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Moderate rotation and moderate horizontal confinement similarly enhance the heat
transport in Rayleigh—Bénard convection (RBC). Here, we systematically investigate how
these two types of flow stabilization together affect the heat transport. We conduct direct
numerical simulations of confined-rotating RBC in a cylindrical set-up at Prandtl number
Pr = 4.38, and various Rayleigh numbers 2 x 103 < Ra < 7 x 10°. Within the parameter
space of rotation (given as inverse Rossby number 0 < Ro~! < 40) and confinement
(given as height-to-diameter aspect ratio 2 < I’ -1 32), we observe three heat transport
maxima. At lower Ra, the combination of rotation and confinement can achieve larger
heat transport than either rotation or confinement individually, whereas at higher Ra,
confinement alone is most effective in enhancing the heat transport. Further, we identify
two effects enhancing the heat transport: (i) the ratio of kinetic and thermal boundary layer
thicknesses controlling the efficiency of Ekman pumping, and (ii) the formation of a stable
domain-spanning flow for an efficient vertical transport of the heat through the bulk. Their
interfering efficiencies generate the multiple heat transport maxima.
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1. Introduction

Rayleigh-Bénard convection (RBC) (e.g. Ahlers, Grossmann & Lohse 2009; Lohse &
Xia 2010; Chilla & Schumacher 2012) is the paradigmatic model system to study thermal
or buoyancy-driven flows. In reality, most convective systems deviate substantially from
the ideal RBC model owing to one or more stabilizing factors. For example, the fluid
layer must obviously be confined in the lateral directions for technical applications,
background rotation is omnipresent in astro- and geophysics (e.g. Glatzmaier & Roberts
1995; Hartmann, Moy & Fu 2001; Heimpel, Aurnou & Wicht 2005; Aurnou et al. 2015),
and the additional contribution of salinity to buoyancy sets up double-diffusive convection
in oceanography (e.g. Schmitt et al. 2005; Timmermans et al. 2008; Radko 2013). Chong
et al. (2017) have shown by direct comparison that these different types of stabilization
affect the heat transport of the system similarly: for moderate flow stabilization, the heat
transport is enhanced compared with the heat transport in the non-stabilized system. On
the contrary, when the stabilizing forcing is strong compared with the driving buoyancy,
the heat transport is reduced and eventually suppressed. Still, most studies have focused
on investigating each of the stabilizing effects separately. This study investigates the heat
transport enhancement when two types of stabilization, namely rotation and horizontal
confinement, are present simultaneously.

Confined-rotating RBC is fully controlled by four dimensionless parameters: the Prandtl
number Pr describing the fluid properties, the Rayleigh number Ra setting the strength of
thermal driving, the inverse Rossby number Ro~' as a measure of the rotation rate and

the height-to-width aspect ratio I'~! defining the horizontal confinement of the domain
(complete definitions in § 2). Note that, for convenience, we will use the inverse Rossby

number Ro~! and the confinement parameter I"~! throughout the paper, such that the
case (Ro—! =0, I'"! = 0) characterizes the classical non-stabilized RBC system. The
global response of the system is expressed in the Nusselt number Nu, describing the
dimensionless heat transport from the bottom to the top plate, and the directional Reynolds
numbers Re; as a measure for the strength of motion in the different directions i (full
definitions in § 2).

Several stabilizing effects and mechanisms have been observed in rotating RBC
and confined RBC. In general, the stabilizing character of both confinement and
rotation increases the critical Rayleigh number Ra, that is needed to initiate convection
(Chandrasekhar 1961). By increasing rotation Ro~!' or confinement I'~! at fixed Ra,
rotating RBC or confined RBC traverses various flow regimes towards a non-convective
state. We now describe these regimes in more detail, beginning with rotating RBC.

In the absence of rotation (Ro_l =0) and for slow rotation (Ro~' <« 1), thermal
buoyancy is the dominating force in the momentum balance. In this buoyancy-dominated
regime, the flow dynamics and heat transport are mostly unaffected by the rotation, and
often a large-scale background circulation is present (e.g. Brown, Nikolaenko & Ahlers
2005; van der Poel et al. 2015). Accordingly, we expect vertical motion to be larger than
horizontal motion in the buoyancy-dominated regime (Re, > Rep).

For moderate rotation (Ro~! & 1), when the Coriolis force and the buoyancy force make
a similar contribution, the large-scale circulation is replaced by vertically aligned vortices
(e.g. Vorobieff & Ecke 1998; Kunnen, Clercx & Geurts 2008). Counterintuitively to the
increasing flow stabilization, the heat transport can be significantly enhanced as compared
with the non-rotating case for a system with Pr > 1 (e.g. Kunnen, Clercx & Geurts
2006; Zhong et al. 2009). The heat transport enhancement results from Ekman pumping
feeding the vortices with hot or cold fluid from the boundary layers (e.g. Rossby 1969).
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Theoretically, the enhancement by Ekman pumping is most efficient when the kinetic and
thermal boundary layer thicknesses are equal (Stevens, Clercx & Lohse 2010b; Yang et al.
2020), which, however, is only observed up to a certain Ra (Yang et al. 2020).

For rapid rotation (Ro~! >> 1), when the Coriolis force largely surpasses the buoyancy
force, the flow dynamics is mainly controlled by the geostrophic balance. In this
geostrophic (or rotation-dominated) regime, vertical motion is further suppressed
(Proudman 1916; Taylor & Lamb 1917) and the heat transport decreases rapidly with
increasing rotation (e.g. Ecke & Niemela 2014). Nonetheless, Ekman pumping remains
important for heat transport (Stellmach et al. 2014). Different types of flow organization
have been observed within the geostrophic regime, depending on Ra and Pr (e.g. Sprague
et al. 2006; Julien et al. 2012; Nieves, Rubio & Julien 2014; Stellmach ef al. 2014): the flow
can either still organize in vertically coherent structures (e.g. convective Taylor columns)
or settle into vertically decorrelated geostrophic turbulence. Moreover, Zhang et al. (2020)
and de Wit et al. (2020) recently discovered boundary zonal flow in finite-size cylinders,
which can make a significant contribution to the heat transport (Lu et al. 2021; Zhang,
Ecke & Shishkina 2021). This already depicts an interplay of confinement and rotation.

In both the moderately rotating and the geostrophic regime, vortical structures
dominate the flow. Hence, we expect horizontal motion to be larger than vertical
motion (Rey > Re;). In the context of this paper, we refer to both together as the
rotation-controlled regime as the direct counterpart of the buoyancy-dominated regime.
Accordingly, we will use Re; = Rey as our definition to describe the transition between
the two regimes. We note that various definitions for this transition and the corresponding

transitional Rossby number Rogll)_ rc have been used in literature based on different
characteristics, when (i) the kinetic boundary layer changes from Prandtl-Blasius type to
Ekman type (Stevens et al. 2009; Stevens, Clercx & Lohse 2010a; Kunnen et al. 2011;
Rajaei et al. 2016a), (ii) the flow dynamics changes from a large-scale circulation to
vertically aligned vortices (Julien et al. 1996; Kunnen et al. 2008; Rajaei et al. 2016b) and
(iii) heat transport enhancement sets in (Stevens et al. 2009; Weiss et al. 2010). However,
several recent studies have revealed a more detailed view of this transition (Weiss & Ahlers
2011a; Stevens, Clercx & Lohse 2013a; Weiss, Wei & Ahlers 2016), and have shown that
the different characteristics are related to similar, but slightly different rotation rates within
a narrow interval of Ro—! (Wei, Weiss & Ahlers 2015; Alards ez al. 2019).

