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Notes on Diagonal Coinvariants of the
Dihedral Group

Mats Boij and Anthony Geramita

Abstract. The bigraded Hilbert function and the minimal free resolutions for the diagonal coinvariants

of the dihedral groups are exhibited, as well as for all their bigraded invariant Gorenstein quotients.

1 Introduction

This paper was inspired by a number of lovely lectures given by François Bergeron

during a series of encounters at Queen’s University, Université du Quebec à Montréal,

the University of Ottawa, and the Fields Institute. In these lectures Bergeron ex-

plained a part of the motivation behind the n! theorem of Mark Haiman, which gives

subtle and beautiful information about the diagonal representation of the symmet-

ric group. Haiman’s result gives the dimension of certain of these modules, and we

hoped to extend his work to a discussion of the minimal free resolution of those same

modules. This is rather a formidable problem, and so our first thought was to solve

the analogous problems for some simpler Coxeter groups, i.e., the dihedral groups.

This paper is the result of those investigations.

We were kindly informed by Mark Haiman that E. Reiner and J. Alfano worked

out the bigraded Hilbert function and character of the diagonal coinvariants for the

dihedral groups in 1992–93 but never published their result. However, the results are

referred to by Haiman in [Hai94].

Questions about minimal free resolutions for the diagonal representation of dihe-

dral groups are discussed here for the first time.

2 Setup

We will assume that the field k is algebraically closed of characteristic zero, and in

fact we might as well assume that k = C. We first recall some elementary (and well

known) facts about the representation theory of the dihedral groups. The dihedral

group Dn is generated by two reflections s1 and s2 with the relation (s1s2)n
= e. We

can also think of if as generated by one reflection s = s1 and one rotation φ = s1s2.

For any integer i, we get a two-dimensional representation Ei by

s 7→

(

0 1

1 0

)

φ 7→

(

ξi 0

0 ξ−i

)

,
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where ξ is a primitive n-th root of unity. Of course, Ei = E j if i ≡ j (mod n). For

0 < i < n/2, this representation is irreducible. For i = n/2 when n is even, the

representation En/2 splits into the sum of the two one-dimensional representations

E±

n/2

s 7→ ±1 φ 7→ −1.

There is always the trivial one-dimensional representation (Triv). The alternating

one-dimensional representation (Alt) is given by

s 7→ −1 φ 7→ 1.

In fact E0 = En = Triv⊕Alt.

We let the dihedral group act on the polynomial ring k[x1, x2] by s.x1 = x2,

s.x2 = x1, φ.x1 = ξx1, and φ.x2 = ξ−1x2 For positive integers i, we can then re-

alize the representation Ei in k[x1, x2] by the vector spaces spanned by (x1x2)dxi
1 and

(x1x2)dxi
2 for any d. In fact this gives us the decomposition of k[x1, x2] into irreducible

representations using the splitting of En/2 and En = E0.

2.1 The Invariants

Recall the following, which are special cases of results true for any reflection group.

Theorem 2.1 The invariants under the action of the dihedral group on k[x1, x2] are

all polynomials in the basic invariants x1x2 and xn
1 + xn

2 .

Theorem 2.2 The ideal I generated by the invariants in S = k[x1, x2] is a complete

intersection ideal, and the quotient S/I is isomorphic to the regular representation.

3 The Diagonal Action

We now move on to the diagonal action of the dihedral group on the polynomial ring

R = k[x1, x2, y1, y2] which is the tensor product S ⊗k S.

Proposition 3.1 The ideal generated by the invariants of R under the diagonal action

of the dihedral group is minimally generated by the quadratic forms

q2,0 = x1x2, q1,1 = x1 y2 + x2 y1, q0,2 = y1 y2,

and the forms

g0 = xn
1 + xn

2 , g1 = xn−1
1 y1 + xn−1

2 y2,

. . . , gn−1 = x1 yn−1
1 + x2 yn−1

2 , gn = yn
1 + yn

2 .

