . ,M+1) we obtain
an estimator P̂ (1)i ofPi (the fraction of successful particles starting fromLi−1). To exploit all the
information we possess, we improve the algorithm by replacing P̂ (1)i with P̃ (1)i := a ∨ P̂ (1)i ∧ b
during the simulation, since Pi ∈ [a, b]. This substitution is advantageous because it prevents
us from prematurely stopping the algorithm. Without this ability, the possibility of the particle
dying remains (see Section 3). After a premature stop of the algorithm, we can start a new
simulation. Nevertheless, we must take into account the cost induced by this first aborted
phase, as we work for a given fixed effort. Now, for all i = 1, . . . ,M , let

R̃i = 1√
P̃
(1)
i P̃

(1)
i+1

√√√√1 − P̃
(1)
i+1

1 − P̃
(1)
i

represent the splitting numbers of the second phase.
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434 A. LAGNOUX-RENAUDIE

Phase 2: sampleN−ρN particles. The particles having reachedL1 are split into R̃1 subtrials
that we evolve from L1. The particles having reached L2 are split into R̃2 subtrials that we
evolve from L2. This procedure is repeated until L is reached. From step i (i = 1, . . . ,M + 1)
we obtain an estimator P̂ (2)i of Pi , which we change into P̃ (2)i := a ∨ P̂ (2)i ∧ b during the
simulation.

In the following, the truncated estimators will be denoted with a tilde and all others estimators
will be denoted with a hat.

Remarks. 1. A first analytical survey leads us to restrict our attention to the case when

ρN → +∞ as N → +∞, N−ρN → +∞ as N → +∞, and ρN = o(N−ρN).
2. Moreover, as mentioned in Remark 2.1, the calculation is too complex to make a precise
analysis, so we carry out an asymptotic study when the cost C (and so whenN ) goes to ∞. We
aim at optimizing the algorithm with respect to the parameters. After analysis, we prove that
the optimum is attained when (

ρN

N

)2

≈ 1

ρN
as N → ∞.

More precisely, to have a better understanding of what happens and to clarify the analysis,
we restrict our attention to the case where ρN is asymptotically of the form λN1−α with λ
depending on N , and we aim at optimizing the algorithm in terms of α, N , and λ. Then we
prove that the optimum is attained for α = 1

3 ; indeed, for α < 1
3 , λ→0 as N → ∞, for α = 1

3 ,
λ→constant as N → ∞, and, for α = 1

3 , λ→∞ as N → ∞.

Let

F2i = σ(P̃
(1)
1 , . . . , P̃

(1)
i , P̃

(2)
1 , . . . , P̃

(2)
i ) and F2i+1 = F2i ∨ σ(P̃ (1)i+1),

and note that in the following we use the shorthand notation Ek for E(· | Fk) and vark for
var(· | Fk).

2.2.2. Estimators of the Pis. To exploit all the information given during the simulation, we
use both algorithms to estimate the transition probabilities: Pi+1 is estimated by the fraction
of successful particles in each generation in phase 1 and in phase 2. More precisely, for
i = 0, . . . ,M , Pi+1 is estimated by

P̃i+1 = total number of successes in Li+1

total number of particles generated from Li

= (λ/Nα)r0
i p̃

(1)
i+1 + (1 − λ/Nα)r̃i p̃

(2)
i+1

(λ/Nα)r0
i p̃

(1)
i + (1 − λ/Nα)r̃i p̃

(2)
i

with

p̃
(1)
0 = 1, p̃

(1)
i = P̃

(1)
1 · · · P̃ (1)i for i = 1, . . . ,M + 1,

p̃
(2)
0 = 1, p̃

(2)
i = P̃

(2)
1 · · · P̃ (2)i for i = 1, . . . ,M + 1,

r̃0 = 1, r̃i = R̃1 · · · R̃i for i = 1, . . . ,M.

It corresponds to the minimal variance estimator among the estimators given by a linear
combination of P̃ (1)i and P̃ (2)i .
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Finally, P(L) is estimated by the product of these fractions:

P̃ = P̃1 · · · P̃M+1 =: p̃M+1.

Noting that

P̃i+1 = p̃
(2)
i+1

p̃
(2)
i

(
1 + λ

Nα

(
p̃
(1)
i+1r

0
i

p̃
(2)
i+1r̃i

− 1

))/(
1 + λ

Nα

(
p̃
(1)
i r0

i

p̃
(2)
i r̃i

− 1

))
,

we have the following result.

Proposition 2.1. P(L) is estimated by

P̃ = p̃
(2)
M+1

M+1∏
i=1

(
1 + λ

Nα

(
p̃
(1)
i r0

i−1

p̃
(2)
i r̃i−1

− 1

))/ M∏
i=1

(
1 + λ

Nα

(
p̃
(1)
i r0

i

p̃
(2)
i r̃i

− 1

))
. (2.2)

3. Mathematical tools

In this section we present the technical tools necessary for the rest of the analysis: we give
two results concerning the truncated estimators used in the algorithm. First a precise bound of
the truncation probabilities of a sum of i.i.d. Bernoulli random variables is presented; then we
state a result on the expectation of truncated estimators.

Lemma 3.1. Let P̂ be a random variable having the following expression:

P̂ = 1

N

N∑
i=1

Beri ,

where the Beri are i.i.d. Bernoulli random variables with parameter P .

1. Letting

l(x) = log

[(
1 − x

1 − P

)1−x(
x

P

)x]
,

we have
P(P̂ ≤ a) ≤ exp{−Nl(a)}, P(P̂ ≥ b) ≤ exp{−Nl(b)}.

2. Let f and g be two functions defined on (0, 1), let C2 be defined on [a, b], and let
P̃ = a ∨ P̂ ∧ b. Then

E(f (P̃ )) = f (P )+ P(1 − P)

2N
f ′′(P )+ o

(
1

N

)
.

As a consequence,

var(f (P̃ )) = P(1 − P)

N
f ′(P )2 + o

(
1

N

)
,

cov(f (P̃ ), g(P̃ )) = P(1 − P)

N
f ′(P )g′(P )+ o

(
1

N

)
.

Proof. See Appendix A.