Finally, beyond a critical rotation rate (Ro~! > Roc_l), the amount of thermal driving
does not suffice to initiate convection (Ra < Ra.(Ro~!)), and the heat transport is purely
conductive. In finite-size systems, an additional regime of wall-mode convection is
observed for Ro~! > Roc_1 (e.g. Buell & Catton 1983; Zhong, Ecke & Steinberg 1991;
Liu & Ecke 1997; Favier & Knobloch 2020). Therein, the bulk is already in rest, but weak
convective flow is generated next to the sidewalls, which results in a heat transport larger
than conduction. This again depicts an interplay of confinement and rotation.

Analogue regimes in terms of the heat transport also exist in confined RBC (Chong et al.
2015; Chong & Xia 2016). In domains with a large horizontal extent (I"~! « 1) the flow is
controlled by the boundary layers as in classical RBC (Chong ef al. 2015). In this regime,
the heat transport is mostly insensitive to I"~! and adapts the value from the unconfined

case. By reducing the horizontal extent the flow first enters a plume-controlled regime for
moderate confinement (I" ! 2 1), in which the heat transport is enhanced, before, in the

severely confined regime (I"~! > 1), the heat transport is strongly reduced (Chong et al.
2015; Chong & Xia 2016). Finally, the system becomes too confined to initiate convection
Ra(I' ") > Ra (e.g. Chandrasekhar 1961; Catton & Edwards 1970; Chong & Xia 2016;
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Ahlers et al. 2022). Similar to the rotation-controlled regime in rotating RBC, vertically
coherent structures form within the plume-controlled regime in confined RBC (Chong
et al. 2015; Hartmann et al. 2021). Contrary to the studies of Chong et al. (2015, 2017)
and Chong & Xia (2016), the present study deals with cylindrical confinement. Hartmann
et al. (2021) have shown that heat transport enhancement in confined RBC generally occurs
in cylindrical and cuboid domains, but flow organization, optimal confinement I"~! and
amplitude of heat transport enhancement are strongly influenced by the cell geometry.
Further, Zwirner & Shishkina (2018) have shown that an inclined gravity in addition to
confinement is able to significantly enhance the heat transport.

Chong et al. (2017) have nicely revealed more striking similarities in heat transport
enhancement for individually examined types of stabilization: confinement, rotation and
an additional stabilizing buoyant scalar field as in double-diffusive convection. These
similarities lead to the question of how multiple types of stabilization exactly interplay
with each other, whether their effects simply superpose or complexly interact. By direct
numerical simulations (DNSs) of confined-rotating RBC in a cylindrical set-up (§ 2), we
explore the two-dimensional parameter space of Ro~! and I'~! at fixed Ra and Pr to
identify the maxima of heat transfer (§ 3), elucidate the governing effects and mechanisms
and discuss their interaction (§ 4). Finally, we will compare the results from different Ra
and discuss their implications (§ 5).

2. Numerical set-up and analysis methods

We perform DNSs of RBC in a cylindrical sample rotating around its vertical axis.
The governing equations in RBC encompass the balances of mass, momentum and
energy conservation. The influence of constant rotation around the axis is included by
considering the Coriolis force in the momentum equations. For an incompressible fluid
the governing equations under the Oberbeck—Boussinesq approximation are solved in their
dimensionless form (e.g. Zhong et al. 2009)

V-u=90
du_ VP Prvz o 1
G VT Ut Oe e xu (2.1a—c)
de 1,
= v20.

E B v/ PrRa

Here, u, P and © are the normalized velocity, pressure and temperature fields, respectively.
The equations are normalized by the height of the cylinder H and the free-fall velocity
Uy = VJagATH, where « is the isobaric thermal expansion coefficient, g the gravitational
acceleration and AT the temperature difference between upper and lower plate. The
temperature is normalized as ® = (T' — Ty,,) /AT € [0, 1]. The pressure field P is reduced
by the hydrostatic balance and centrifugal contributions. The control parameters in the
equations then are the Prandtl number Pr, the Rayleigh number Ra and the inverse Rossby

number Ro~!
Pr=v/k: Ra=agATH?/(vk); Ro~'=292H/Uj. (2.2a—c)

Here, v is the kinematic viscosity, « the thermal diffusivity and 2 the rotation rate. The
inverse Rossby number Ro~! can alternatively be expressed in terms of the Ekman number
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Ek: Ro~' = 2/Pr/Ra Ek™". Finally, the confinement parameter I"~! defines the cylinder
size of height H and diameter D:

r-'=H/D. (2.3)

No-slip boundary conditions are imposed on the isothermal top and bottom plates and the
adiabatic sidewall. In all simulations the Prandtl number is fixed at Pr = 4.38 (=~ water),
the Rayleigh number is chosen in the range 2 x 108 < Ra < 7 x 10°. Among all Ra we
cover a parameter space of 0 < Ro ' <40and2 < ' ' < 32.

The governing equations (2.1) are solved by a central second-order accurate
finite-difference discretization on a staggered grid as presented in Verzicco & Orlandi
(1996) and Verzicco & Camussi (1997, 1999). The code has been often validated (e.g.
Kooij et al. 2018). For a sufficient resolution of the Kolmogorov scales in the entire
domain, we increase the number of grid points in the vertical direction from N, = 256
for Ra = 2 x 108 up to N, = 768 for Ra = 7 x 10°. Additionally, we use a stretched grid
in the vertical and radial directions to ensure that the resolution of the boundary layers at
the plates and the sidewall fulfil the required criteria given in Shishkina et al. (2010). The
dynamic time stepping in our simulations is controlled by a maximum Courant number
and a maximum time step. The numerical parameters per simulation set are summarized
in Appendix A.

The global key response parameter of the system is the dimensionless heat transport
given by the Nusselt number Nu = QH/(k AT) with the heat flux Q from the bottom
to the top plate. We compute Nu = (Nu(t)), directly from the vertical gradient of the
dimensionless temperature @ as the average (-) over both plates

Nu(t) = (=0:(©(1),.5)._ g, - (2.4)

For comparison between different Ra, we present all heat transport data normalized as
Nu/Nug, where Nuo(Ra, Ro~' =0, ! =1) serves as Ra-dependent reference value of
the (mostly) non-stabilized system, i.e. a non-rotating, sufficiently wide cylinder. The
reference values Nug are known from various experiments and numerical simulations, and
are well described by the Grossmann—Lohse theory (Grossmann & Lohse 2000, 2001;

Stevens et al. 2013b). Further, we use the root mean square (r.m.s.) of the normalized
temporal Nusselt number fluctuations to quantify the temporal stability of the flow

N <N”([) 1)2 (2.5)
Urms = - . .
(Nu); .

To characterize the flow we use the directional Reynolds numbers Re, » , = (Remg, Z(t)) ]

l'z)r,ﬁ,z

based on the dimensionless r.m.s. velocities (u

UoH
Rei(t) = % (W), . i={r.0.2

R
- /P_j (W), ,.. (2.6)

These Reynolds numbers allow the distinction of the strength of fluid motion in the
different directions, i.e. radial, azimuthal and vertical directions. Consequently, their
ratios can depict the predominant flow motion and will help to classify characteristic
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flow states. Temporal averaging starts when the statistically stationary state has been
reached.

