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1. Introduction
1.1. SATEMENT OF THE PROBLEM

Let S be a smooth projective rational surface andllebe an effective devisor on
S.LetV(D) C |D| be the closure of the locus of irreducible rational curves. For
general results about the geometryofD), we refer to]H] and to[C H].

If D has nonnegative self-intersection an@D) is nonempty the dimension of
V(D) is known (cf. [K]):

ro(D) :=dimV(D) = —(Kg- D) — 1.
The problem that will study here is to compute the degrees
N(D) :=degV (D)

of these varieties as subvarieties| D = P". Alternatively, N (D) is the number
of irreducible rational curves ifD| that pass throughy (D) general points of. If
S is the projective plan&? andd = degD, then one also uses the notatibifd)
to denote the number of irreducible, rational curves of dedrpassing through
3d — 1 general points.

Shirley. INTERPRINT: (K.B. 6) PIPS Nr.:141487 MATHKAP
comp4059.tex; 8/07/1998; 12:09; v.7; p.1

https://doi.org/10.1023/A:1000446404010 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000446404010

210 LUCIA CAPORASO AND JOE HARRIS

1.2. TERMINOLOGY AND NOTATION

We will work over the complex numbers. Throughout, the words ‘surface’ and
‘curve’ will refer to projective varieties.

If D andD’ are effective divisors (or divisor classes) on a surface, we will say
thatD > D' if D — D’ is effective and nonzero.

We will denote byF,, theHirzebruch surfac&,, = P(Op1® Op1(n)). On each
F, with n > 1 there exists a unique curve of negative self intersection, which we
will denote by E and refer to as thexceptional curvenT,,. We will denote by
F a fiber of the projectiof,, — P!; the classes of andF' generate the Picard
group offF,,, with intersection pairing given by

E?=—n; (E-F)=1 and F?=0.

Another useful divisor class is the class of a complementary section, that is, a
sectionC of the PY-bundleF, — P! disjoint from E. Since(C - E) = 0 and
(C-F)=1,weseethal’ = E + nF; so the classe§' and F' also generate the
Picard group, with intersection numbers

C? =n; (C-F)=1 and F?>=0.

For any positive integer:, we will denote byV,,,(D) C V(D) C |D| the closure

of the locus of irreducible rational curveX, having contact of order at least
with E at a smooth point ofX. These varieties will also be referred to a Severi
varieties. We seN,,, (D) := degV,, (D).

1.3. METHODS AND RESULTS

Until very recently, the basic enumerative problem of determining the degrees
of Severi varieties was unsolved even in the cas@%fln 1989 Ziv Ran [R]
described a recursive procedure for calculating the degrees of the Severi varieties
parametrizing plane curves of any degree and genus (see also [R2]). Recently,
M. Kontsevich discovered a beautiful and simple recursive formula in the case of
rational curves orP? (see [KM] and [RT] for proofs). Kontsevich’s method was
based on his description of a compactified moduli space for map$ wito the
surfaceS = P?; others (e.g., [DI], [KP] and [CM]) were able to use the same
method to derive similar formulas in the case of other surfatdsr which a
Kontsevich-style moduli space existed, suchSas Pl x P!, the ruled surface
S = F; and del Pezzo surfaces.

It was our feeling that the reliance of Kontsevich’s method on the existence of
a well-behaved moduli space was not essential. We were especially interested in
whether a similar formula might be derived for the Hirzebruch surfages

In [CH], we succeeded in recasting the Kontsevich method so as to remove
the apparent dependence on the existence of a moduli space: as we set it up, it
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was necessary only to understand the degenerations of the rational curves in the
one-parameter families corresponding to general one-dimensional linear sections of
V(D). Theresulting ‘cross- ratio method’ allowed us to derive a complete recursion
for all divisor classes on the ruled surage= F, — that is, a formula expressing
N(D)interms ofN(D') for D' < D -and a closed-form formula for certain divisor
classes on the ruled surfadgsfor anyn. (In fact, compactifications of the moduli
space of maps! — S do exist for these surfaces, but they contain in general many
components, only one of which parametrizes generically irreducible rational curves
and the others of which may have strictly larger dimension. Kontsevich’s method
can be carried out in these cases, as was done by Kleiman and Piene [KP]; but at
present we do not see how to use the resulting formulas to enumerate irreducible
rational curves.)

However, we were unable to go significantly beyond this point: a similarly
derived formula in [CH] for the degree§ (D) of Severi Varieties/ (D) onF,
espressed’ (D) not solely in terms ofV (D') for D’ < D, but also in terms of the
degreesVy(D") of the Severi varietie¥) (D") parametrizing curves with a point
of k-fold tangency with a fixed curv€ C S. For example, ifS = F3, thenN (D)
is expresses as a function 8 D’) and of N»(D"), whereN,(D") is the number
of irreducible rational curves ifD”| that are simply tangent t& and pass through
the appropriate number (that i%(D"”) — 1) of general points of’3. A complete
recursion in this case would have required a similar analysis of linear sections of
the Severi varietie$> (D), which in turn would have necessitated an analysis of
Severi varieties parametrizing curves with more complicated tangency conditions.