Proof The forms given in the proposition are clearly invariant under the diagonal

action. Look at the ideal spanned by them and suppose that we have a form f that is

invariant but not in the ideal. Since a monomial is sent by φ to a multiple of itself,

any such multiple has to be a unit multiple in order for f to be invariant. Under the
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action of s, a monomial xa
1xb

2 yc
1 yd

2 is sent to xb
1xa

2 yd
1 yc

2. Thus f can be written as a sum

of terms of the form

xa
1xb

2 yc
1 yd

2 + xb
1xa

2 yd
1 yc

2

where a + c ≡ b + d (mod n). If a and b are both positive or c and d are both positive,

such a term is in the ideal generated by the first two invariants. Thus we may assume

that the terms are of the forms

xa
1 yc

1 + xa
2 yc

2 and xa
1 yd

2 + xa
2 yd

1

Using the generator x1 y2 + x2 y1, we can reduce all the terms of the second kind to

elements in the ideal. If a ≥ n, we can use the generator xn
1 + xn

2 to write

xa
1 yc

1 + xa
2 yc

2 = (xn
1 + xn

2)(xa−n
1 yc

1 + xa−n
2 yc

2) − xn
1xa−n

2 yc
2 − xa

2x1xa−n yc
1

which is clearly in the ideal.

We now need to prove that the set of generators is minimal. It is clear that we need

the first three quadratic generators. If we add x1 and y1 to the ideal, we get the ideal

J = (x1, y1, xn
2 , xn−1

2 y2, . . . , yn
2)

which does need all these generators. Thus none of the generators of degree n can be

excluded from the generating set of the ideal I.

The polynomial ring R = k[x1, x2, y1, y2] is bigraded and the diagonal action

preserves this bigrading. Thus the ideal I generated by the invariants will be biho-

mogeneous and the quotient A = R/I again bigraded. We will now determine the

bigraded Hilbert function of A. We start by looking at the ideal J generated by the

quadratic forms in I.

Lemma 3.2 The bigraded Hilbert function of

A = R/(x1x2, x1 y2 + x2 y1, y1 y2)

is given by HA(i, j) = 2, except for HA(0, 0) = 1 and HA(1, 1) = 3. The element

x1 y2 − x2 y1 generates an alternating one-dimensional representation and is annihilated

by the maximal ideal (x1, x2, y1, y2).

Proof Consider the ideal J = (x1x2, x1 y2+x2 y1, y1 y2). Modulo this ideal, x1 y2−x2 y1

is annihilated by x1, since

x1(x1 y2 − x2 y1) = x1(x1 y2 + x2 y1) − 2x1x2 y1 ∈ J,

and, by symmetry, it is also killed by all the other variables. Thus it is in the socle

of R/ J, and in order to compute the bigraded Hilbert function in degrees different

from (1, 1), we may as well add (x1 y2 − x2 y1) to the ideal. We then get the ideal

J ′ = (x1x2, x1 y2, x2 y1, y1 y2) = (x1, y1) ∩ (x2, y2). The bigraded Hilbert function of

this ideal is well known and equals two in all bidegrees different from (0, 0). In fact,

the only monomials that are not in the ideal are xi
1 y

j
1 and xi

2 y
j
2 for all (i, j).
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Proposition 3.3 The bigraded Hilbert function of A = R/I is given by

HA(i, j) =



















1 if i = j = 0 or i + j = n,

2 if 1 ≤ i + j ≤ n, (i, j) 6= (1, 1),

3 if (i, j) = (1, 1),

0 otherwise,

or, more explicitly,

0 1 2 · · · n − 2 n − 1 n

0 1 2 2 · · · 2 2 1

1 2 3 2 · · · 2 1

2 2 2 2 · · · 1
...

...
...

...
. . .

n − 2 2 2 1

n − 1 2 1

n 1

Proof Using the lemma, we need only prove that the Hilbert function is one in bide-

gree (i, n− i) and zero in higher bidegrees. In each bidegree (i, n− i), i = 0, 1, . . . , n,

we add the generator xi
1 yn−i

1 + xi
2 yn−i

2 . Thus the Hilbert function drops from two to

one in these degrees leaving the form xi
1 yn−i

1 − xi
2 yn−i

2 outside the ideal. However,

this element is killed by x1 since

x1(xi
1 yn−i

1 − xi
2 yn−i

2 ) = x1(xi
1 yn−i

1 + xi
2 yn−i

2 ) − 2x1xi
2 yn−i

2 ∈ I,

and, by symmetry, it is annihilated by all the other variables. Thus these alternating

forms are in the socle of R/I and so R/I must be zero in all higher bidegrees.