The ratio of thermal to kinetic boundary layer thicknesses plays a crucial role in Ekman
pumping related heat transport enhancement (Stevens et al. 2010b; Yang et al. 2020).
We determine the thermal boundary layer thickness dg from the vertical profile of the
horizontally averaged temperature (e.g. Stevens et al. 2010a), where Ao is defined as
the intersection between the temperature gradient at the plate with a linear fit to the
temperature profile in the bulk (0.2 < z < 0.8). Following Stevens et al. (2010a) and Yang
et al. (2020), the kinetic boundary layer thickness A4, is estimated as twice the height
of the peak location of the horizontally averaged quantity <u . Vzu)H. The horizontal
averages involve only 90 % of the radial distance from the axis, which in our case worked
best to consistently exclude effects of the sidewall boundary layer (Wagner, Shishkina
& Wagner 2012). The reported values are averaged over top and bottom boundary
layers.

3. Heat transport maxima under rotation and confinement

First, we keep Ra = 7 x 108 (and Pr = 4.38) fixed and vary the confinement parameter
I'~! and the rotation rate Ro—'. When, on the one hand, I"~! is varied in the absence
of rotation Ro~! = 0, the normalized heat transport Nu/Nug is largest for ™1 = 12
(figure 1a). When, on the other hand, Ro~! is varied in a relatively wide cylinder
with I'~! = 3, the largest Nu/Nug is reached at Ro~! ~ 8. Both are known as the heat
transport enhancement by either moderate confinement (e.g. Huang et al. 2013; Chong
et al. 2015) or moderate rotation (e.g. Zhong et al. 2009; Kunnen et al. 2011). However,
surprisingly, the two-dimensional parameter subspace of I"~! and Ro~! reveals a strongly
non-symmetric enhancement of the heat transport when both confinement and rotation
are present simultaneously (figure la). Hence, the enhancing effects of both types of
stabilization do not simply superpose with each other. Instead they interact in a more
complex way.

Our simulations reveal three separate maxima of the heat transport (figure la).
Maximum A is the heat transport enhancement by moderate confinement in the absence
of rotation, which vanishes already under weak rotation. Therefore, we will hereafter
refer to it as the confinement maximum. On the contrary, the enhancement by moderate
rotation Ro~! in large domains does not directly vanish with increasing confinement 1"~
(figure 1a). It further extends into the (Ro~', I'~!) parameter space and even increases up
to maximum B, which is the largest heat transport achieved for Ra = 7 x 10%. Thereby,
the range of Ro~!, which enhances the heat transport, shifts towards faster rotation with
increasing I"~!, and separates from the confinement maximum. The onset of heat transport
enhancement strongly correlates with Re, = Rey = (Re§ + Re%)l/ 2, the transition from
buoyancy-dominated to rotation-controlled regime (figure 1b; thick grey line), which will
be further discussed in § 4. Even more surprisingly, we observe a third maximum C at the
tip of the enhancement region around maximum B.

All maxima are associated with an individual (sub-)regime of the fluid motion
(figure 1b), which characterizes the flow pattern around each maximum. At the
confinement maximum the flow forms vertically coherent buoyant plumes (figure 2a).
At maximum B the flow is organized in two stable vortices (figure 3a). Hence, we
will hereafter refer to it as the double-vortex maximum. At maximum C the flow is
characterized by one stable central vortex (figure 4a). Accordingly, we will refer to it as
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Figure 1. Heat transport maxima and flow characteristics in the parameter space of rotation Ro~! and
confinement I"~! for Ra = 7 x 108. A, B and C mark the positions of the confinement (§ 3.1), double-vortex
(§3.2) and single-vortex maxima (§ 3.3), respectively. Grey, green and red lines show the transitions between
the (sub-)regimes of prominent flow characteristics. (a) Normalized heat transport Nu/Nug (circles, data
points; background, cubic interpolation). (b) Regimes of prominent flow motion based on linear interpolation
of Rey . data. The grey area depicts the buoyancy-dominated regime (Re; > Rey = (Relz7 + Re%)l/ 2). The
coloured areas belong to the rotation-controlled regime (Rey > Re;). In the green sub-regime the characteristic
flow motion (Rey > Re, > Re;) indicates double-vortex flow. In the red sub-regime suppressed radial motion
(see (e)) indicates single-vortex flow. The symbol colour shows again the heat transport Nu/Nug. (c¢) Mean
vertical temperature gradient in the bulk (3;(®), »)0.2<:<0.8 (circles, data points; background, linear
interpolation). (d) Temporal stability of the flow based on Nu,,5 ((2.5), circles, data points; background, linear
interpolation). (e) Ratio of azimuthal to radial Reynolds numbers Rey /Re, (circles, data points; background,
linear interpolation).

the single-vortex maximum. Next, we present each of the three maxima and its specific
flow dynamics separately in detail (§§ 3.1-3.3).

3.1. Flow organization around the confinement maximum (A)

At the confinement maximum, the flow tends to organize into two plumes: one up- and
one downwelling plume of hot and cold fluid, respectively (figure 2a). Both plumes
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Figure 2. Flow characteristics at the confinement maximum at Ra =7 X 108 (r-'=12, Ro~! =0):

(a) snapshot of the temperature field, (b) temporal evolution of Nu(t) at the top and bottom plate, (¢) temporal
evolution of Re(r) for each velocity component.

span the entire vertical distance and connect the boundary layers along top and bottom
plates (Hartmann et al. 2021). Both plumes are entangled such that they emerge around
the sidewalls and impact at the centre on the opposite plate. At boundary layer height
this structure yields the same characteristic pattern of plume distribution for the optimal
heat transport in confined RBC (Chong et al. 2015, 2017). The integral quantities Nu
and Re (figure 2b,c) are strongly fluctuating in time, which indicates that — typical
for turbulent convection — these plumes are relatively unstable. Vertical motion is
predominant (Re; > Rey,,, figure 2c) as expected in the buoyancy-dominated regime in
which Re;, > Rey = (Re% + Re%)l/ 2 (figure 1b; grey area).

Further, the confinement maximum in a cylindrical domain correlates with a local
minimum of the temperature gradient in the bulk (figure lc, see also Hartmann et al.
2021). A flatter bulk gradient can indicate two situations: more turbulent mixing in general,
or larger mutual vertically coherent structures that compensate each other in the horizontal
average within the entire bulk region. Obviously, the second is the case at the confinement
maximum. At the optimal confinement, a domain-spanning double-plume structure is
triggered, which maximizes this effect. Moderate confinement reduces horizontal mixing
and thereby supports vertical transport and the formation of vertically coherent structures

(Chong et al. 2015; Chong & Xia 2016; Chong et al. 2017). When I"~! is increased beyond
the optimum, the growing impact of the sidewalls reduces the heat transport (Chong et al.
2015; Chong & Xia 2016). Similarly, coherent flow structures in wall-normal direction help
to maximize the heat transport in inclined-confined RBC (Zwirner & Shishkina 2018).