In the end, it seems that one way or another we need to deal with the degrees
of these ‘tangetial’ loci as well. This difficulty led us to the discovery of a compu-
tational technique different from and simpler than the cross-ratio method, which
we will describe in the present paper. It involves an analysis of the same basic
object as the cross-ratio method — that is, the one-parameter family I' of
rational curves througty(D) — 1 general points of and their limits — but extracts
more information from it. It is based on a description of therdbh—Severi group
of a minimal desingularization of (we will therefore refer to it as the ‘rational
fibration method’). The main advantage of this technique for our present purposes
is that we are in fact able to compute the degrees of the tangential loci involved; at
least in all cases that we studied. It also yields other related formulas, such as the
number of irreducible rational curves having a node at a given generakpeaiist
and passing througty(D) — 2 other general points.

1.4. CONTENTS OF THIS PAPER

In the following section we will describe the rational fibration method in general
setting. In the succeeding sections we will apply it in the cases P2, S =

and S = Fs. In the first of these cases, we obtain another (simpler) proof of
Kontsevich’s formula, as well as some related formulas derived by Pandharipande
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[P]. In the second, we will recover the general recursion formula found originally
in [CH] for degrees of Severi varieties @p. Finally, in the last section we derive

a complete set of recursions f&y, the first case for which the cross-ratio method
does not give a complete answer.

We have tried to keep this paper relatively self-contained; in particular it should
be intelligible to a reader unfamiliar with [CH]. We will, however, have to appeal
to Chapter 2 of [CH] for proofs of some of the basic assertions about the local
geometry of Severi varieties and the families of curves they parametrize.

2. The rational fibration method in general
2.1. (BJECTS AND MORPHISMS

As we indicated in the introduction, the rational fibration method, like the cross-
ratio method, involves studying a suitable general one-parameter family of rational
curves. To set it up, first le§ be a smooth rational surface ahtdan effective
divisor onS. We will assume thaD has nonnegative self-intersection and that the
Severi varietyV (D) # (), so that in particular we have dii(D) = ro(D) =
—(Ks - D) — 1. Now, chooseo(D) — 1 general pointgy, . .., pyypy-1 € S and

letT" C V(D) be the closure of the locus of poirjt§] € V(D) corresponding to
irreducible rational curveX passing through these points. Equivalently, if for any
pointp € S we let H, C P" by the hyperplane of points corresponding to curves
passing through, T" will be the one-dimensional linear section6{D)

ro(D)—1
r=V(D)n ( N H)
=1

i

Now, lety C ' x S — T be the family of curves corresponding foC |D|.
Consider the normalizatiol” of X xr I'V to arrive at a family

XV - ]:\l/

over a smooth curvE”, whose general fiber is isomorphicité.

Next, we apply semi-stable reduction (which we should rather call ‘nodal reduc-
tion’, since our curves have genus zero): after making a base clianrgé™ and
blowing up the total space of the pullback famiy x. B, we arrive at a family
f Y — B whose total space is smooth, whose general fiber is a smooth rational
curve and whose special fibers are all nodal curves. In fact, a base change will turn
out to be unnecessary in each of the three cases considered below — the minimal
desingularizatior)y of the total space/” already has this property — but this is
not relevant, since even a superfluous base change will not affect the subsequent
calculations. We will denote by : Y — S the composite map

Y =>x' X B—=>x' > xCIl'xS—8S.
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Notice thatr is a generically finite map, whose degree is equal to the product
of the degree of the map — T'” times the number of irreducible rational curves
in the linear seriegD| passing through the points, . .., p,,(p)—1 andp (that is,
the degreéV (D) of the Severi variety/ (D)).

Here is a diagram of the basic objects and morphisms we have introduced:

e

S I'xS D x

\/

2.2. QJTLINE OF THE METHOD

Figure 1.

As we indicated, our method involves calculating in therdh—Severi group of the
total space) of our family. This is motivated by a simple observation: given any
two line bundled. andM on S, we have

(r*L-7*M) = ded B — I} - N(D) - (L - M).

Thus, in order to derive a formula fav (D), we want to compute intersection
numbers in the Bron—Severi group Q. For example, ifS is the projective plane
P? we can takel, = M = Opy(1). Then(r*L)? = N(D); so if we can compute
(7*L)? we get a formula foiV (D).

What makes is possible to perform such calculations is the facf thgpresses
Y as the total space of a one-parameter family of generically smooth rational
curves, so that to determine the class of a given divisor it is enough to know its
degree on each component of each fibef.dflore precisely, the Picard group of
Y will be freely generated by the class of a fiber, the class of any sectionfA of
and the classes of all the irreducible curves contained in fibefsasfd disjoint
from A. Moreover, in terms of these generators the intersection pairing ¢ Pic
is (except possibly for the self-intersectionAf easy to describe. This means two
things: first, we can express a given divisor class as a linear combination of these
generators once we know its degree on each component of each reducible fiber and
on A; and second, having expressed two divisor classes as linear combinations of
these generators, we can readily compute their intersection number.
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The method we will apply in each case thus consists of five steps:

¢ First, we need to describe the reducible fiber§ofs B; that is (given that
B will be in practice just the normalizatiofi” of the base of our original
family x — I'), the set of reducible curves in the linear sefti@sthrough the
pointspy, . .., pry(p)—1 that are limits of irreducible rational curves through
these points, and the branchedtét each one. The characterization of such
curves is straightforward in the case®f= P2 by simple dimension-counting.
In the case of = F,, with n > 2 itis less obvious, since in contrast with the
case ofP? most reducible curves through the poipis. .. s Pro(D)—1 Whose
components are all rational are not limits of irreducible rational such curves;
the answer is worked out in [CH]. In either case the number of such fibers will
be known inductively.

e Second, we need to describe the local structure of the fayfily» I'V near
each reducible fiber; specifically, we need to know whejffeils smooth or if
we have to blow up. This likewise is straightforward in the case of the plane,
where in facty” is smooth. It is more interesting in the case of the Hirzebruch
surfacesr,,, where forn > 3 we see thag” will indeed have singularities;
again, this is worked out in [CH] and we will refer there for the relevant results.

e Third, we choose a basis for theedn—Severi group @, and calculate the
intersection pairing on these classes.