We can easily generalize the results of Lemma 3.1 to functions of two variables by duplica-
tion.
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4. Asymptotic optimal algorithm

4.1. Asymptotic expressions for the cost and the variance

In this section we derive the optimal algorithm by minimizing the variance of the estimator
for a given simulation cost. As mentioned in Remark 2.1, we will carry out an asymptotic survey
when N goes to ∞ and derive an asymptotic optimal algorithm by minimizing the variance
for a given budget. First we give asymptotic expressions for the cost and the variance; then we
deduce an asymptotic optimal algorithm and we end the section by explaining how to proceed
practically.

We first need to derive asymptotic expressions of the (average) simulation cost and the
variance of the estimator. An accurate analysis of the optimization problem shows that we must
carry out a second-order asymptotic expansion for the learning phase (i.e. the second order in
ρN ) while we simply need the first order for the second phase (i.e. the first order in N − ρN or,
equivalently, in N ). The proofs of the two following theorems are technical and complex, and
are thus postponed to Appendices B and C.

Assuming that, asymptotically, ρN is of the form λN1−α , the (average) cost (which is defined
as the mean number of particles generated during the simulation) is given by

C = λN1−α
M∑
i=0

Ri0 E(p̃(1)i )+ (N − λN1−α)
M∑
i=0

E(r̃i p̃
(2)
i ). (4.1)

Remember that our aim is to derive an expression for the cost as the given budget goes to ∞.
We remark that

C

N
= λ

Nα

M∑
i=0

Ri0 E(p̃(1)i )+
(

1 − λ

Nα

) M∑
i=0

E(r̃i p̃
(2)
i ),

and since Pi ∈ [a, b] ⊂ (0, 1) for all i = 1, . . . ,M + 1, the right-hand side is bounded above
and below. As a consequence, we can verify that, as mentioned in the introduction,

N → ∞ while C → ∞
and that C is linear in N . Now repeatedly using Lemma 3.1, we derive the following result.

Theorem 4.1. We have

C = N

(
Copt + B1

λN1−α + B2
λ

Nα
+ o

(
1

Nα

)
+ o

(
1

N1−α

))
,

where

B1 = 1

2

M∑
i=1

ripi

(
3/4

P1(1 − P1)
− 2 + 2

i−1∑
k=1

1 − Pk+1

r0
k pk+1

+ 3/4 − Pi+1

r0
i pi+1(1 − Pi+1)

)
,

B2 =
M∑
i=1

pi(r
0
i − ri),

and Copt is the (average) particle cost generated in the optimal model,

Copt =
M∑
i=0

ripi .

Proof. See Appendix B.
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Using the notation introduced previously, the variance of the estimator is given as follows.

Theorem 4.2. We have

var(P̃ ) = P(L)2

N

(
Vopt + 1

λN1−α A1 + λ

Nα
A2 + λ2

N2α A3 + o

(
1

N1−α

)
+ o

(
1

N2α

))
,

where

A1 = 1

2

M∑
i=1

(
Pi+1 − 1/4

r0
i rip

2
i+1

− 1

4

ripi

P 2
1

)
, A2 =

(
1

P1
− 1

) M∑
i=1

pi(ri − r0
i ),

A3 =
(

1

P1
− 1

) M∑
i=1

pi

ri
(r0
i − ri)

2,

and Vopt is the renormalized particle variance of the optimal model,

Vopt =
M∑
i=0

(
1

pi+1
− 1

pi

)
1

ri
=

(
1

P1
− 1

)
Copt,

arising from (2.1).

Proof. See Appendix C.

4.2. Optimization of the algorithm

We remind the reader that our goal is to optimize the algorithm with respect to the parameters
N , α, and λ. We first prove the following lemma.

Lemma 4.1. Let F and G be two real-valued functions. Suppose that

F(λ,N) ∼ 1

N
+ f1(λ)

N1+α + f2(λ)

N1+2α + f3(λ)

N2−α as N → ∞,

G(λ,N) ∼ N −N1−αf1(λ)+Nαf4(λ) as N → ∞.

Then minimizing F for a fixed G = Gf asymptotically amounts to minimizing

• f3 + f4 for α > 1
3 ,

• f2 − α(f1)
2 for α < 1

3 ,

• f2 + f3 + f4 − (f1)
2 for α = 1

3 ,

with N being given by the equation G = Gf .

Proof. See Appendix D.

As a consequence of Lemma 4.1, we obtain the following proposition.

Proposition 4.1. Minimizing the variance for a given cost leads to taking α = 1
3 ,

λs =
(
Copt(A1 + B1(1/P1 − 1))

2(A2B2 + A3Copt)

)1/3

,

and N is given by the cost.
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Proof. From (2.1) and the expressions for A2 and B2, the following relation is clearly
satisfied:

A2Copt + B2Vopt = 0.

As a consequence, the variance and the cost (after a renormalization by Vopt and Copt, respec-
tively) have the form of the functions F and G in Lemma 4.1, which allows us to state that
minimizing the variance for a given cost C amounts to minimizing

• (1/λ)(A1/Vopt + B1/λCopt) for α > 1
3 , which leads to λs = +∞,

• λ2(A3/Vopt + αA2B2/VoptCopt) for α < 1
3 , which leads to λs = 0,

•
A1/λ+ A3λ

2

Vopt
+ B1

λCopt
+ λ2 A2B2

VoptCopt
for α = 1

3 ,

which leads to

λs =
(
Copt(A1 + B1(1/P1 − 1))

2(A2B2 + A3Copt)

)1/3

.

As a conclusion, the optimal parameters are α = 1
3 , N is simply given by the cost, and

λs =
(
Copt(A1 + B1(1/P1 − 1))

2(A2B2 + A3Copt)

)1/3

.

Remark 4.1. We insist on the fact that the equation A2Copt +B2Vopt = 0, which allows us to
apply Lemma 4.1, follows directly from the particular choice of the Ris, which are solutions
of a particular optimization problem, and this leads to α = 1

3 . Otherwise, we would not have
had this relation between the constants A2 and B2, and the optimal α would simply have been
1
2 , as is expected a priori. This emphasizes the fact that it is worth choosing the transition
probabilities to be as close as possible to the optimal Pis.

Remark 4.2. If the optimal Ri for the learning phase is chosen arbitrarily, we are led to the
solution

λs = +∞,

which confirms our intuition: if the optimal splitting numbers are used from the start then
introducing an extra Monte Carlo stage cannot be advantageous.