3.2. Flow organization around the double-vortex maximum (B)

At the double-vortex maximum, the flow consists of two vortices, one vortex of hot
(cold) fluid that emerges from the bottom (top) plate (figure 3a). Both span the entire
domain side by side and connect top and bottom boundary layers. Such vertically aligned
vortices are typically observed at the heat transport maximum in the rotation-controlled
regime (e.g. Stevens, Clercx & Lohse 2012). This flow structure appears to be very steady
after it has fully developed for Ra = 7 x 103 (figure 3b,c). The double-vortex structure
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Figure 3. Flow characteristics at the steady double-vortex maximum at Ra =7 x 108 (I'"! =5 Ro™! =
12.5): (a) snapshot of the temperature field, (b) temporal evolution of Nu(f) at the top and bottom plate,
(c) temporal evolution of Re(r) for each velocity component.

is characterized by a different configuration of mean fluid motion in the flow: both lateral
motions, azimuthal Rey and radial Re,, are significantly larger than the vertical motion Re,
(figure 3c). In particular, we observe Rey > Re, > Re_, which will serve as an indicator to
identify the formation of double-vortex flow (figure 1b). The temporal stability of this flow
structure is also visible in the Nusselt number fluctuations N, (2.5). We find a region
with stable flow formation in the (Ro~!, I'~!) parameter space around the double-vortex
and the single-vortex maxima (figure 1d). The appearance of stable flow co-occurring
with enormous heat transport enhancement in the sub-regime of double-vortex flow
can be linked to a stabilizing temperature gradient in the bulk (9;(®), ».)0.2<;<0.8 > 0
(figure 1c). Such a temperature inversion is known to stabilize flow formations (Tilgner,
Belmonte & Libchaber 1993; Brown & Ahlers 2007), in this case the two opposing
domain-spanning Ekman vortices. Consequently, cylindrical confinement plays a crucial
role in maximizing the heat transport by stabilizing the double-vortex state in a very narrow

range of (Ro~', 1) combinations.

3.3. Flow organization around the single-vortex maximum (C)

At the single-vortex maximum, the flow organizes itself in one central vortex of cold (or
hot) fluid sinking (rising) from the top (bottom) plate and a curtain of hot (cold) fluid
rising (sinking) at the sidewall (figure 4a). At the maximum this single-vortex flow is also
very stable (figure 4b,c), although it is not top—bottom symmetric. Also, the single-vortex
maximum is related to a very distinct flow organization (figure 4c¢). Again, azimuthal
motion Rey is predominant, and thus horizontal motion Rep is also stronger than vertical
motion Re,. However, radial motion Re, is almost entirely suppressed in the single-vortex
state. This results in an extreme ratio between the lateral components Rey /Re, > 1, a
geometric effect of a singular vortex centred in a cylindrical coordinate system. In this
case, the vortex itself does not have a radial flow component. Radial motion occurs only
close to the top and bottom plates. On the contrary, any off-centred vortex contains a radial
flow component in the cylindrical reference system.
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Figure 4. Flow characteristics at the steady single-vortex maximum at Ra = 7 x 103 ("' = 8, Ro~! = 20):

(a) snapshot of the temperature field, (b) temporal evolution of Nu(t) at the top and bottom plate, (¢) temporal
evolution of Re(r) for each velocity component.

Nevertheless, the presence of a single-vortex flow structure in the (Ro~!, ')
parameter space can be identified by a significantly increased ratio Rey/Re, > 1 with
its maximum directly located at the single-vortex heat transport maximum (figure le).
The other maxima do not show any significant dependence on this ratio (elsewhere
Rey /Re, =~ 1). Single-vortex flow is limited to a small regime in the (Ro~Y, I
parameter space and the transition is very sharp. Only between the single-vortex maximum
and the double-vortex maximum can a more gradual increase of the ratio Rey/Re, be
identified (figure 1e). For our data, an arbitrary threshold of Rey /Re, > 2.5 is appropriate
to identify the sub-regime of single-vortex flow (figure 1le,b). The existence of single-vortex
flow (figure le) corresponds well with the partial region of steady flow formation
(figure 1d) that has not been linked to bulk temperature inversion due to double-vortex
flow (figure 1c).

Single-vortex flow is always related to an extreme ratio Rey /Re,, but it can be interrupted
by periods of turbulent mixing for (Ro~', '"!) combinations beside the maximum
(Appendix B: figure 11). We assume that the single-vortex flow in one configuration
becomes unstable due to its lack of symmetry and recovers it by reverting the flow
configuration. Interestingly, the temporal stability of single-vortex flow increases (periods
of steady single-vortex flow elongate) towards the maximum where no instability has
been observed (figure 4b,c). Thus, the time-averaged Rey /Re, ratio does also reflect the
temporal stability of the single-vortex flow (figure 1¢). Whether the flow can be infinitely
stable in one configuration at the single-vortex maximum remains an open question.

We note that, although the sidewall obviously plays an essential role for single-vortex
flow, the flow dynamics is very different from the recently observed boundary zonal flow
(Zhang et al. 2020). First, in single-vortex flow, either hot or cold fluid is transported along
the sidewall, while in boundary zonal flow both hot and cold plumes alternate. Second,
single-vortex flow includes a convective bulk, whereas for boundary zonal flow the bulk is
at rest. Third, single-vortex flow is steady, whereas boundary zonal flow is still turbulent.
Finally, the two are observed in different parameter ranges, suggesting that both are only
local — not global — states in the parameter space.
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4. Interfering effects for heat transport enhancement

The central mechanism for heat transport enhancement under rotation is Ekman pumping
(e.g. Rossby 1969). The common view is that the onset of Ekman pumping causes the
transition from a large-scale circulation to vertically aligned vortices, which can result
in heat transport enhancement (Julien et al. 1996). Although it has been recently observed
that the onset of heat transport enhancement and the change in flow dynamics have slightly
different onsets (Alards et al. 2019), both are certainly closely related to each other.

In this work, we define the transition from buoyancy-dominated to rotation-controlled
regime by the change of the predominant fluid motion from vertical to horizontal,
i.e. at Re, = Rey (figure 1b; thick grey line). The transition Re, = Rey = (Re%9 + Re%)l/ 2
describes the onset of heat transport enhancement in very confined systems significantly
better than the commonly used transition of the kinetic boundary layer from
Prandtl-Blasius type to Ekman type (Appendix B: figure 12). We note that, in this
context, any Ekman pumping related increase of Nu with Ro~! is seen as heat transport
enhancement independent of whether Nu/Nugy > 1 or not. In our view, it is reasonable that
vertical motion is predominant in the buoyancy-dominated regime, and horizontal motion
takes over in the rotation-controlled regime, when vortical structures dominate the flow.
The vortical structures extend the vertical transport induced by Ekman pumping through
the bulk, which thereby increases the heat transport. We observe that all simulations with
a rotation enhanced heat transport are characterized by Rey > Re;, and that the onset is
located just beyond this transition (figure 15).

Both the transition Re, = Rey and the onset of heat transport enhancement
simultaneously shift towards faster rotation Ro~! with increasing confinement I"~!. With
increasing I"~!, the cylinder diameter approaches the critical length scale of convective
instability L. = 4.82 x Ek'/3 for rotating RBC (Chandrasekhar 1961; Kunnen et al.
2016). We assume that the formation of vortical flow structures requires a minimal
lateral size, i.e. a maximal confinement Fm_alx(LC)’ which can be reached with faster

rotation. Consequently, the transitional rotation rate Roglg_ rc for the onset of heat transport
enhancement is strongly I"~!'-dependent in slender cylinders, but might be insensitive to
I'~!in sufficiently wide domains. Several approaches employ a Ginzburg—Landau model

to account for the I” *l-dependence (e.g. Weiss et al. 2010; Weiss & Ahlers 2011b), but
ignore any Ra-dependence, which will be addressed in § 5.