¢ Fourth, since we know the imagess$hof the components of reducible fibers
of f:Y — B, we can calculate the degrees on all such components of the
pullbackz* L of any line bundle. on S; and

e Fifth, we are able therefore to express the intersection nunfbérs- 7* M)
for pairsL, M € PicS of line bundles orf.

Evidently, the particulars of this process will depend%and D; for the moment
we shall just fix some notation and make some preliminary observations. First, for
b € B we use the common notatidfy := f~1(b) to denote the fiber of overb.
The class in N&Y) of such a fiber is denoted 1y.

Secondly, recall that our family parametrizes curves through certain base points.
We pick two of themg and¢/, and we denote byl and A’ the corresponding
sections off. The following relations are clear:

Y2=A.-A'=0 and A-Y=A"-Y =1.

Notice also that by symmetry?> = (A — A’)? which will be useful to compute

the left-hand side. In fact — A’ is supported on exactly those fibers wher@nd

¢’ lie on different components, the number of which we will be able to count.
One further note: the description above of thérdbh—Severi group oy as

generated by the classesAfY and components of reducible fibers assumes that

the bas&3 of the family is connected, which we will not always know in practice.

This assumption is not essential, however: in cBdeas irreducible components
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Ba, ..., By, we simply have to replace every multiple ¥fin the formulas below
by a suitable linear combination of fiberslying over points ofB;. As the reader
may verify, this does not alter the outcome of the subsequent calculations.

3. Plane curves

Here we study the casés= P2, If D andD; are divisors orP?, we denote their
degrees respectively hiyandd;. Since a divisor class in the plane is determined
by its degree, we will introduce the notatidf(d) := N (D).

We have thato(D) = 3d — 1, so we choose general poipts.. . . , paq_» € P?,
letT’ C V(D) be the locus of curves ivi (D) containing the pointg;, and proceed
as described in the preceding section. To describe the resulting family of curves, let
A be the locus oV (D) parametrizing degenerate curves (that is, curves that are
reducible or have singularities other than nodes). Since our durvé/ (D) will
intersectA only at general points of componentsAf we may apply the results
of [DH] and [H] to conclude the following

A. Any fiber X, of x — T is either

1. anirreducible curve with exactly= (d — 1)(d — 2)/2 nodes;

2. anirreducible curve with exactby— 1 nodes and a cusp;

3. anirreducible curve with exactly— 2 nodes and a tacnode;

4. an irreducible curve with exactly— 3 nodes and an ordinary triple point;
or

5. a curve having exactly two irreducible componekts X, of degreesi;
anddy, with exactly (dy — 1)(dy — 2)/2 and(d2 — 1)(d2 — 2)/2 nodes
respectively, and intersecting transversallyli@, points.

B. In cases 1, 3 and 4, the curfeis smooth aty and the familyxy” — T is
smooth at the unique point &¥ lying over+. In case 2I" has a cusp at but
the family y* — T'” is still smooth at the unique point @ lying over-.

C. In case 5 the curve hasd;d,; smooth branches at(corresponding to defor-
mations ofX, smoothing any one of thé;d> nodes ofX,, coming from a
pointp € X3 N X, of intersection ofX; and X»). At each point of™” lying
over~ the fiber of the familyy” — TV has two smooth rational components
meeting transversally at one point (more precisely, it is the normalization of
X, atthe remainingd; — 1)(d1 —2)/2+ (d2 — 1)(d2 — 2)/2+ d1do —1=§
nodes ofX,), and smooth total space.

D. Finally, if X c P? is any curve of type 1-5 passing through the points
p1,---,P3d—2, then converselyX] € T'; that is, X is a limit of irreducible
rational curvesy,, throughps, . .., p3qs-—2.

We see in particular that the total spac¢es smooth and that the fibers gf — I'V
are all nodal, so that no further base changes or blow-ups are necessary; that is, we
may takeB = T' (as we stated earlier) ajddl= x”. Note also that every reducible
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fiber of Y has precisely two irreducible components, meeting transversally at one
point.

We shall call a reducible fiber of a fiber of typeJ and we shall denote by
B the subset of points aB such that the corresponding fiber is of tyjpethat
is, reducible. (This new piece of terminology probably seems pointless, but it will
be useful in the sequel.) For atye B;, we then denote the two irreducible
components of the fiber ovéty J; , and.J,,. We shall always denote bj ; the
component containing the poigt= p1. The picture ofy is thus:

Y Joy
A’
A
\\ /
Jip
Figure 2.