4.3. Guidelines to proceed practically

In practice, we are given a fixed budget to consume during the simulation which amounts
to fixing the total number of particles, N , generated during the simulation. We will sample
ρN = λsN

1−α particles during the learning phase and N − ρN particles during the second
phase. The optimization analysis suggests that we take

α = 1

3
and λs =

(
Copt(A1 + B1(1/P1 − 1))

2(A2B2 + A3Copt)

)1/3

.

Recall that the transition probabilities Pi are unknown and, thus, we cannot evaluate λs
explicitly. Nevertheless, these conditional probabilities are bounded above and below; thus,
we can determine a lower bound λs(min) (but also an upper bound λs(max)) of λs . As a
consequence, we will proceed as follows.
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• First phase: the learning phase. We first sample λs(min)N2/3 particles, proceeding as
in the classical branching splitting method with splitting numbers (R0

i )i=1,...,M that have
been chosen arbitrarily at the start. Then we estimate the transition probabilities, the
optimal splitting numbers, and the optimal λs (denoted by λest). Finally, we continue to
sample particles until the total number of trials generated during the first phase equals
λestN

2/3.

• Second phase. We run N − ρN particles that we evolve as in the first phase, but here
we use estimators of (Ri)i=1,...,M obtained during the first learning phase and follow the
optimal rule given in [12], as explained previously.

5. Approximate Ornstein–Uhlenbeck process

In this section we study the approximate Ornstein–Uhlenbeck process X, governed by the
following stochastic differential equation:

dXt = −µ(Xt)Xt dt + σ(Xt ) dWt,

where W is a Brownian motion and the unknown drift is such that

0 < µ1 ≤ µ(x) ≤ µ2 < ∞.

In the numerical application we will take the drift constant on disjoint intervals. Remember that
the general Ornstein–Uhlenbeck process is governed by the following stochastic differential
equation:

dXt = −µXt dt + σ dWt. (5.1)

The Ornstein–Uhlenbeck process is recurrent and excursions above large values are rare; this
is also the case for the approximate Ornstein–Uhlenbeck process. Here, we want to estimate
the probabilities that the approximate Ornstein–Uhlenbeck process reaches some high levels
starting from x > 0 and before returning to 0. When the drift is known, we can easily determine
these probabilities. But with an unknown drift, their estimation is very expensive in terms of
the simulation. Here, since we only want to estimate the levels of excursions, there is no need
to estimate µ, and the two-step branching splitting algorithm appears to be a promising and
efficient way to solve the problem.

Before turning to the numerical application, we first recall the general settings and results
on the general Ornstein–Uhlenbeck process.

5.1. Analytical study

We recall in this subsection some results on the standard Ornstein–Uhlenbeck process,
governed by the stochastic differential equation

dXt = −Xt dt + √
2 dWt

(i.e. the drift µ is equal to 1 and the variance σ 2 is equal to 2). The results for the general
Ornstein–Uhlenbeck process governed by (5.1) can be easily deduced by a change of variables.

The speed measure m is given by

m(dx) = ρ(x) dx = exp

{
−µx

2

σ 2

}
dx,
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and the infinitesimal generator L is given by

L(f )(x) = f ′′(x)− µxf ′(x) = f ′′(x)+ σ 2

2

ρ′(x)
ρ(x)

f ′(x).

Let L0, x, and L be such that L0 < x < L. Suppose that X0 = x, and note that H(x) =∫ x
L0

dy/ρ(y). Let TL0,L be the first leaving time of [L0, L]:
TL0,L = inf{t ≥ 0 : Xt /∈ [L0, L]}.

We can easily verify that TL0,L is a stopping time. Noting that H solves L(f ) = 0, we have

Px(XTL0,L
= L) = H(x)

H(L)
,

Px(XTL0,L
= L0) = H(L)−H(x)

H(L)
,

Ex(TL0,L) = ML0,L(x) = −
∫ x

L0

R(t)

ρ(t)
dt + H(x)

H(L)

∫ L

L0

R(t)

ρ(t)
dt.

5.1.1. How to position the thresholds to have constant transitions. The optimization of the
algorithm suggests taking the transition probabilities to be equal, i.e. if the thresholds are
denoted by Li , we want to solve in terms of Li+1 once Li has been fixed,

PLi (XTL0,Li+1
= Li+1) = H(Li)

H(Li+1)
= θ for some θ.

Then, for large values of i, we aim at having

PLi (XTL0,Li+1
= Li+1) = θ,

⇐⇒ H(Li) = θH(Li+1) ∼ θ [H(Li)+ (Li+1 − Li)H
′(Li)],

⇐⇒ Li+1 − Li ∼ exp

{
−L

2
i

2

}
H(Li)

(
1

θ
− 1

)
,

⇐⇒ Li+1 − Li ∼ 1

Li

(
1

θ
− 1

)
since H(Li)∼exp{x2/2}

x
as x → ∞.

If, for example, θ = 1
2 , the last equation above suggests taking

Li+1 = Li + 1

Li
,

and we deduce an equivalent of Ln for large values of n,

Ln∼
√

2n as n → ∞,

from the following lemma.

Lemma 5.1. Let (un)n be a real-valued sequence such that

u0 > 0 and un+1 = un + 1

uαn
for all n ∈ N,

where α > −1. Then un ∼ [n(1 + α)]1/(α+1) as n → ∞.

Proof. We give only a sketch of the proof of this classical analytical result. First, we know
that, using monotonicity and a fixed point argument, (un) diverges. Then we look for a constant
β > 0 such that uβn+1 − u

β
n converges. The result then follows easily.
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5.1.2. Cost of transition. Now we deduce the asymptotic behavior of the cost of the transition,
i.e. the cost of a particle starting at x and reaching the next level (x + 1/x) or 0:

Ex(T0,x+1/x) ∼ (1 − e−1) log(x) as n → ∞.