Ideally, an equal thickness of thermal and kinetic boundary layer is supposed to
maximize the heat transport in rotating RBC (e.g. Julien et al. 1996; King et al. 2009),
since Ekman pumping becomes most efficient in ejecting heat from the boundary layers
into the columnar vortices (Stevens et al. 2010b). However, this is only valid up to a
certain Ra and confinement (Yang et al. 2020). Similar to Yang et al. (2020), we test
this assumption by mapping the heat transport onto the ratio of thermal and kinetic
boundary layer thicknesses Ag /A, for fixed confinement "' (figure 5). Thereby, an

increasing Ag /A, is generally related to an increasing Ro~'. Accordingly, our widest
cylinder (I"' ! = 3) shows a relatively symmetric heat transport enhancement around
Ao /A, =1 (figure S5a). With increasing confinement (' =4), the maximal heat
transport at Ag /A, ~ 1 significantly increases but also gains some asymmetry around
the enhancement peak (figure 5a). Thereby, the large heat transport coincides with the
presence of double-vortex flow (figure 5d; green symbols). For confinement I 2},11” =35, at
which the double-vortex maximum is obtained, the peak is still located close to g /4, =1,
but with a rather sharp onset just at Ag /A, ~ 1 (figure 5b). The largest heat transport is
again associated with stable double-vortex flow (figure Se; green symbols). In slender
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Figure 5. Normalized heat transport Nu/Nuy mapped onto the ratio of thermal and kinetic boundary layers
Ao /Ay for various I” “lat Ra =7 x 10%: (b) for Fz_vzlw =5, where the double-vortex maximum is observed,

(a) for less confinement I" ! < FZ_V}VI, i.e. wider cylinders than in (b), (c¢) for more confinement I” LS FZ_V}VI,
i.e. more slender cylinders than in (b). (d—f) Same data as in (a—c), respectively, but symbols coloured
in their corresponding regime of prominent flow motion (figure 1b): grey — buoyancy-dominated regime,
blue — rotation-controlled regime, green — rotation-controlled with double-vortex flow (figure 3a), red —
rotation-controlled with single-vortex flow (figure 4a). The vertical grey line marks the most beneficial
boundary layer ratio 1g /4, = 1. The dashed grey line (no specific scaling) serves as guide for the eye. The
coloured and grey lines connecting the data points in (a—c) and (d—f), respectively, follow increasing rotation
Ro~! per confinement I"~!.

cylinders (I” -1 Fz_wlw)’ no enhancement can be observed around Ag /4, = 1 (figure 5¢).
Still, large heat transport is observed twice: (i) rotation induced enhancement only appears
at g /4, > 1 again with an extremely sharp onset. The largest heat transport again
coincides with double-vortex or single-vortex flow (figure 5f; green and red symbols). (ii)
Large heat transport at 49 /4, =~ 0.6 < 1 corresponds to the non-rotating cases and the
enhancement due to confinement (§ 3.1), which is different from the expectation 1g /1, =
1 based on the unifying view of Chong ef al. (2017). We explain this deviation by the
different definitions used to determine the kinetic boundary layer thickness. This, however,
seems to affect mainly the estimates for the non-rotating confined cases. Nonetheless,
the kinetic and thermal boundary layers themselves evolve in general as expected (see
Appendix B: figures 12b, 13).

The sharp onsets for r-‘>r 27\/11\/1 result from a shifted transition from the
buoyancy-dominated to the rotation-controlled regime. In less confined domains
(r—-' < 1’2_\/11‘/1), the rotation-controlled regime already begins at A /4, < 1 and thus the
efficiency of Ekman pumping can symmetrically increase and decrease around Ag /4, = 1
(figure 5d; blue symbols). However, as long as the flow is buoyancy-dominated, no
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vortical structure can profit from Ekman pumping to enhance the heat transport, even
for a beneficial ratio g /4, ~ 1 (figure Se, f; grey symbols). When the rotation-controlled
regime begins at Ag /A, > 1, Ekman pumping is immediately most effective, resulting
in a sharp increase of the heat transport, which afterwards decreases again with further
increase of dg /4, (figure 5h,c). Heat transport enhancement does still exist even when
the rotation-controlled regime begins at Ag /A4, > 1, but may not suffice to exceed the
reference heat transport Nug (figure 5c¢,f; I'~! = 10). These observations show that
Ekman pumping is the essentially required mechanism for heat transport enhancement, and
that the combination with a boundary layer ratio 49 /4, = 1 is the beneficial condition.

Ekman pumping is always present in all rotating (sub-)regimes (figure 1b; blue, green,
red areas). However, its net contribution to heat transport enhancement depends on
the boundary layer ratio g /A4, ~ 1, which determines the efficiency of heat injection
into the Ekman vortices (Stevens et al. 2010b). With increasing rotation vertical (heat)
transport is suppressed, which leads to a thicker thermal boundary layer and hence a larger
ratio Ag /A,. Accordingly, the envelope of the normalized heat transport among all " ~!
decreases with increasing boundary layer ratio for g /4, > 1 (figure 5). Another way
to grasp this limiting effect is the intrinsic relation of Nu/Nug and Ag /A4, via the thermal
shortcut. However, for the same boundary layer ratio Ao /A4,, i.e. for the same efficiency for
heat being injected into the Ekman vortices, the heat transport is mostly largest whenever
a stable, domain-spanning flow structure (single vortex or double vortex) is formed
(figure 5d—f; green and red vs blue symbols). Moreover, single-vortex flow is less efficient
than double-vortex flow for Ra =7 x 108 (figure Se,f; green vs red symbols). Taken
together, the heat transport with double-vortex or single-vortex flow clusters above the
heat transport without a specific vortex structure, but within all regimes the heat transport
decreases with increasing Ag /4, > 1. This nicely depicts the superposing impacts of the
boundary layer ratio and a stable, domain-spanning flow formation (figure S5d—f).

In summary, we identified two effects that affect the efficiency of Ekman pumping
in the rotation-controlled regime. Both effects can be characterized differently. First,
the boundary layer ratio Adg/A, determines how effective heat is injected from the
boundary layer info the bulk. Therefore, we refer to it as a heat injection effect. Second,
certain combinations of confinement I"~! and rotation Ro~! lead to stable and vertically
domain-spanning flow structures, which increase the efficiency of heat transported
through the bulk. It is, therefore, a bulk transport effect. Several sub-regimes of stable,
domain-spanning flow, which interfere with the effectiveness of the boundary layer ratio,
result in the multiple maxima of heat transport under rotation and confinement.

5. Dependence on the Rayleigh number

We will now demonstrate how the three heat transport maxima (§ 3) depend on Ra.
Therefore, we explore the (Ro~!, ') parameter space at four values of Ra = 2 x 108,
7 x 103, 2.3 x 10° and 7 x 10° (figure 6). For each Ra we can identify the different
regimes of flow motion with their associated heat transport maxima (confinement, double
vortex and single vortex). The confinement maximum is clearly present for all Ra, and
always disappears when rotation is added (figure 6). The magnitude of heat transport
enhancement increases with increasing Ra (figure 7a), and shifts towards stronger
confinement (figure 7c) as also observed by Chong et al. (2015) and Hartmann et al.
(2021).