Let D; be the class ofi(.J; ;). We denote byj(D1, D2) the number of all such
fibers, for any given decompositidn = Dy + D,. To determingi(D1, D7), note
firstthat if X = X; U X, € T'is any reducible curve); the class ofX;, thenX;
can contain at mosy(D;) of therg(D) — 1 = 3d — 2 pointspy, . . ., p3g_2. Since

ro(D1) + ro(D2) = ro(D) — 1,

it follows that each componenX; must contain exactlyo(D;) of the points
p1,---,P34_2. Thus, to specify such a curve, we have firstto choose a decomposition
of the setd = {p1,...,p34_2} into disjoint subset®,, &, of cardinalityro(D1)
andro(D-) respectively, with the point = p; € ®1; and then to choose, for each

i, one of theN (D;) curvesr; € V(D;) containing®;. The number of such curves

X is thus
ro(D) — 2
(To(Dl) B 1) - N(D1) - N(D2)

and since we have seen there afg - D,) = didz points of B lying over each
point[X] € I' corresponding to a curve of this type, we have
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ro(D) — 2 >

j(D1,D2) = N(D1)N(D2)(D1 - D2) <7'O(D1) 4

N(dy) N (do)dady | 2273
= N(d1)N(d2)d1d> 3, -2
Note that by a simple dimension count, any of the cut¥gs= V (D;) passing
throughro(D;) of the pointsps, ..., ps; 2 Will be irreducible and nodal. By a
standard further argument as in Lemma 2.1 of [CH], we see that anypak
of such curves will intersect transversally, so that the unfor= X1 U X, will
indeed be a curve as described in (5) above.

This completes the first two steps in the general method. Next, we give a basis
for the Neron—Severi group N’). We now choose as a system of generators
for NS()) the classA of the section off: Y — B coming from the base point
q = p1 of our family; the clas¥” of a fiber of the maygf: Y — B, and the classes
{J2}ve B, - Most of the pairwise intersection numbers of these classes are readily
given: we clearly have

(A-Y)=1
Y2 =0
(A-Jop) =0 Vb
(Y-Jop) =0 Vb
(Jz,b : J27(,/) =0 Vb 75 b'; and
(Jop - Jop) = =1 Vb
In fact, there is only one intersection number that is not evidéfitTo compute
it we choose a base poigt # ¢, so thatqy’ determines a second sectiah of
Y — B disjoint from A. Since the base poinjs, ..., p3s—> of our family are
general points in the plane, by symmetry we ha®e= A2; hence we can write
247 = (A— A2
To compute the right-hand side, let
Sy = {b € By such thatjl € W(Jzyb)}

be the collection of points il over which the sectiond and A’ meet different
components of the fiber; let; = |.S ;| be the cardinality of ;. Foreveryb ¢ Sy, A
and A’ have the same intersection number with each component of theYfjber
Forb € Sy, on the other hand, we havd - J;;,) = 1 and(A - J;) = 0, while
(A" Jip) =0and(A’ - Jop) = 1. It follows that the classes

A and A - Y Jyy
besSy

comp4059.tex; 8/07/1998; 12:09; v.7; p.9

https://doi.org/10.1023/A:1000446404010 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000446404010

218 LUCIA CAPORASO AND JOE HARRIS

have the same intersection number with every component of every fiperoiB,
and so must differ by a multiple of the cla®sof a fiber: that is ,

A—A =— Z Jop +nY
beSy

for some integern. In fact, » must be equal ta;/2 by symmetry, but that is
irrelevant in any case: squaring both sides, we find that

(A-A?=> J,=-ny
beS

and hence

2 nJy
A% = >
Thus, it remains only to determine the numbegrof reducible fibers oy — B
lying over curves in our original family in which the poinfsandq’ lie in different
components. We can do this in exactly the same way as we determined the total
number of reducible fibers: the only difference is that now we want to count only
decompositionsp = ®; U &, in whichq = p; € &1 andq = p, € $,. We

thus replace the binomial coefﬁcieétiﬁ%if_i) in the formula forj (D1, D>)
ro(D) —3

above with
vew (To(Dl) -1

obtain

> and sum over all pair®,, D, with D1 + D, = D to

_ . ro(D) — 3
ny = DH%:D N(D1)N(D2)(Dy - Dy) (To( Dy) — 1) :

This completes the third step of the process.
Now let I € Pic(P?) be any line bundle on the plane, and write the class of its
pullback to) as a general linear combination of our chosen generators

7*L = c A+ CyY + Z chZ,b-
beB;y

We will denote byJ” the third term on the right, that is, we set

L . .
JY = Z ijz,b,
beBy

this is not immediately useful, but will become so in the succeeding calculations.
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We now intersect both sides of the above equivalence with each of our chosen

generators of N§’) to determine the coefficients, ¢, andc,. First, by intersecting
both sides withy” we find that

¢g=(rm"L-Y)=(L-m.Y)=(L-D).
Next we intersect withd: we have
(m*L-A)=(L-mA) =0
sincer is constant on the curvé; and hence

¢y = —A*L-D) = ”—Z‘I(L-D).

Finally, to determine;, we naturally intersect both sides with the classgf; we
find that

ey = —(m*L-Jop) = —(L - miJop) = —(L - D).
Thus, in sum,

L= (L-D)A+ n—z"(L D) — 3 (L- Da)Jyy,
beB;

For the final step in the process, we evaluate the self- intersectioh/ofwe

find
(r*L)? = SHL-DP = 3 (L- Da)?
beB;y
_ ) ‘ ro(D) —3 > 2
D1+2D:2=D 3N (D1)N(D2) (D1 - Do) (ro(Dl) _1 (L- D)
ro(D) — 2 )
— N(D1)N(D3)(D1 - D2) (To(Dl) B 1> (L - Dy)

Applying this in casel. = Op2 (1) and recalling thatr*052(1))? = N(d), we
have

d2drd, [ 3d—4 3d -3
N(d)= 3 N(d)N(dp) [ 5 ( — did3 :
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and expanding ouf? = (dy + d2)? and using the symmetry with respect#pand
d» we get the well known recursive formula of Kontsevich

3d—4 [ 3d—4
Z N (d1)N(dp) |d2d3 — dad3 .