3.1 Decomposition into Irreducible Representations

We now go further and investigate the action of the dihedral group on the quotient A.

Proposition 3.4 The bigraded component Ai, j is isomorphic to Ei+ j whenever

HA(i, j) = 2. For i = 0, 1, . . . , n, the component Ai,n−i is the alternating represen-

tation, A0,0 is the trivial representation and A1,1 is the sum of the alternating represen-

tation and E2.

The representation Ei occurs n+2 times for 0 < i < n/2. For n even, E±

n/2
each occurs

(n+2)/2 times. The trivial representation occurs once and the alternating representation

occurs n + 2 times.

Proof In degrees where the Hilbert function is 2, we have that the component Ai, j is

generated by xi
1 y

j
1 and xi

2 y
j
2, and since the group acts the same way on the two sets of

variables, this is the same representation as Ei+ j . In degree (0, 0), the representation

is trivial. In bidegrees (i, n − i), the component Ai, j is generated by the alternating

element xi
1 yn−i

1 − xi
2 yn−i

2 since xi
1 yn−i

1 + xi
2 yn−i

2 is in the ideal. In bidegree (1, 1), we
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have generators x1 y1, x2 y2 and x1 y2 − x2 y1. The first two generate E2, and the third

one is alternating.

For 0 < i < n/2, we have that Ei occurs in bidegrees ( j, i − j), for j = 0, 1, . . . , i.

Since Ei is isomorphic to En−i , it also occurs in bidegrees ( j, n − i − j), for j =

0, 1, . . . , n − i. Together, this makes (i + 1) + (n − i + 1) = n + 2 times.

If n is even, we have that En/2 = E+
n/2⊕E−

n/2
occurs in Ai,n/2−i , for i = 0, 1, . . . , n/2,

i.e., (n + 2)/2 times.

4 Resolution and Bigraded Betti Numbers

We have already found a minimal set of generators for the ideal I generated by the

diagonal invariants. We now find the syzygies and the bigraded Betti numbers of I.

We start by taking a look at the ideal J generated by the quadratic invariants.

Proposition 4.1 A minimal resolution of R/ J, where J = (x1x2, x1 y2 + x2 y1, y1 y2),

is given by

0 −→ F4
Φ4−→ F3

Φ3−→ F2
Φ2−→ F1

Φ1−→ F0 −→ R/ J −→ 0,

where the maps are given by the matrices

Φ1 =
(

x1 y1 x1 y2 + x2 y1 y1 y2

)

,

Φ2 =





0 y1 y2 −x1 y2 − x2 y1 y2
1 y2

2

−y1 y2 0 x1x2 −x1 y1 −x2 y2

x1 y2 + x2 y1 −x1x2 0 x2
1 x2

2



 ,

Φ3 =













x1 x2 0 0

y1 y2 x2 x1

0 0 y2 y1

−y2 0 0 x2

0 −y1 x1 0













,

Φ4 =









x2

−x1

−y1

y2









,

and the decomposition into irreducible representations is given by

F1 = R(−2, 0) ⊕ R(−1,−1) ⊕ R(0,−2),

F2 = R(−3,−1) ⊕ (k ⊕ E2) ⊗ R(−2,−2) ⊕ R(−1,−3),

F3 = E1 ⊗ R(−3,−2) ⊕ E1 ⊗ R(−2,−3, )

F4 = Alt⊗R(−3,−3.)
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Proof We can verify that this is actually a minimal free resolution using either of the

computer algebra systems CoCoA [CoC] or Macaulay 2 [GS].

The resolution of the ideal J will be part of the resolution of the ideal I as the new

generators will come in higher degrees.

Proposition 4.2 Apart from the syzygies of J, the first syzygies of I are given by (for

i = 0, . . . , n − 2)

y1gi − x1gi+1 − xn−(i+1)
2 yi

2q1,1 + 2xn−(i+2)
2 yi+1

2 q2,0 = 0,

y2gi − x2gi+1 − xn−(i+1)
1 yi

1q1,1 + 2xn−(i+2)
1 yi+1

1 q2,0 = 0,

and

y1gn−1 − x1gn + yn−1
2 q1,1 − 2x2 yn−2

2 q0,2 = 0,

y2gn−1 − x2gn + yn−1
1 q1,1 − 2x1 yn−2

1 q0,2 = 0,

plus the Koszul relations

(xn
1 + xn

2)q2,0 − x1x2g0 = 0, (xn
1 + xn

2)q1,1 − (x1 y2 + x2 y1)g0 = 0,

and, for i = 0, . . . , n, the Koszul relations

(xn−i
1 yi

1 + xn−i
2 yi

2)q0,2 − y1 y2gi = 0.