The double-vortex maximum is present at all four Ra, but with a sharp drop of
its enhancement efficiency between Ra = 7 x 10 and Ra = 2.3 x 10°. For the lower
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Figure 6. Heat transport (a,c,e.g) and regimes of prominent flow motion (b,d, f,h) in the parameter space of
rotation rate Ro~" and cylinder confinement I" ! at four Ra. A, B and C mark the position of the confinement
(§3.1), double-vortex (§ 3.2) and single-vortex maxima (§ 3.3), respectively. Grey, green and red lines show the
transitions between the (sub-)regimes of prominent flow motion. The grey area depicts the buoyancy-dominated
regime (Re; > Rep). The coloured areas belong to the rotation-controlled regime (Rey > Re;). In the green and
red sub-regimes the characteristic flow motion indicates the double-vortex and single-vortex flow, respectively.
The symbol colour always shows the heat transport Nu/Nug. Nug is the heat transport of the non-rotating
I'~! = 1 case at each Ra. See also figure 1(a,b) for detailed description.
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Ra =2 x 108, 7 x 108, the double-vortex maximum achieves the largest enhancements
within this study by up to 50 %, whereas the enhancement drops to less than 20 % for

larger Ra = 2.3 x 10, 7 x 10°, which is even below the heat transport of the confinement
maximum that then becomes the most efficient (figure 7a). Although the magnitude
of heat transport enhancement decreases, the region of enhanced heat transport around
the double-vortex maximum (where Nu > Nug) enlarges significantly with increasing

Ra. Most prominently the enhancement region enlarges towards larger Ro~! and "',
concurrent with the shift of the associated flow regimes (figure 6). This entire behaviour
of the heat transport enhancement can be explained by an interference of the two enhancing
effects, beneficial boundary layer ratio and stable vortex formation.

To illustrate this interference that explains the above behaviour (figures 6, 7a),
we show again the heat transport mapped onto the boundary layer ratio (as in
figure 5), but now for selected confinement parameters I"~! among all four Ra values
(figure 8). Note that, in this plot, we assign each combination of I"~! and Ra relative
to its associated optimal confinement of the double-vortex maximum Fz?/jlw(Ra), ie.
r~'=6> Iyy,(Ra=2x10%) =4 (figure 8¢), but I'"! =6 < Iy, (7 x 10°) =8
(figure 8a). The strong enhancement at lower Ra results from the coincidence that,
around the most beneficial boundary layer ratio dg /A4, ~ 1, the flow (i) experiences
Ekman pumping, and (ii) forms a stable double-vortex structure (figures 8b,e and 8a,d).
Consequently, both enhancing effects interfere most efficiently, but also most locally
around Ag /A, = 1 and in the (Ro_l, r _1) parameter space. On the other hand, at larger
Ra, the rotation-controlled regime begins only at g /A4, = 1, which already reduces the
largest achievable efficiency of Ekman pumping. Moreover, double-vortex flow is only
formed at larger Ao /A4,, and thus it co-occurs only with a weak efficiency from the
boundary layer ratio. Hence, the double-vortex maximum forms, where the interference
of both effects is still the largest, but not as ideal as at lower Ra. As a consequence,
double-vortex flow at its maximum is less stable at larger Ra than at lower Ra (figure 9).
Still, whenever double-vortex flow can be identified, the heat transport is temporary
strongly enhanced (figure 9; shaded areas). In brief, the shift of the double-vortex flow
regime away from Ag /4, ~ 1 for larger Ra reduces the interference of the two enhancing
effects, and therefore enlarges the region of heat transport enhancement while flattening
the double-vortex maximum.
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Ae /Ay, for various combinations of I” —1 and Ra: (b) for F;V}W(Ra), where the double-vortex maximum is
observed at each value of Ra, (a) for less confinement I' ! < Fz_wlw (Ra), i.e. wider cylinders than in (), (c) for

more confinement "~ > FZ_WIW(Ra), i.e. more slender cylinders than in (b). (d—f) Same data as in (a—c),
respectively, but symbols coloured in their corresponding regime of prominent flow motion (figure 6): grey —
buoyancy-dominated regime, blue — rotation-controlled regime, green — rotation-controlled with double-vortex
flow, red — rotation-controlled with single-vortex flow. The vertical grey line marks the most beneficial boundary
layer ratio Ag /A, = 1. The dashed grey line (no specific scaling) serves as guide for the eye. The coloured and
grey lines connecting the data points in (a—c) and (d—f), respectively, follow increasing rotation Ro~! per
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Figure 9. Flow characteristics at the double-vortex maximum at Ra =2 x 103 and Ra = 2.3 x 10°: (a)
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component. The shaded areas indicate when double-vortex flow (as in figure 3a) is observed.
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For very large Ra, this shift could result in a segregation of the double-vortex maximum
into two separate maxima, one originating from the most effective boundary layer ratio
Ao /A, ~ 1, and another from stable double-vortex flow. Some evidence for such a splitting

might be visible in our data for Ra = 7 x 10° (figure 6g,k). This would be analogue
to the separation of the single-vortex maximum from the double-vortex maximum with
increasing Ra (figure 6). To verify this hypothesis, either a much finer sampling in
Ro~! and I'"! or another set at a larger Ra is necessary, which both are beyond the
computational resources of this study.

The single-vortex maximum emerges with increasing Ra (figure 6). The regime
of single-vortex flow is still very limited for Ra =2 x 10® and enlarges significantly
with increasing Ra. For Ra > 7 x 10% the sub-regime of single-vortex flow has
sufficiently enlarged to form an individual maximum within our parameter sampling.
Still, we can define the single-vortex maximum for Ra =2 x 103 based on the

location of the most stable single-vortex flow at I'"! =6, Ro~'~16 (Appendix B:
figure 14c). However, it seems likely that the single-vortex flow is associated
with larger Ra, and does not occur at very low Ra < 103. With increasing Ra
and an enlarging single-vortex regime the enhancement efficiency of its maximum
increases up to ~20%, which is comparable to the double-vortex maximum at
the larger Ra (figure 7a). Independent of Ra, the single-vortex flow is limited

to relatively strong confinement I'~! > Fz},]lw, and occurs only for Ag/4,>1
directly after the transition to the rotation-controlled regime (figure 8c,f). As shown
before (§3.3, Appendix B: figure 11), this transition occurs gradually with extending
periods in which the flow stays in a stable single-vortex state. Both double-vortex and
single-vortex maxima shift towards faster rotation and stronger confinement for increasing
Ra (figure 7b,c). Presumably, the locations of the maxima follow some effective scaling
laws, but due to the large uncertainty we refrain from giving estimates for the scaling
exponents.

The general trend of heat transport enhancement in wider vs slender cylinders, as already
observed for Ra =7 x 10% (§4, figure 5), is present among all four Ra (figure 8a—c):
in wider cylinders (r-' < Fz}}u(Ra)), the rotation-controlled regime (blue symbols)
begins at A9 /4, < 1, and we observe a nearly symmetric heat transport enhancement
around Ag /A, = 1 (figure 8a,d). For Fz}}w(Ra), the onset of heat transport enhancement
occurs at dg /A, &~ 1 and can be rather steep because the flow can immediately form
a double-vortex structure as observed for lower Ra (figure 8b,e). In slender cylinders

(r-'- FZ_V}W(Ra)), the heat transport enhancement always shows a sharp onset at
Ao /Ay > 1, which corresponds to an immediate transition from buoyancy-dominated
regime to rotation-controlled regime with single-vortex flow (figure 8c,f). This
representation of our data nicely depicts a Ra-independent clustering of the heat transport
within the different flow regimes (figure 8d—f).