Remarkln parts (A) and (B) of the statement of results quoted from [H] and
[DH], we describe completely all curves, in the familyx — I" having other than
0 nodes, and the local geometry gf — I'” along each. This is in fact necessary
to describe the Bron—Severi group @Y, since even in those cases where a fiber is
irreducible it is a priori possible that” will be singular along such a fiber, giving
rise to a reducible fiber @ — B. Looking back over the preceding calculation,
though, we see that even if this did happen, it would not affect the outcome of the
calculation, as long as the non-nodal singularities did not occur at base points of
the family: while the resolution of the singularities pf would create additional
curves on) independent in N§/), the sectionsA and A’ and any line bundle
pulled back viar from P2, would all have degree 0 on these curves, and so the
relations of linear equivalence above would still hold.

Thus it was only necessary to observe that every curve singular at a base point
is an irreducible curve witld nodes. Since this statement will also hold for the
families of curves orfr,, that we will be considering in the following two sections,
we will in the sequel omit the description of the fibgrs— I" other than reducible
ones.

As another application, we give a formula for the numbéid) of plane,
irreducible, rational curve C P? of degreed passing through 38— 2 given
general points and tangent to a given general fine the plane. Equivalently,
this is the degree of the subvaridty(D) of V(D) defined as the closure of the
locus of irreducible rational curves that are tangertitoP? at a smooth point of
[X] (notice thatV>(D) has codimension 1 i (D)). To calculate this number, let
L = m~1(¢) c Y be the preimage of underr. ThenL is an irreducible smooth
curve, and the morphisrfi: Y — B restricts to a finite morphlsrﬁ L — Bof
degreel on L. Moreover, the set of fibefs, c ) of f tangent tol. — that is, such
that the intersectiol, N L has cardinality strictly less thah— corresponds to the
set of curvesX, in our original familyx — I' tangent to. Thus,N2(D) is equal
to the degree of the ramification divisor of the morphigm

Now, using the adjunction formula, this degree is given by

Na(d) = (7" 0p2(1))? + (wy/p - 7 O52(1)),

wherewy, /g is the relative dualizing sheaf of the family. Since we have already
calculated the class af*O,2(1) above, it remains only to determine the class of
wy, p in similar terms, and then we will be able to evaluate this expression. We
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do this as forr*Op2(1): we first expressvy, p as a linear combination of the
generators:

wy/p = e A + eyY + Z ebJZ,b
beBy

and then intersect both sides with the generators N $o determine the coef-
ficients. First, intersecting with’, we find that

€q — (u)y/B . Y) =-2
and then intersecting with and using the fact théty /5 - A) = — A2 we find that
ey = A2,

Finally, we havewy s - J25) = —1,Vb € B,, and it follows that the coefficients
ep are all 1. Thus, in sum,

wyp=-24+AY + > Jp.
beBy

We finally obtain a formula first found by Pandharipande [P]:

3d—4
Na(d) = N(d)+ > N(d1)N(dp)drd5 ( >
dytda—d 3d1— 3

= Y N(d1)N(dp)drdy [dldz <3d_ ¢ )

(i)
27 % a3 )|

This technique can also be used to recover another formula of Pandharipande,
for the degree of the closure of the locus of irreducible rational curves of dégree
having a cusp. To obtain this, we simply apply Porteous’ formula to the differential

d(f x ) : Ty = (f x )" Tgyp2

ofthe mapf xn : Y — B x P2: the classes oy involved have already been
calculated. It should also be possible to determine is similar fashion the degrees on
I of all the divisor classes introduced in [DH], and in particular obtain formulas
for the number of irreducible rational curves through-32 points and having a
tacnode, or the number of irreducible rational curves through 2 points and
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having a triple point, etc. At this point, however, we conclude our study of the plane
and turn to the Hirzebruch surfaces.

4. The general recursion forF,

LetnowS = F»,. Let C, E and F' be the curves of, described in Section 1. We
apply our method exactly as before: for any effective divisor classn S with
V(D) # 0, we chooseo(D) — 1 general pointgy, . . . , p,o(py-—1 0f S and consider
the family y — T of curvesX € V(D) passing through the poinig; we let
x¥ — I'V and) — B be derived from this family as in the general set-up.

We first describe the various types of reducible fibers that our fayhity B
has. The following analysis is based on Propositions 2.1, 2.5, 2.6 and 2.7 of [CH].
In particular, the various types of degenerations can be classified as an application
of Proposition 2.5, and the singularities bfat the pointsy € T' corresponding
to each as an application of Proposition 2.6. Moreover, Proposition 2.7 assures us
that, just as in the case Bf, the normalizatiory” is smooth and so the total space
Y coincides withy”. In particular, we see that no irreducible component of any
fiber of Y is mapped to a point by.