Proof The Koszul relations are obviously syzygies. Thus, for i = 0, 1, . . . , n − 2, we

have that

y1gi − x1gi+1 = y1(xn−i
1 yi

1 + xn−i
2 yi

2) − x2(xn−i−1
1 yi+1

1 + xn−i−1
2 yi+1

2

= xn−(i+1)
2 yi

2(x1 y2 + x2 y1) − 2xn−(i+2)
2 yi+1

2 x1x2

= xn−(i+1)
2 yi

2q1,1 − 2xn−(i+2)
2 yi+1

2 q2,0,

and also

y1gn−1 − x1gn = y1(x1 yn−1
1 + x2 yn−1

2 ) − x2(yn
1 + yn

2

= xn−(i+1)
2 yi

2(x1 y2 + x2 y1) − 2xn−(i+2)
2 yi+1

2 x1x2

= xn−(i+1)
2 yi

2q1,1 − 2xn−(i+2)
2 yi+1

2 q2,0.

By symmetry, the corresponding statement is true for y2gi − x2gi+1, i = 0, 1, . . . , n.

We now want to show that these relations are independent. The linear syzygies are

independent modulo the syzygies coming from the quadratic generators. This can be

seen by looking only at the coefficients of the gi . The harder part is to verify that the

Koszul syzygies given in the proposition are independent modulo the linear syzygies.

https://doi.org/10.4153/CMB-2010-066-7 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2010-066-7


608 M. Boij and A. Geramita

To do that we look at the matrix





























































y1 −x1 0 · · · 0 0

y2 −x2 0 · · · 0 0

0 y1 −x1 · · · 0 0

0 y2 −x2 · · · 0 0
...

...
...

. . . 0
...

0 0 0 · · · y1 −x1

0 0 0 · · · y2 −x2

x1x2 0 0 · · · 0 0

x1 y2 + x2 y1 0 0 · · · 0 0

y1 y2 0 0 · · · 0 0

0 y1 y2 0 · · · 0 0

0 0 y1 y2 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · y1 y2 0

0 0 0 · · · 0 y1 y2





























































giving the coefficients of the degree n generators in all of the 2n + n + 3 syzygies given

above. In the last column, we have one element of degree (0, 2) and two elements of

bidegree (1, 0). This means that the last row cannot be part of a syzygy. In the next

to the last column, there is one element of bidegree (0, 2) in the lower part, and the

only way to get such an element from the top part of the matrix is to use coefficients

of bidegree (0, 1) on the last two rows. However, this always produces a non-zero

element of bidegree (1, 1) in the last column. Thus we can conclude that we can take

away the last row of the matrix and the last two rows of the first part of the matrix.

This process repeats until we have only three rows of the lower part of the matrix and

no rows in the upper. That finishes the proof.

In order to express the second syzygies of I, we use the following matrix form of

the linear first syzygies given in the proposition above.



























2xn−2
2 y2 2xn−2

1 y2 2xn−3
2 y2

2 2xn−3
1 y2

1 · · · 0 0

−xn−1
2 −xn−1

1 −xn−2
2 y2 −xn−2

1 y1 · · · yn−1
2 yn−1

1

0 0 0 0 · · · −2x2 yn−2
2 −2x1 yn−2

1

y1 y2 0 0 · · · 0 0

−x1 −x2 −y1 −y2 · · · 0 0

0 0 −x1 −x2 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · −x1 −x2



























Proposition 4.3 There are at most n−1 linear second syzygies involving the 2n linear

first syzygies given in the previous proposition.
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Proof It suffices to show that there are at most n − 1 linear syzygies among the

columns of the following matrix.















y1 y2 0 0 · · · 0 0

−x1 −x2 −y1 −y2 · · · 0 0

0 0 −x1 −x2 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · −x1 −x2















The first row tells us that the first two coefficients of a syzygy must be λy2 and

−λy1 for some element λ of k. Subtracting this from the syzygy, we may assume

that the first two coefficients are zero. By induction, we can assume that the smaller

matrix, obtained by removing the first row and the first two columns, has at most

n−2 syzygies. The base case for the induction is a 0×0-matrix which has no syzygies

at all. In fact, the syzygies of the matrix (4) are given by the columns of the following

matrix.






























y2 0 0 · · · 0

−y1 0 0 · · · 0

−x2 y2 0 · · · 0

x1 −y1 0 · · · 0

0 −x2 y2 · · · 0

0 x1 −y1 · · · 0
...