To prove this result, note that

Ex(T0,x+1/x) = −
∫ x

0

R(t)

ρ(t)
dt +

∫ x+1/x
0 (R(t)/ρ(t)) dt∫ x+1/x

0 (1/ρ(t)) dt

∫ x

0

1

ρ(t)
dt

and write R(t) = R(∞)−D(t) withD(t) = ∫ ∞
t
ρ(u) du. Multiplying each side of the above

equation by
∫ x+1/x

0 dt/ρ(t), we obtain

Ex(T0,x+1/x)

∫ x+1/x

0

dt

ρ(t)
=

∫ x

0

dt

ρ(t)

∫ x+1/x

0

R(t)

ρ(t)
dt −

∫ x+1/x

0

dt

ρ(t)

∫ x

0

D(t)

ρ(t)
dt

= −
∫ x

0

dt

ρ(t)

∫ x+1/x

x

D(t)

ρ(t)
dt +

∫ x+1/x

x

dt

ρ(t)

∫ x

0

D(t)

ρ(t)
dt.

Using classical estimates, we obtain the required result.

Remark 5.1. The above result justifies our hypothesis that the costs of the transition are
asymptotically constant.

This type of result can also be deduced for the approximate Ornstein–Uhlenbeck process,
but the analysis is much more complicated.

5.2. Numerical application

We suppose that the unknown drift is constant and equal to µi on disjoint intervals taken
over each interval i:

µi ∈ [µ1
i , µ

2
i ].

We arbitrarily determine a ‘mean’ drift constant on disjoint intervals taken over each interval i,
µ0
i = (µ1

i + µ2
i )/2. We then determine the thresholds Li such that the transition probabilities

are equal to p and the optimal sampling numbers for the mean drift. Now we sample ρN
processes according to

dXt = −µ(Xt)Xt dt + σ dWt, (5.2)

which we discretize as
Xn+h = −(µh− 1)Xn + σG,

where h is the discretization step and G has an N (0, h) distribution. The sampling numbers
used during this learning phase are the optimal sampling numbers for the mean drift determined
previously. In this way we obtain estimates of the transition probabilities that allow us to
estimate the optimal sampling numbers. We then sample N − ρN processes according to
discretization (5.2) with the estimated sampling numbers.

Remark 5.2. (Simulation procedure.) Owing to the discretization of the process and since the
drift is not constant, a bias is introduced at each change of regime of the drift. We propose here
a procedure to reduce this bias. Let (mi)i denote the levels of drift change, and let (Xn)n be the
studied process. Suppose that Xn is such that mi−1 < Xn < mi . Then Xn evolves according
to (5.2) with drift µi and

Xn+1 = Xn − µihXn + σ
√
hZ,

where Z is a realization of the N (0, 1) distribution.
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If Xn+1 < mi , there is no problem: the process evolves from Xn according to (5.2) with
drift µi and the next point Xn+1 is still in the same regime of drift. The simulation is simply
continued. On the other hand, if Xn+1 > mi , we should have changed the drift between Xn
andXn+1, which introduces the bias mentioned at the beginning of the remark. Thus, we solve
the second-degree equation in Xn+1:

Xn+1 = Xn − µi(mi −Xn)+ µi+1(Xn+1 −mi)

Xn+1 −Xn
hXn + σ

√
hZ.

Finally, Xn+1 is the obtained solution.

5.2.1. Application. We aim to estimate the probability that the process governed by (5.2) (with
σ = 0.3) and starting from x = 0.1 reaches level L = 4 before going to L0 = 0. The values
of the different parameters corresponding to the target probability

Px(XTL0,L
= L) = 1.676 79 × 10−08

are reported in Table 1. The thresholds for the mean drift and p = 0.2 are given in Table 2.

Table 1.

[mi,mi+1] µi µ1
i µ2

i µ0
i

[0, 1
2 ] 0.05 0.05 0.06 0.055

[ 1
2 , 1] 0.06 0.06 0.07 0.065

[1, 3
2 ] 0.07 0.07 0.08 0.075

[ 3
2 , 2] 0.09 0.08 0.09 0.085

[2, 5
2 ] 0.09 0.09 0.10 0.095

[ 5
2 , 3] 0.11 0.10 0.11 0.105

[3, 7
2 ] 0.11 0.11 0.12 0.115

[ 7
2 , 4] 0.12 0.12 0.13 0.125

Table 2.

Threshold Value

L1 0.477 833 928
L2 1.406 139 441
L3 2.073 610 760
L4 2.480 952 409
L5 2.785 321 189
L6 3.039 774 162
L7 3.257 152 634
L8 3.453 693 339
L9 3.632 850 394
L10 3.795 331 329
L11 3.949 233 228
L12 4
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Table 3.

Length Simulation
Method Parameter Estimation Error CI 95% cost

ITSBSM N = 104 — — — —
N = 105 1.69 × 10−08 1.21 × 10−10 2.12 × 10−09 1.19 × 1009

N = 106 1.68 × 10−08 1.21 × 10−12 1.21 × 10−09 1.19 × 1010

TSBSM N = 105 1.75 × 10−08 7.68 × 10−10 1.72 × 10−09 1.21 × 1009

IOSBSM N = 105 1.66 × 10−08 1.32 × 10−10 4.30 × 10−09 1.30 × 1010

SALO H = 102 1.89 × 10−08 2.16 × 10−09 4.08 × 10−09 9.02 × 1007

H = 103 1.75 × 10−08 7.61 × 10−10 1.72 × 10−09 9.18 × 1008

H = 104 1.67 × 10−08 1.27 × 10−10 4.07 × 10−10 6.45 × 1009

AACG (p = 1
4 ) N = 105 1.05 × 10−08 6.23 × 10−09 2.06 × 10−08 9.30 × 1008

(p = 1
3 ) N = 105 1.14 × 10−08 5.41 × 10−09 1.66 × 10−08 1.60 × 1009

(p = 1
2 ) N = 105 1.22 × 10−08 4.61 × 10−09 2.56 × 10−08 1.90 × 1009

(p = 2
3 ) N = 105 1.98 × 10−08 3.04 × 10−09 2.97 × 10−08 2.20 × 1009

(p = 3
4 ) N = 105 1.86 × 10−08 1.86 × 10−09 2.86 × 10−08 2.30 × 1009

In Table 3 we present the results obtained with different methods, N = 104, 105, or 106

processes generated at the start, and 50 iterations. The abbreviations TSBSM, ITSBSM,
IOSBSM, SALO, and AACG stand for the two-step branching splitting model, the improved
two-step branching splitting model (see Remark 5.2), the improved one-step branching splitting
model (see Remark 5.2), the sequential algorithm of LeGland and Oudjane [14] (in this tech-
nique we run trajectories between two successive thresholds (which are given at the beginning
of the simulation) until some number of successes, H , is reached), and the adaptive algorithm
of Cérou and Guyader [4], respectively. (In the AACG technique we run N trajectories until
0 is reached. The thresholds are then defined during the simulation in such a way that exactly
a proportion p of these trajectories have succeeded to reach the level. To have a constant
population, the trajectories that have failed are resampled on the successful ones.)