With that said, we have the following calssification of irreducible fibers of
Y — B:

TypeJd. Fibers having two smooth irreducible componeftand.J,, meeting
transversally at one point, such thdt/;) = D; with D; > 0 and not equal to
E. We will always assume thate .J;. For any decompositioP = D1 + D,
we have that the numbe(D1, D;) of fibers of typel such thatr(J;) = D; is

ro(D) — 2 )

§(D1, D2) = N(D1)N(D2)(D1 - D2) (ro(Dl) 1

The factor(D; - D,) appears because, just as in the case?ff [X] € T
corresponds to a curve of tygein the normalization map: B — I the fiber
over[X] contains exactlyD; - D) points (here we are using Proposition 2.6
of [CH]).

We let By be the subset of points in B whose fiberX, is a curve of
typed.

TypeG. Fibers having two smooth irreducible componefisandG i, meet-
ing transversally at one point, such thatGr) = E andrn(G1) is simply
tangent toF. Clearlyq € G;. The total number of such fibers will not matter
in the subsequent calculation.

We let B be the subset of pointsin B whose fiberX, is a curve of
typeG.
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Type H. Fibers having three irreducible componests, H», Hg, such that
n(Hg) = Eandn(H;) = D;, with D; > 0andD;+ D, = D — E (again, we
will choose the labelling so thate H; always). By Proposition 2.6 of [CH],
if [X] € T'is a point corresponding to this type of curve, then the fibeB of
overI’ contains exactlyf D - E)(D5 - E) points. Hence the total number of
fibers of typeH that correspond to a given decomposition= Dy, + D, + E

is

ro(D) — 2
hD1,D) = Y N(Dl)N(Dz)(Dl-E)(Dz-E)< olD) >
D1+ Da=D ro(D1) — 1

And just like for the other types, we defiigy; to be the subset of points &f
parametrizing curves of typd.

The picture ofy — B thus looks like this:

G J H

SRR

Y GE
Hg
Y
‘ Hy £

A

_—_ .

Figure 3.
Now we choose the following set of generators for tlegdh—Severi group @
{AYYU{Top e, U{GEptoeBs U{H2p, HEploeny, -
The following relations are obvious

GJZE‘,b = J22,b = H%,b =-1 HJZE‘,b =-2
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and the intersection number dfwith any generator other thatrandY” is zero.
We computed? by the same argument as used in the preceding section. We
define

Sy = {b € By suchthay' € Hy}

and we letvr = |S;|. Then we have

ng= Y N(Dl)N(Dz)(Dl-E)(Dz-E)<
D1+Dy=D—E

ro(D) — 3 >
ro(D1) — 1
Similarly, we letS; andn; to be defined exactly as in the preceding section, and

notice that the value af; is expressed by the same formula that we had in the
plane. We obtain

A—A =— Z Jop — Z (HE,b +2H2,b) +nY
beS;y beSH
for some integen. Hence
_ng+ 2nm
—

Let now L € Pic(F,). We want to compute the coefficientsfL as a linear
combination of the chosen generators of(Dlg The number of generators being
quite large, it is now convenient to use the following notatior#¥ifis any of the
chosen generators, we shall denotd byL }yy the coefficient ofr* L with respect
to W. We shall then write

L = {n*L}aA+ {n*L}yY + GF + JL + HE
whereJ! is defined just as in the preceeding section, and similarly
GL = Z{’K*L}GE,bGE,b and

HY = Z({W*L}Hz,szyb + {T(*L}HE,bHE:b)'

We could now easily compute all the missing numbers in term of intersection
numbers off,; only we don’t really need it. All we need is the expressiondft€’;

in fact we shall obtain a formula fav (D) by using the fact thair*C)? = 2N (D).

The following numbers are obtained in a straightforward way, just as in the case of
P2,

A% =

{n*C}s = (C- D) =a.

2
{r*C}y = —(C - D)A% = M_
{m*C}q, = 0 for any generator of typ& .

{W*C}Jz,b =—(C- 7r(JZJ)))'
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And for any curveH = H; + H, + Hp of typeH such thatr(H;) = D; we have
{m*C}y, = —(C-Dy) and {r*C}y, = —2(C - D3).
In conclusion, we get the same recursive formula that we obtained in [CH]:

THEOREM. For any effective divisoD # E onF, with V(D) # 0,

N(D) =1 S N(DYN(D)(D1 Do)
D1+Dy=D
ro(D) —3 ro(D) — 3 ,
(To(Dl) - 1) (P Oz C) = (To(Dl) - 2> (D2:€) l
+ Y. N(D1)N(D2)(D1i-E)(D2-E)
D1+Dy,=D—E
ro(D) — 3 ro(D) — 3 ,
[(m(m i 1) (D1-C)(Da-C) — (TO(DQ _2> (Ds-C) ] |

5. The general recursion forFs;

LetnowsS = IF3 and letC, E andF be asin 1.2. LeD be an effective divisor class
D on S with V(D) # (. We also introduce in this case two additional subvarieties
of the linear serie$D|: the subvariety>(D) of V(D) defined to be the closure
of the locus of irreducible rational curve$ tangent toF at a smooth poinf;
and the closuré’( D) of the subvariety o¥/ (D) parametrizing irreducible curves
having a smooth point of intersection multiplicity 3 wih Their degrees will be
denoted byV, (D) andN3(D) respectively.