Collapsing all data into one frame emphasizes even better a sheet-like clustering
(figure 10), which nicely illustrates the superposing character of both enhancing effects.
In the buoyancy-dominated regime (grey symbols), no heat transport enhancement by
rotation is observed among all combinations of I” 1 Ro~! and Ra, and all enhancement
is related to the confinement maximum, which collapses at Ag /A, ~ 0.6 for all Ra (see
also §4). Only when the azimuthal motion becomes predominant does Ekman pumping
set in and enhance the heat transport (blue symbols). Thereby, the net enhancement and
the resulting heat transport depend on the actual ratio between the kinetic and thermal

939 Al1-17


https://doi.org/10.1017/jfm.2021.1031

https://doi.org/10.1017/jfm.2021.1031 Published online by Cambridge University Press

R. Hartmann and others

1.6 4 O Ra=2x10° mE Re>Re,
g O Ra=7x108  mM Re,>Re>Re,
1.4 aly, o (9 vV Ra=23x10° Rey>Re,> Re,
Nt @/‘»,hao .E‘OD g > Ra=7x10° WM Re,>Re,
12{ B 1 By gy T B
= (]
S 5 s 5
= 10 Pl a e
= Q2T T8 e ;‘Eﬁvﬁa}ﬂ@‘/}w
0.8 1 & g VVvevVvyvw > Q .:@
ng e ." 5] =4
0.61 \84’1;, M v v 5
a N 8
4 ® >e
0.4 s o o,
1 3 10

Figure 10. Clustering of the heat transport Nu/Nug mapped onto the ratio of thermal and kinetic boundary

layers Ag /A, for all combinations of Ro~!, I'"! and Ra. The data are coloured in the corresponding regimes
of flow motion (figure 6): grey — without Ekman pumping, blue — with Ekman pumping, green and red — Ekman
pumping and double-vortex or single-vortex flow. The vertical grey line marks the most beneficial boundary
layer ratio A /4, = 1. The dashed grey line (no specific scaling) serves as guide for the eye. The grey lines
connecting the data points follow increasing rotation Ro~! per confinement I'~!.

boundary layer thicknesses. When additionally a double-vortex or single-vortex flow is
present, the heat transport is further increased (green and red symbols) above the cases
when only Ekman pumping is present. Thereby, single-vortex flow seems to be very limited
to a much smaller interval of Ag /A4, than double-vortex flow. Whether Ekman pumping
is active, and whether a (stable) domain-spanning flow is formed in addition depends on
the combination of Ra, "', Ro~! and likely Pr that was not varied in this study. In
other words: although a Ra-independent clustering is observed, several parameter values
(e.g. larger Ra) can inhibit the best interference of a beneficial boundary layer ratio and
a stable vortex flow, such that the largest potential heat transport enhancement is not
achievable.

For all Ra, the onset of heat transport enhancement is nicely described by the transition
of predominant fluid motion from vertical to horizontal Re, = Rey (figures 6, 8). This
transition and the onset of heat transport enhancement clearly depend on Ra, in contrast
to describing the onset by a Ra-independent Ginzburg—Landau model (Weiss et al.
2010; Weiss & Ahlers 2011a,b). Nonetheless, a Ra-dependence in very confined systems
seems meaningful regarding that the formation of horizontally dominated, vortical flow
requires a sufficiently wide domain, larger than the most unstable convective length scale
L. o Ek'3 o« Ra'/®. However, the Ra-dependence appears to be rather complex so that its
complete derivation is beyond the scope of this study.

6. Conclusions

We have performed DNSs of confined-rotating RBC. For fixed Ra and Pr, we identified
three distinct maxima in the parameter space of rotation Ro~! and confinement I'~!: a
confinement, a double-vortex and a single-vortex maximum. Each maximum can be linked
to a regime with an individual characteristic domain-spanning flow structure. We find that
the heat transport enhancement of these maxima can be explained by an interference of
two effects:
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(i) Heat injection: in the rotation-controlled regime of predominant vortical (horizontal)
fluid motion and Ekman pumping, a beneficial ratio of thermal and kinetic boundary
layer thicknesses Ag /A, ~ 1 leads to the most effective heat transport from the
boundary layer into the bulk.

(i) Bulk transport: certain combinations of rotation Ro™ I, confinement I'~! and
thermal driving Ra trigger a stable domain-spanning flow formation, which supports
effective heat transport through the bulk.

The interference of both enhancing effects in the (Ro~', ') parameter space can
result in one strong heat transport maximum, or cause a broad region of enhanced
heat transport with multiple maxima. At lower Ra < 2 x 10°, a strong interference of
both effects results in a larger heat transport enhancement for combined rotation and
confinement than only confinement or only rotation could achieve. Contrary, at larger
Ra > 2 x 10°, where the interference is weak, pure confinement achieves the largest heat
transport enhancement. Additionally, we have shown that the heat transport in strongly
confined-rotating RBC does not automatically benefit from the optimal ratio of boundary
layer thicknesses Adg /A, ~ 1, as it does not necessarily coincide with the presence of
Ekman pumping, which is required for the enhancement.

Further investigations should aim to understand the occurrence of the different regimes
of stable vortex formation for the various values of control parameters I'!'Ro~!, Ra and
Pr, e.g. those for conditions in potential technical applications. Especially, understanding
the onset of heat transport enhancement and the transition from buoyancy-dominated to
rotation-controlled regime Rogg_RC(F ~!. Ra, Pr) promises further fundamental insights
into the interplay of confinement and rotation. A better understanding of the general
interaction of different types of stabilization remains important in various scientific fields
such as geo- or astrophysics. This requires comparable studies on other combinations
of interacting types of stabilization, e.g. rotating double-diffusive convection, confined
double-diffusive convection or rotating magnetohydrodynamics.
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Appendix A. Overview numerical simulations

Table 1 summarizes the most relevant details of the conducted numerical simulations.
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—1 —1 Az Az -3
r N; Ny Ny Mg, Ro Numax NpLmin | — - Atavg CFLjpax  Atpax (1077)
mid BL

n n
Ra =2 x 108:

2 25 64 384 10 0333 474 10 0.77 0.32 400 1.1 5
3 25 48 256 11 0333 570 8 0.79 0.40 400 1.1 5
4 256 32 192 12 0-333 58.1 8 0.81 0.40 400 11 5
5 25 32 192 11 0333 466 10 0.87 0.42 400 0.4 5
6 256 32 192 11 0333 475 10 0.86 0.42 400 0.4 5
7 256 32 192 11  0-333  48.0 10 0.83 0.32 100-400 0.4 5
8 256 32 192 11  0-333 478 10 0.84 0.29 100-400 0.4 5
10 256 32 192 5 0-333 439 10 0.82 0.24 400 0.4 5
Ra =7 x 108:

3 384 64 384 10 0-333 68.1 9 0.77 0.42 400 1.1 5
4 384 48 288 10 0-333 760 9 0.78 0.50 1600 11 5
5 384 40 240 12 0333 858 8 0.79 0.53 1600 0.4 5
6 384 36 192 12 0333 745 9 0.84 0.56 1600 0.4 5
7 384 36 180 7 0-333 667 10 0.88 0.56  400-1600 0.4 5
8 384 32 144 12 0-333 664 10 0.88 0.56  400-1600 0.4 5
10 38 32 120 12 0333 715 9 0.83 041  400-1600 0.4 5
12 384 28 96 2 033 716 9 0.85 022  400-1600 0.4 5
4 384 24 90 2 033 682 9 0.83 020  400-1600 0.4 5
Ra =2.3 x 10°:

4 512 64 384 10 0-333 959 10 0.87 045  400-1600 1.1 5
5 512 54 324 5 820 1015 17 0.92 0.19 1600 11 5
6 512 48 256 13 0-333 1019 17 0.91 0.37  400-1600 1.1 5
7 512 48 240 9 10-33.3 100.8 17 0.93 021  1600-3600 0.4 5
8 512 40 192 12 0-40 98.7 17 0.99 0.54  400-3600 0.4 5
9 512 40 180 7 125286 99.1 17 1.06 024  1600-5600 0.4 5
10 512 36 160 11 040 101.0 17 1.06 024  400-1600 0.4 5
12 512 32 128 10 040 972 17 0.99 0.22 1600 0.4 5
4 512 30 120 6 040 101.0 17 1.00 0.15 1600 0.4 5
6 512 28 96 2 0-33 1036 16 1.02 0.08 1600 0.4 5
18 512 28 96 2 0-33 1013 17 1.01 0.08 1600 0.4 5
20 512 24 80 2 0-33 969 17 0.98 0.07 1600 0.4 5
Ra =17 x 10%

6 768 64 384 10 3325 1283 24 0.90 0.14  1000-1800 0.4 1.5
7 768 60 360 10 33-25 1319 23 0.90 0.14  1200-2000 0.4 3
8 768 60 360 12 3.3-333 1324 23 0.90 0.15  1200-2000 0.3 3
10 768 54 324 10 1040 1319 23 0.91 0.15  400-3600 0.4 2
12 768 48 288 6 20-40 1337 23 1.02 0.17  1600-2800 0.4 2
16 768 40 240 8  0-40 130.0 24 0.94 0.16  400-1600 0.4 5
20 768 36 216 6  0-40 141.6 22 0.98 0.09  400-1600 0.4 5
24 768 32 192 7  0-333 1465 22 0.99 0.06  400-1600 0.2 4
28 768 30 180 2 0-33 1316 23 0.95 0.05  400-1600 0.4 3
32 768 28 162 2  0-33 1132 21 0.92 0.08 400 0.4 5

Table 1. Summary of numerical parameters per set of simulations (varying Ro~!). Columns from left to right:
confinement I" !, number of grid points in the vertical, radial, azimuthal directions N;, N,, Ny, number of
simulations Mg, per set, range of Ro~! per set, largest Nusselt number Ni,,,; within each set, minimal number
of points within the boundary layer Npy i, based on the estimate g = 1/(2Nuyqy), coarsest resolution of the
Kolmogorov scales 7 in the bulk (Az/n)miq, coarsest resolution of the Kolmogorov scales 7 in the boundary
layers (Az/n)pL, averaging time interval At,,, in units of free-fall time (multiple values denote minimum and
maximum value), maximal Courant number CFL,,,, and maximal time step Afy,,, in units of free-fall time,
both controlling the dynamic time stepping.
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Appendix B. Supporting figures

Figure 11 shows the two (temporary) stable configurations of single-vortex flow in
the vicinity around the stable single-vortex maximum. Figure 12 justifies that, for
confined-rotating RBC, the change of predominant direction of flow motion from vertical
to horizontal characterizes the onset of heat transport enhancement better than the
transition of the kinetic boundary layer from Prandtl-Blasius to Ekman type. We note
that in this context any Ekman pumping related increase of Nu with Ro~! is seen
as heat transport enhancement independent of whether Nu/Nug > 1 or not. Figure 13
shows how kinetic and thermal boundary layer thicknesses evolve individually in the
(Ro~!', I'~!) parameter space. The kinetic boundary layer thickness A, is estimated as
twice the height of the peak location of the horizontally averaged quantity (u . V2u> - The
thermal boundary layer thickness Ag is defined as the intersection between the temperature
gradient at the plate with a linear fit to the horizontally averaged mean temperature profile
in the bulk, see also § 2. Figure 14 gives an overview on the additional flow characteristics
(as in figure 1¢—e for Ra = 7 x 108) for all four Ra numbers.

(d)
0.2
0.3
. 0.4
. ] I i ) 0.5
: N—
1 1 :
1 :
0.7 1 1 : F 0.7
0- 1 L
0.8 T T } T T T T T T T T T T T T T T 0.8
Temp. @ 0 400 800 1200 1600 2000 2400 2800 3200 Temp. ®
t(HIU,)

Figure 11. Configurations of single-vortex flow (Ra =7 x 10°, ' =12, Ro~! = 25): (a) snapshot of the
temperature field at = 400 with a hot centred vortex, (d) snapshot of the temperature field at t = 2400 with
a cold centred vortex, (b) temporal evolution of Nu(#) at the top and bottom plates, (¢) temporal evolution of
Re(t) for each velocity component. The vertical dashed and dotted lines indicate the times of the temperature
snapshots in (a,d), respectively.

939 A1-21


https://doi.org/10.1017/jfm.2021.1031

https://doi.org/10.1017/jfm.2021.1031 Published online by Cambridge University Press

R. Hartmann and others
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<I'=10
0.003 # T
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0 3 10 30
Ro™!

Figure 12. Onset of heat transport enhancement at Ra = 7 x 108, Pr = 4.38: (a) normalized heat transport
Nu/Nug for various I" !, (b) kinetic boundary layer thickness 1,,/H, the dashed grey line indicates Ekman type
scaling 4, « 2.284((Pr/Ra)1/ 2R0)~ V2 (see Rajaei er al. 2016a), (c) ratio of vertical and horizontal Reynolds
number Re;/Rey. The dashed grey line separates the regimes of predominant vertical (Re;/Rey > 1) and
horizontal motion (Re./Rey < 1). The vertical dotted lines indicate when Re,/Rey = 1 for each I'"!. In
comparison this corresponds better with the onset of Ekman pumping enhanced heat transport (a) than the
transition of the kinetic boundary layer from Prandtl-Blasius to Ekman type (b).
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Figure 13. Boundary layer thicknesses in the (Ro~", I' 1) parameter space for (a,b) Ra = 2 x 103, (¢,d) Ra =
7 x 108, (e,f) Ra = 2.3 x 10°, (g-h) Ra = 7 x 10°. (a,c,e,g) Kinetic boundary layer thickness A, /H. (b.d, f.h)
Thermal boundary layer thickness Ag/H. Each colour scale applies to both panels per Ra. The grey, green
and red lines and highlighted locations A, B, C mark the regime transitions and heat transport maxima as in

figure 6.
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Figure 14. Additional flow characteristics for (a—) Ra = 2 x 108, (d—f)Ra =17 x 108, (g—i)Ra =23 x 109,
(=) Ra = 7 x 10°. (a,d,g.j) Vertical temperature gradient in the bulk. (b,e,h,k) Temporal stability of the flow
based on Nuyys (2.5). (c,f,i,l) Ratio of azimuthal to radial Reynolds numbers Rey /Re,. See figure 1(c—e) for
detailed description.
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