6. Conclusion

In this paper we proposed a two-step algorithm based on the branching splitting model.
A precise analysis showed that we asymptotically dedicate µsC2/3 particles to the learning
phase and C/Copt − µsC

2/3 particles to the second phase, where Copt is a constant and µs
is derived from the optimization of the algorithm, i.e. assuming that the number of particles
generated during the learning phase behaved like µC1−α , we let α = 1

3 .

This result followed directly from the particular choice of the splitting numbers, the Ris,
which are solutions of an optimization problem. Otherwise, if the Ris are not taken in such
a way, the optimal α would simply be equal to 1

2 , as expected a priori. This emphasized
the importance of choosing the transition probabilities and the splitting numbers as close as
possible to the optimals, and of having good estimates for the parameters chosen a priori. It
also emphasized the need to have an adaptive algorithm in multiple phases that would be more
efficient: evaluating the parameters at each step and continuing the simulation according to
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these estimates. However, in such an algorithm, the calculation using martingale techniques
rapidly becomes even more complex than those of this paper (see, e.g. Appendices A and B).
Moreover, to show that the adaptive algorithm works better than the algorithm presented here
would be difficult, and the gain resulting from such an approach would be very hard to quantify.

In terms of an efficient algorithm, the best thing to do would be to estimate and to increment
not only the splitting numbers but also the transition probabilities, and then to move, before
each phase, the thresholds according to these evaluations. But the precise analysis becomes
more and more complex. Moreover, such an algorithm is based on the hypothesis that we can
move the thresholds, which in practical settings is generally not the case.

Finally, it would also be worth analyzing non-Markovian models, multidimensional models
as well as unidimensional models. In multidimensional models, the probability of reaching
some level Li+1 starting from level Li depends on the entry point in Li . Such studies would
be interesting and worth analyzing, but once again they are difficult to solve.

Appendix A. Proof of Lemma 3.1

In this appendix we prove Lemma 3.1. The first part of the lemma is clearly well known and
follows directly from Chernoff’s bounding method and optimization. Then, first of all,

E(f (P̃ )) = E(f (P̂ )1
P̂∈[a,b])+ E(f (P̃ )1

P̂∈[a,b]c ).

But, since P̃ ∈ [a, b] and f is bounded on [a, b] by some constant Mf ,

E(f (P̃ )1
P̂∈[a,b]c ) ≤ Mf P(P̂ /∈ [a, b]) ≤ 2Mf exp{−Nh(a, b)}

by the first part of Lemma 3.1 and with h(a, b) = min{l(a), l(b)}.
Then, we can note that

E(P̂ ) = P, var(P̂ ) = P(1 − P)

N
, E((P̂ − P)3) = P(1 − P)

N2 (1 − 2P),

and E((P̂ − P)4) = P(1 − P)

N2

(
(P 3 + (1 − P)3)

1

N
+

(
1 − 1

N

)
P(1 − P)

)
,

and since f is C2 on [a, b], by a Taylor expansion,

f (P̂ )1
P̂∈[a,b] =

(
f (P )+ (P̂ − P)f ′(P )+ (P̂ − P)2

2
f ′′(P )+ o((P̂ − P)2)

)
1
P̂∈[a,b],

and so

E(f (P̂ )1
P̂∈[a,b])

= E

(
f (P )+ (P̂ − P)f ′(P )+ (P̂ − P)2

2
f ′′(P )+ o((P̂ − P)2)

)

− E

((
f (P )+ (P̂ − P)f ′(P )+ (P̂ − P)2

2
f ′′(P )+ o((P̂ − P)2)

)
1
P̂ /∈[a,b]

)
.

The first term on the right-hand side is simply

f (P )+ E(P̂ − P)f ′(P )+ var(P̂ )
f ′′(P )

2
+ E(o(P̂ − P)2)

= f (P )+ P(1 − P)

2N
f ′′(P )+ o

(
1

N

)
.
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Since P ∈ [a, b], and f and its two first derivatives are bounded on [a, b], the second term
on the right-hand side is bounded by some constant times P(P̂ /∈ [a, b]), itself bounded by
exp{−Nh(a, b)}, allowing us to conclude.

Appendix B. Cost asymptotic expression

In this appendix we prove Theorem 4.1. The asymptotic expression of the cost is given by

C = N

(
Copt + B1

λN1−α + B2
λ

Nα
+ o

(
1

Nα

)
+ o

(
1

N1−α

))
,

where B1, B2, and Copt are constants given in Theorem 4.1.
SinceC is given by (4.1), we need to evaluate E(p̃(1)i ) (which is obviously pi) and E(r̃i p̃

(2)
i ).

Now define ϕ(x) = √
1/x − 1 and ψ(x) = √

x(1 − x). Then R̃i = ϕ(P̃
(1)
i+1)/ψ(P̃

(1)
i ). To

derive the formula, we proceed by induction, successive conditionings, and several uses of
Lemma 3.1. for k = i (and similarly for k = i − 1, . . . , 2), we have the following.

• Condition on F2k to isolate what happens from Lk and then apply Lemma 3.1 near Pk+1
to the function φ when k = i and to the function ϕ/ψ when k = i − 1...2 and

P̃
(1)
k+1 = Pk+1 + 1

λN1−αr0
k p̃

(1)
k

λN1−αr0
k p̃

(1)
k∑

j=1

Ber′j ,

where Ber′j
L= Ber(Pk+1)− Pk+1.

• Condition on F2k−1 to isolate what happens from Lk−1 after the first phase and then
apply Lemma 3.1 near Pk to the function Id and

P̃
(2)
k = Pk + 1

(N − λN1−α)r̃kp̃(2)k−1

(N−λN1−α)r̃k p̃(2)k−1∑
j=1

Ber′j ,

where Ber′j
L= Ber(Pk)− Pk .