...
...

. . .
...

0 0 0 · · · −x2

0 0 0 · · · −x2































Theorem 4.4 The graded Betti numbers of A are given by the following Betti diagram

1 n + 4 3n + 8 3n + 8 n + 2

0 1 − − − −
1 − 3 − − −
2 − − 5 4 1

3 − − − − −
...

...
...

...
...

...

n − 1 − n + 1 2n n − 1 −
n − − n + 3 2n + 4 n + 1

Proof We already know the minimal set of generators from Proposition 3.1. This

gives us the second column of the Betti diagram. We also know the last column, since

it corresponds to the socle elements, which are exactly the alternating elements in A.

The Hilbert function of A is given by

1, 4, 7, 8, 10, 12, . . . , 2n, m + 1, 0, 0, . . . ,
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and its fourth difference is

1, 0,−3, 0, 5,−4, 1, 0, . . . , 0,−(n + 1), 2n, 4,−(2n + 4), n + 1, 0, . . . .

Thus we can see that the only entries of the Betti diagram that we do not yet know for

sure are the syzygies in degree n+2 where there is an overlap between the two numbers

giving the difference 4. But, in Proposition 4.2, we have found n + 3 independent

first syzygies in degree n + 2 and, in Proposition 4.3, we have proved that there are no

more than n−1 linearly independent second syzygies of degree n+2. Since the fourth

difference of the Hilbert function gives us that the difference β2,n+2 −β3,n+2 = 4, and

in fact, (n + 3) − (n − 1) = 4, we have proved that the inequalities are equalities in

both cases.

5 Gorenstein Quotients Given by Socle Elements of the Ring of
Covariants

As we have seen, there are n + 2 elements of the socle of A given by the alternating

elements of A i.e., h = x1 y2−x2 y1 and hm = xm
1 yn−m

2 −xm
2 yn−m

1 , for m = 0, 1, . . . , n.

For each such m we can find a unique Gorenstein quotient, Am = A/Īm = R/Im, of

A, where hm generates the socle.

Proposition 5.1 The bigraded Hilbert function of the quotient Am is given by

H(i, j) =











1 if (i, j) = (0, 0) or (i, j) = (m, n − m),

2 if 0 ≤ i ≤ m, 0 ≤ j ≤ n − m and 0 < i + j < n,

0 otherwise.

Proof It is clear from the bigrading and Hilbert function of A that everything in A

of bidegree (i, j) where i > m or j > n − m is zero. From the structure of A that we

noted earlier, the only other element that annihilates hm is the socle element, h above,

of A in degree (1, 1). That finishes the proof.

Notice that in the case of the symmetric groups, Sn, the Gorenstein quotients

all have multiplicity n!, which is the order of Sn (Haiman’s remarkable n!-theorem,

[Hai01]). In the case of the dihedral groups Dn, we see that the multiplicities of the

Gorenstein quotients are always greater than or equal to the order of Dn, which is 2n.

Proposition 5.2 If we set m ′
= n − m, then

(i) Am = R/Im, where

Im = 〈x1x2, x1 y2, x2 y1, y1 y2, xm+1
1 , xm+1

2 , ym ′+1
1 , ym ′+1

2 , xm
1 ym ′

1 + xm
2 ym ′

2 〉;

(ii) the resolution of Am, as an R-module, is

0 −→ F4
Φ4−→ F3

Φ3−→ F2
Φ2−→ F1

Φ1−→ F0 −→ R/Im −→ 0.
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where the maps are given by the following matrices.