Now we proceed as before: we choes€D) —1 general pointgs, . . . , pry(p)—1
of S and consider the family — IT" of curvesX € V(D) passing through the
pointsp;; we letxy” — I'” and) — B be derived from this family as in the general
set-up. Our method will again provide us with a recursive formula for the degree
of V(D), but there will be now an important difference: the recursion will involve
as well the degreed/>(D) and N3(D) of the varietiesV>(D) and F'(D). More
precisely, we are going to obtain three formulas:

(a) A formula expressing/ (D) in terms of N (D') andN,(D"), whereD' < D
andD" < D — E;

(b) Aformula expressingV,(D) interms ofN (D), N(D'), No(D") andN3(D —
E),whereD' < D andD” < D — E; and

(c) A formula expressingVz(D — E) in terms of N(D') and N»(D"), where
D'<DandD" < D-E.
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We now describe the various reducible fiberg)of— B. Again we use the
results of [CH], in particular, Propositions 2.5 and 2.7 for the geometry of the
normalization mapB — T and of the total spacg”. By 2.7 we have thag”
is smooth at points lying on fibers corresponding to typgs andH below; in
other words, no irreducible component of a fiber belonging to one of these types is
mapped to a point dfs.

Type J. (This is the exact analog of the tygefor F,.) Fibers having two
smooth irreducible componenfs and.J,, meeting transversally at one point,
such thatr(.J;) = D; with D; > 0 and not equal t&. We will always assume
thatq € J1. For any decompositio® = D; + D, we have that the number
j(D1, D7) of fibers of typel such thatr(J;) = D; is

ro(D) — 2 )

3(D1, D2) = N(D1)N(D2)(D1 - D2) (ro(Dl) _1

We have the coefficiefD; - D,) because, just as in the casePéfif [X] € T
corresponds to a curve of tyde in the normalization map : B — I the
fiber over[ X| contains exactlyD; - D7) points.

We let B; be the subset of points in B whose fiberX, is a curve of
typed.

TypeG. Fibers having two smooth irreducible componesisandG i, meet-
ing transversally at one point, such thd(7 ) = F and=(G1) has a smooth
point of contract of order 3 witl. Clearlyq € G1. The total number of such
fibersisN3(D).

We let B be the subset of pointsin B whose fiberX, is a curve of type
G.

TypeK. Fibers having four irreducible componets, K, Ko and K, form-
ing a chain in the given order, thati§y N Kp = KoN Ky = KgN Ky, =1
so thatK? = K3 = -1 andK% = KZ = —2. As usual, we have that
q € 7w(K1). Moreover,r(Kg) = E andrn (K1) is tangent toF; =(Kp) is a
point of E (namely, the poin N 7(K>)), in fact the exceptional curvi&y
arises from the fact that the surfagg is singular at the point corresponding
to E N 7(K>) (cf. Proposition 2.7 in [CH]). LeB be the subset aB whose
corresponding fiber is a curve of type Finally, for any given decomposition
D = E + D; + D, we have that the numbén( D1, D) of corresponding
fibers of typeK is given by

ro(D) — 2
k(D1, D2) = N2(D1)N(D2)(E - D2) ( > :

ro(D1) — 2
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K'. These are just like the fibers of tyje with the only difference that the
point ¢ belongs to the curve that is not tangentHo that is, we have now
7(K>) tangent toE. We denote the irreducible components of such a fiber
K}, K}, K}, andK3, forming a chain in the given order, so that

(K1 Kb) = (Ky-Ki) = (K- Ky) =1
and
(K2 = (Kp)2=—1 and (K})%= (Kb)?2=—-2.

Moreover,n(K};) = E andn(Kjp) is a point of E (namely, the poinf N
n(K1)). We define as usudx to be the subset a8 whose corresponding
fiber is a curve of typ&'. Finally we see that the numbgfi( D1, D>) of such
fibers is

. ro(D) — 2
k'(D1,D2) = N(D1)N2(D2)(D1 - E) ( ) :

’f'o(Dl) -1

TypeH. Fibers having four irreducible componetfs, H,, Hz andHg, such
that7(Hg) = E andn(H;) = D;, with D; > 0 andD1 + D, + D3 =
D — E. In Proposition 2.6 of [CH] we proved that jX] € T is a point
corresponding to this type of curve, then the fibeBadverI' contains exactly
(D1 - E)(D,- E)(D3 - E) points. Hence the total number of fibers of tyge
that correspond to a given decompositibn= D, + D, + D3 + E is given

by
h(D1, D2, D3)
= N(D1)N(D2)N(Ds3)(D1 - E)(D2- E)(D3 - E)

( ro(D) — 2 >
ro(D1) — 2,10(D2) )

And, as usual, we definBg to be the subset of points &f corresponding to
curves of typeH.

Here is a picture displaying the various types of reducible fibers in our family:
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Figure 4.

Now we choose the following set of generators for tledh—Severi group qp:
{AYYU{optben, U{GEp beBe YU {K2p, KE b KoptoenU
U{K2, Kz, Ko boe By U{Hzp, Hap, Hg b }be By -
The following relations are obvious:
GZE,b = J22,b = K22,b = (Ké,b)z = Kf,b = H22,b =-1
K%,b = Kg,b = (KIE,b)z = (Ké,b)z = -2
Hg,=-3

and the intersection number dfwith any generator other thathandY is zero.
It will also be convenient to have a symbol denoting the class i(QN®f all
generators of the same type. Therefore we introduce the classes

Ge =Y Ggy, T2:= > Jop,

bEBG bEBJ
Kg:= Y Kgy, Ko:= Y Koy, Kz2:= Y K,
beBk beBk beBK
. / ! . ! . 1
’CE T Z KE,ba ’CO T Z KO,ba ’CZ T Z KZ,ba
be By, be By, be B,
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and

Hp =Y Hgy, Hz:= Y Hay, Hoi= > Hyy.

bEBH bEBH bEBH

We now use this notation immediately to write the class of the relative dualizing
sheatwy, g of the family f: Y — B. We have

wyp = =24+ A%Y +Gp + T2+ Kg + 2Ko + 3K>
+K§ + 2K + 3K, + He + 2hz + 2hs.