At step k = i, we obtain

E(r̃i p̃
(2)
i ) = E

(
r̃i−1

ψ(p̃
(1)
i )

p̃
(2)
i E2i (ϕ(P̃

(1)
i+1))

)

= ϕ(Pi+1)E

(
r̃i−1

ψ(P̃
(1)
i )

p̃
(2)
i

)

+ Pi+1(1 − Pi+1)

2λN1−αr0
i

ϕ′′(Pi+1)E

(
r̃i−1

ψ(P̃
(1)
i )

p̃
(2)
i

p̃
(1)
i

)
+ o

(
1

N1−α

)
,

where

E

(
r̃i−1

ψ(P̃
(1)
i )

p̃
(2)
i

)
= E

(
r̃i−1

ψ(P̃
(1)
i )

p̃
(2)
i−1 E2i−1(P̃

(2)
i )

)
= Pi E

(
r̃i−1

ψ(P̃
(1)
i )

p̃
(2)
i−1

)
+ o

(
1

N1−α

)
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and

E

(
r̃i−1

ψ(P̃
(1)
i )

p̃
(2)
i

P̃
(1)
i

)
= ri−1

ψ(Pi)
+ o

(
1

N1−α

)
.

Then proceeding for k from i − 1 to 2 leads to

E(r̃i p̃
(2)
i ) = ri

R1

pi

P1
ϕ(P2)E

(
P̃
(2)
1

ψ(P̃
(1)
1 )

)

+ ripi

2λN1−α
i−1∑
k=1

Pk+1(1 − Pk+1)

r0
k RkRk+1

ϕ(Pk+2)

pkψ(Pk)

(
ϕ

ψ

)′′
(Pk+1)

+ Pi+1(1 − Pi+1)

2λN1−αr0
i

ϕ′′(Pi+1)
ri−1

ψ(Pi)
+ o

(
1

N1−α

)
.

To derive the required expression, it remains to apply Lemma 3.1 to (x, y) �→ y/ψ(x).

Appendix C. Variance asymptotic expression

In this appendix we prove Theorem 4.2. The asymptotic expression of the variance is given
by

var(P̃ ) = P(L)2

N

(
Vopt + 1

λN1−α A1 + λ

Nα
A2 + λ2

N2α A3 + o

(
1

N1−α

)
+ o

(
1

N2α

))
,

where A1, A2, A3, and Copt are constants given in Theorem 4.2.

To prove the result, we establish a recursive relation between var(P̃ ) = var(p̃M+1) and
var(p̃M), and we conclude by iterating this relation. During the proof, in order to simplify the
exposition, we use ‘≈’ to denote any asymptotic expansion at the order 1/N(1+α)∧(2−α). Now,
for k = 1, . . . ,M , let Zk be the ratio between the numbers of particles having reached level Lk
in phases 1 and 2:

Zk = p̃
(1)
k r0

k

p̃
(2)
k r̃k

=: Z̄k
R̃k

= Z̄k
ψ(P̃

(1)
k )

ϕ(P̃
(1)
k+1)

.

Then

P̃k = P̃
(2)
k

1 + (λ/Nα)(Zk−1P̃
(1)
k /P̃

(2)
k − 1)

1 + (λ/Nα)(Zk−1 − 1)
.

We proceed as in Appendix A by successive conditionings and several applications of
Lemma 3.1. Since the estimate P̃ = p̃M+1 of P(L) is expressed as a product P̃1 · · · P̃M+1,
conditionings appear to be particularly efficient to deduce the required recursive relation.
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A first conditioning by F2M+1 leads to

var(P̃ ) = var(p̃M+1)

= var

(
p̃M

p̃
(2)
M r̃M{1 + (λ/Nα)(ZM − 1)}

×
{
λ

Nα
p̃
(1)
M+1r

0
M +

(
1 − λ

Nα

)
p̃
(2)
M r̃M E2M+1(P̃

(2)
M+1)

})

+ E

((
p̃M

p̃
(2)
M r̃M{1 + (λ/Nα)(ZM − 1)}

)2((
1 − λ

Nα

)
p̃
(2)
M r̃M

)2

var2M+1(P̃
(2)
M+1)

)

≈ P 2
M+1 var

(
p̃M

{
1 + λ

Nα
ZM

(
P̃
(1)
M+1

P̃
(1)
M+1

− 1

)(
1 − λ

Nα
(ZM − 1)

)})

+ PM+1(1 − PM+1)

N

(
1 − λ

Nα

)

× E

(
p̃2
M

p̃
(2)
M r̃M

(
1 − 2

λ

Nα
(ZM − 1)+ 3

λ2

N2α (ZM − 1)2
))
.

Using E2M+1(P̃
(2)
M+1) = PM+1 + o(1/N),

var2M+1(P̃
(2)
M+1) = PM+1(1 − PM+1)

N(1 − λ/Nα)p̃
(2)
M r̃M

+ o

(
1

N

)
(by Lemma 3.1),

and (1 + x)α ≈ (1 + αx + α(α+ 1)/2x2) as α → 0, the right-hand side of the above equation
is asymptotically equal to

P 2
M+1 var

(
p̃M

(
1 + λ

Nα
Z̄Mψ(P̃

(1)
M )E2M(f (P̃

(1)
M+1))

))

+ P 2
M+1 E

(
p̃2
M

λ2

N2α (Z̄Mψ(P̃
(1)
M ))2 var2M(f (P̃

(1)
M+1))

)

+ PM+1(1 − PM+1)

N

(
1 − λ

Nα

)
E

(
p̃2
M

p̃
(2)
M r̃M−1

ψ(P̃
(1)
M )E2M(g(P̃

(1)
M+1))

)

=: T1 + T2 + T3,

where we have used two conditionings by F2M :

f (x) = 1

ϕ(x)

(
x

PM+1
− 1

)(
1 − λ

Nα

(
Z̄M

ψ(P̃
(1)
M )

ϕ(x)
− 1

))
,

and

g(x) = 1

ϕ(x)

(
1 − 2

λ

Nα

(
Z̄M

ψ(P̃
(1)
M )

ϕ(x)
− 1

)
+ 3

λ2

N2α

(
Z̄M

ψ(P̃
(1)
M )

ϕ(x)
− 1

)2)
.
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Let us first consider the calculation of T1. Applying Lemma 3.1 to f , we obtain