Φ1 =
(

x1x2 x1 y2 x2 y1 y1 y2 xm+1
1 xm+1

2 ym ′+1
1 ym ′+1

2 xm
1 ym ′

1 + xm
2 ym ′

2

)

Φ
t
2 =



































































−y2 x2 0 0 0 0 0 0 0

−y1 0 x1 0 0 0 0 0 0

0 −y1 0 x1 0 0 0 0 0

0 0 −y2 x2 0 0 0 0 0

−xm
1 0 0 0 x2 0 0 0 0

0 −xm
1 0 0 y2 0 0 0 0

−xm
2 0 0 0 0 x1 0 0 0

0 0 −xm
2 0 0 y1 0 0 0

0 0 −ym ′

1 0 0 0 x2 0 0

0 0 0 −ym ′

1 0 0 y2 0 0

0 −ym ′

2 0 0 0 0 0 x1 0

0 0 0 −ym ′

2 0 0 0 y1 0

−xm−1
2 ym ′

2 0 0 0 −ym ′

1 0 0 0 x1

−xm−1
1 ym ′

1 0 0 0 0 −ym ′

2 0 0 x2

0 0 0 −xm
2 ym ′

−1
2 0 0 −xm

1 0 y1

0 0 0 −xm
1 ym ′

−1
1 0 0 0 −xm

2 y2



































































Φ3 =



































































y1 xm
1 0 0 0 0 0 xm−1

2 ym ′

2 0

−y2 0 xm
2 0 0 0 xm−1

1 ym ′

1 0 0

x2 0 0 0 ym ′

2 0 0 xm
1 ym ′

−1
1 0

−x1 0 0 ym ′

1 0 0 xm
2 ym ′

−1
2 0 0

0 −y2 0 0 0 −ym ′

1 0 0 0

0 x2 0 0 0 0 0 −ym ′

1 0

0 0 −y1 0 0 ym ′

2 0 0 0

0 0 x1 0 0 0 −ym ′

2 0 0

0 0 0 −y2 0 0 xm
1 0 0

0 0 0 x2 0 0 0 0 −xm
1

0 0 0 0 −y1 0 0 xm
2 0

0 0 0 0 x1 0 0 0 xm
2

0 0 0 0 0 −x2 0 −y2 0

0 0 0 0 0 x1 −y1 0 0

0 0 0 0 0 0 x2 0 −y2

0 0 0 0 0 0 0 x1 y1


































































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Φ4 =





























xm
1 ym ′

1 + xm
2 ym ′

2

−ym ′+1
1

ym ′+1
2

xm+1
1

−xm+1
2

y1 y2

x1 y2

−x2 y1

x1x2





























Proof (i) From Proposition 4.1, we know that the three quadratic generators

x1x2, x1 y2 + x2 y1, y1 y2 are in the ideal Im. The socle element of A in degree two,

h = x1 y2 − x2 y1, must be in the ideal Im since Am is Gorenstein with socle in degree

n > 2. This now gives the generators of total degree two, guaranteed by Proposi-

tion 5.1. The bigraded Hilbert function of the quotient of R by the ideal generated

by these four bigraded forms is given by 1 in bidegree (0, 0) and 2 elsewhere. Thus,

to obtain the Hilbert function of Proposition 5.1 requires two generators of bidegree

(m + 1, 0), two generators in bidegree (0, m ′ + 1), and one generator in bidegree

(m, m ′). A simple calculation of monomials shows that the generators of bidegrees

(m + 1, 0) and (0, m ′ + 1) are the ones given above. Finally, one notices that the form

xm
1 ym ′

1 + xm
2 ym ′

1 is already in the ideal I, but not in the ideal generated by the previous

generators.

(ii) Since Am is Gorenstein with known Hilbert function, given by Proposition 5.1,

and since we now know the degrees of the minimal generators of the ideal Im, there

is only one possible Betti diagram for Am. That diagram is

1 9 16 9 1

0 1 − − − −
1 − 4 4 1 −
2 − − − − −
...

...
...

...
...

...

m − 2 4 2 −
m + 1 − − − − −

...
...

...
...

...
...

m ′ − 1 − − − − −
m ′ − 2 4 2 −
...

...
...

...
...

...

n − 2 − − − − −
n − 1 − 1 4 4 −

n − − − − 1

Since the matrices given above contain no non-zero constants and since they have

size and degrees of entries consistent with this Betti diagram, it is enough to show

that they form a complex. We leave this tedious but straightforward calculation to

the reader.
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