T1 ≈ P 2
M+1 var

(
p̃M

[
1 + 1

N

ψ(P̃
(1)
M )ϕ(PM+1)

−1

p̃
(2)
M r̃M−1PM+1

{
1 − λ

Nα

(
2Z̄M

ψ(P̃
(1)
M )

ϕ(PM+1)
− 1

)}])

≈ P 2
M+1 var(p̃M)

+ 1

4N2ϕ(PM+1)2
var

(
p̃Mψ(P̃

(1)
M )

p̃
(2)
M r̃M−1

{
1 − λ

Nα

(
2Z̄M

ψ(P̃
(1)
M )

ϕ(PM+1)
− 1

)})

+ PM+1

Nϕ(PM+1)
cov

(
p̃M,

p̃Mψ(P̃
(1)
M )

p̃
(2)
M r̃M−1

{
1 − λ

Nα

(
2Z̄M

ψ(P̃
(1)
M )

ϕ(PM+1)
− 1

)})
.

As the second term on the right-hand side (which is in 1/N2) is negligible, we study only the
term involving the covariance, which is equal to

E

(
p̃2
M

ψ(P̃
(1)
M )

p̃
(2)
M r̃M−1

{
1 − λ

Nα

(
2Z̄M

ψ(P̃
(1)
M )

ϕ(PM+1)
− 1

)})

− E(p̃M)E

(
p̃M

ψ(P̃
(1)
M )

p̃
(2)
M r̃M−1

{
1 − λ

Nα

(
2Z̄M

ψ(P̃
(1)
M )

ϕ(PM+1)
− 1

)})

=: T11 − T12T13,

and we show that it is null. As the integration procedure is the same for all the expectations
introduced in this proof, we detail only the calculation of E(p̃M) in order to simplify the
exposition:

T12 = E(p̃M)

= E

(
p̃M−1P̃

(2)
M

{
1 + (λ/Nα)(ZM−1P̃

(1)
M /P̃

(2)
M − 1)

1 + (λ/Nα)(ZM−1 − 1)

})

= E

(
p̃M−1

(
1 + λ

Nα
(ZM−1 − 1)

)−1

E2M−1(uM(P̃
(2)
M ))

)
,

conditioning on F2M−1 and noting that

uM(x) = x

(
1 + λ

Nα

(
ZM−1

P̃
(1)
M

x
− 1

))
.

However, by Lemma 3.1 (the second term being negligible),

E2M−1(uM(P̃
(2)
M )) = uM(PM)+ PM(1 − PM)

2N(1 − λ/Nα)
u′′
M(PM)+ o

(
1

N

)

= PM

(
1 + λ

Nα

(
ZM−1

P̃
(1)
M

PM
− 1

))
+ o

(
1

Nα

)
.

Now let

vM(x) =
(

1 − λ

Nα

(
Z̄M−1

ψ(P̃
(1)
M−1)

ϕ(x)
− 1

)
+ λ2

2N2α

(
Z̄M−1

ψ(P̃
(1)
M−1)

ϕ(x)
− 1

)2)

×
(

1 + λ

Nα

(
Z̄M−1

ψ(P̃
(1)
M−1)

ϕ(x)

x

PM
− 1

))
,
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and apply Lemma 3.1 to vM to obtain

E2(M−1)(vM(P̃
(1)
M )) = vM(PM)+ PM(1 − PM)

2λN1−α v′′
M(PM)+ o

(
1

N1−α

)
= 1 + o

(
1

N

)
.

Then, by conditioning on F2(M−1) we can deduce that

T12 ≈ PM E(p̃M−1 E2(M−1)(vM(P̃
(1)
M ))) ≈ PM E(p̃M−1) ≈ · · · ≈ pM.

Making successive conditionings and applications of Lemma 3.1, T11 becomes

T11 ≈ PM · · ·P2

RM−1 · · ·R2

ψ(PM)

ϕ(P2)
E

(
P̃ 2

1
ψ(P̃

(1)
1 )

P̃
(2)
1

{
1 − λ

Nα

(
2
P̃
(1)
1 r0

M

P̃
(2)
1

ψ(P̃
(1)
1 )

ϕ(P2)
− 1

)})

= pMψ(PM)

rM−1

({
1 − λ

Nα

(
2
r0
M

rM
− 1

)}
− 1/8

λN1−α
1

P1(1 − P1)

)
+ o

(
1

N1−α

)
.

By an application of Lemma 3.1 to 
, defined by


(x, y) = yψ(x)

(
1 + 2

λ

Nα

(
x

y
− 1

)
+ λ2

N2α

(
x

y
− 1

)2)(
1 − λ

Nα

(
2r0
M

ϕ(P2)

xψ(x)

y
− 1

))
,

we obtain

E(
(P̃ (1)1 , P̃
(2)
1 )) = 
(P1, P1)+ P1(1 − P1)

(

′′
x(P1, P1)

2λN1−α + 
′′
y(P1, P1)

2N(1 − λ/Nα)

)

+ o

(
1

N1−α

)

= P1ψ(P1)

(
1 − λ

Nα

(
2
r0
M

rM
− 1

))
+ P1(1 − P1)


′′
x(P1, P1)

2λN1−α

+ o

(
1

N1−α

)
.

In the same way we obtain

T13 = ψ(PM)

rM−1

({
1 − λ

Nα

(
2
r0
M

rM
− 1

)}
− 1/8

λN1−α
1

P1(1 − P1)

)
+ o

(
1

N1−α

)
,

from which we deduce the nullity of the covariance term. Finally, T1 ≈ P 2
M+1 var(p̃M).

Let us now consider the calculation of T2. Making successive conditionings and applications
of Lemma 3.1, it follows that

T2 ≈ λ

N1+α (1 − PM+1)PM+1 · · ·P2
r0
M

(RM · · ·R2)2ϕ(P2)2

× E

(
P̃ 2

1
P̃
(1)
1 ψ(P̃

(1)
1 )2

P̃
′2
1

{
1 − 2

λ

Nα

(
r0
M

RM · · ·R2

ψ(P̃
(1)
1 )

ϕ(P2)

P̃
(1)
1

P̃
(2)
1

− 1

)})

= λ

N1+α (1 − PM+1)pM+1
r0
M

r2
M

(
1 − 2

λ

Nα

(
r0
M

rM
− 1

))
+ o

(
1

N1+α

)
,
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where the last step follows from an application of Lemma 3.1 to �, defined by

�(x, y) = xψ(x)2
(

1 + λ

Nα

(
x

y
− 1

))(
1 − 2

λ

Nα

(
r0
M

RM · · ·R2

ψ(x)

ϕ(P2)

x

y
− 1

))
,

just keeping the first term.
Let us now consider the calculation of T3. Applying Lemma 3.1 to g,

T3 ≈ 1

2λN2−α
PM+1 − 1/4

rMr
0
M

+ PM+1(1 − PM+1)

N

(
1 − λ

Nα

)

× E

(
p̃2
M

p̃
′
Mr̃M−1

ψ(P̃
(1)
M )

ϕ(PM+1)

{
1 − 2

λ

Nα

(
r0
M

RM · · ·R2

ψ(P̃
(1)
1 )

ϕ(P2)

P̃
(1)
1

P̃
(2)
1

− 1

)

+ 3
λ2

N2α

(
r0
M

RM · · ·R2

ψ(P̃
(1)
1 )

ϕ(P2)

P̃
(1)
1

P̃
(2)
1

− 1

)2})
.

But the second term on the right-hand side, after successive conditionings and applications of
Lemma 3.1, becomes

1 − PM+1

N

(
1 − λ

Nα

)
PM+1 · · ·P2

RM · · ·R2ϕ(P2)

× E

(
P̃ 2

1
ψ(P̃

(1)
1 )

P̃
′
1

{
1 − 2

λ

Nα

(
r0
M

RM · · ·R2

ψ(P̃
(1)
1 )

ϕ(P2)

P̃
(1)
1

P̃
(2)
1

− 1

)

+ 3
λ2

N2α

(
r0
M

RM · · ·R2

ψ(P̃
(1)
1 )

ϕ(P2)

P̃
(1)
1

P̃
(2)
1

− 1

)2})

≈ pM+1(1 − PM+1)

NrM

(
1 − λ

Nα

)(
1 − 2

λ

Nα

(
r0
M

rM
− 1

)
+ 3

λ2

N2α

(
r0
M

rM
− 1

)2)

− 1 − PM+1

8λN2−α
pM+1

rMP1(1 − P1)
,

where the last step follows from an application of Lemma 3.1 to �, defined by

�(x, y) = yψ(x)

(
1 + 2

λ

Nα

(
x

y
− 1

)
+ λ2

N2α

(
x

y
− 1

)2)

×
(

1 − 2
λ

Nα

(
r0
M

RM · · ·R2

ψ(x)

ϕ(P2)

x

y
− 1

)
+ 3

λ2

N2α

(
r0
M

RM · · ·R2

ψ(x)

ϕ(P2)

x

y
− 1

)2)
,

just keeping the first two terms.
From all these results, we deduce the recursive relation between var(p̃M+1)(= var(P̃ )) and

var(p̃M):

var(P̃ ) ≈ P 2
M+1 var(p̃M)+ λ

N1+α (1 − PM+1)pM+1
r0
M

r2
M

(
1 − 2

λ

Nα

(
r0
M

rM
− 1

))

+ pM+1(1 − PM+1)

NrM

(
1 − λ

Nα

)(
1 − 2

λ

Nα

(
r0
M

rM
− 1

)
+ 3

λ2

N2α

(
r0
M

rM
− 1

)2)

+ 1

2λN2−α
1

rM

(
PM+1 − 1/4

r0
M

− pM+1

4

1 − PM+1

P1(1 − P1)

)
.
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Now it just remains to evaluate var(p̃1)(= var(P̃1)) to initialize the induction: applying
Lemma 3.1,

var(P̃1) = var

(
P̃
(2)
1

{
1 + λ

Nα

(
P̃
(1)
1

P̃
(2)
1

− 1

)})
+ o

(
1

N1−α

)

= P1(1 − P1)

(



′2
x (P1, P1)

λN1−α + 

′2
y (P1, P1)

N(1 − λ/Nα)

)
+ o

(
1

N1−α

)

= P1(1 − P1)

(
1

λN1−α
λ2

N2α + (1 − λ/Nα)2

N(1 − λ/Nα)

)
+ o

(
1

N1−α

)

= P1(1 − P1)

N
+ o

(
1

N1−α

)
,

where 
(x, y) = y(1 + (λ/Nα)(x/y − 1)), and we conclude by an induction.

Appendix D. Proof of Lemma 4.1

In this appendix we prove Lemma 4.1. We detail only the case in which α = 1
3 (the other

results can be easily deduced using the same technique). First, since N is given by G = Gf
and by the asymptotic expression of G, N satisfies

N −N2/3f1(λ)+N1/3f4(λ) ∼ Gf , (D.1)

and so we can consider

N ∼ Gf + µG
2/3
f + νG

1/3
f = Gf

(
1 + µ

G
1/3
f

+ ν

G
2/3
f

)

for some functions µ and ν to be determined. Substituting this value into (D.1), we finally
obtain

Gf ∼ Gf + (µ− f1(λ))G
2/3
f +

(
ν + f4(λ)− 2

3
f1(λ)µ

)
G

1/3
f ,

from which we deduce that µ = f1(λ), ν = 2
3f1(λ)

2 − f4(λ), and

N ∼ Gf

(
1 + f1(λ)

G
1/3
f

+ (2/3)f1(λ)
2 − f4(λ)

G
2/3
f

)
.

Now substituting this N into the asymptotic expression of F in Lemma 4.1, we obtain

F(λ,N) ∼ 1

Gf

(
1 − µ

G
1/3
f

− ν

G
2/3
f

+ µ2 1

G
2/3
f

)
+ f1(λ)

G
4/3
f

(
1 − 4

3

µ

G
1/3
f

)

+ (f2 + f3)(λ)

G
5/3
f

∼ 1

Gf
+ 1

G
4/3
f

(f1(λ)− µ)+ 1

G
5/3
f

(
(f2 + f3)(λ)− 4

3
µf1(λ)− ν + µ2

)

∼ 1

Gf
+ 1

G
5/3
f

((f2 + f3)(λ)+ f4(λ)− f1(λ)
2),

from which we deduce the required result for α = 1
3 .
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