Now we computed?. Letq’ be a basic point different from theng’ determines
a sectionA’ such thatfA - A’) = 0. As before, we get2? = (A — A’)? and we
can compute the right-hand side by expressing the differéneeA’ as a linear
combination of components of fibers. So,hgtbe the number of fibers of typk
such that/ lies on a different component thanWe have

B ro(D) — 3
ny = DH%:D N(D1)N(D,)(D1 - Dy) (ro(Dl) - 1> .

Now let ng be the number of fibers of tyge such thaty' lies on a different
component thap; we have

ng= y  NaD1)N(Dp)(E-Dy) (
D1+ Dy=D—E

ro(D) — 3 )
ro(D1) —2)

We definen - analogously, and obtain

ngr= Y.  N(D1)Nz(D2)(D1-E) (
D1+Dy=D—-E

ro(D) — 3 > _
ro(D2) —2)"

and similarlyn -, for which we have

ng = > N(D1)N(D2)N(D3)(D1 - E)(Dz - E)(D3 - E)
Dy4 Dot Ds=D—E

(ro(D) -3 >
ro(D1) — 1,ro(D2) — 1
(where we will denote b;(Z b) the multinomialn! /a!d! (n — a — b)!).

Let S; be the subset oB consisting of those pointls such thaty; is a fiber
of type J for which ¢ andq’ lie on different components. Obvious$y; contains
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ny points. Ifb € Sy we write Y}, = Jy, + Jo;, (henceg € Ji, andg’ € Jop).
In a completely analogous fashion we defitig, Sx» and Sy. If b € Sk then
we writeY, = K1y, + Kg + Koy + K2, and similarly ifb is in Sk or Sir. We
therefore have that if € S (respectivelyp € Si andb € Sy), theng' lies on
K3, (respectively ok , and Hp ;). Now we have

A —A = Z Jip + Z (B3K1p + 2K+ Kop)
beSy beSK

+ ) (BKi,+2Kg,+ Kiy) + Y (Hip — Hap) +nY.
bESK/ beSy

wheren is some integer that is irrelevant for our computation. Finally we obtain

—nJ—ZnH—GnK
2 .

A% =
Now, for anyL € Pic(Fsz), we have
{m"L}a = (L- D),
{r*L}y = —(L - D)A?
and
{W*L}GEJ; = _(L : E)
for any b in Bg. These are obtained, in the given order, from the products
(n*L-Y)=(L-D),(n*L-A)=0and(r*L-Ggyp) = (L - E)
Let us fix a fiber of type) which we write as/y , + J, as usual; leD; be the
class inFs of 7(.J2,). From the productr*L - J, ) = (L - D2) we see that
{W*L}Jz,b = _(L : DZ)'

Fix now a fiber of typeK, which we shall write ag(y , + K + Ko + Kop,
such that the image ifs has corresponding divisor classesfor K1, andD; for
K3y. Therelationn*L - K1) = (L - D1) implies

{m*L}kp, = (L-D1) — (L D);

the above formula together with* L - Kr ;) = (L - E) gives
{m*L}k,, = 2(L-D1) — 2(L- D) + (L - E);

and the two previous formulas combined witt' L - Ky) = O gives

{W*L}Kz,b = 3(L . Dl) — 3(L . D) + 2(L . E)
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With completely analogous notation and procedure, for a fixed fiber ofkype
we have

{r*L}xy, = (L- D)~ (L-D),
{n*L}x, , = 2(L-Dy) ~2(L- D),
{r"L}xy, = 3(L- D1) = 3(L- D) + (L - E).

Finally, fix a fiber of typeH such that the class iR; corresponding td7; ; is D;;
again the same procedure yields

{r*L}n,, = (L-D1) —(L- D),

{n*L}m,, = (L-D1) — (L-D)— (L- D3)
and

{m*L}m,, = (L-D1) = (L- D) = (L Dy).

We shall also use the following short notation:

7L = (L-D)A+ (L- D) (‘”J_”H_‘S”K) Y

2
—(L-E)Gg +J* + K* + K'" + H" (*)

Now we want to compute the intersection producpoaf the pull-back of two
line bundles, andM onF3. We easily have

(7*L-7*M) = —(L-D)(M - D)A®> — (L - E)(M - E)f(D — E)
+(JL-JM)+(KL-KM)—i—(K’L-K,M)—i-(HL-HM).

And now a completely straightforward computation yields

(JF-JMy == > j(D1,Dy)(L- D2)(M - Dy),
Dy+Dp=D
(K" -K") =— > k(D1,D2)((L-E)((M-Dy1) — (M- D)) +
D1+D,=D—E

—(L - D2)(3(M - D2) + (M - E))),
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(KT K™) = — Y K(D1,Do)((L- E)(2(M - Dy) —2(M - D)) +
D1+D,=D—E

—(L-D2)(3(M - D2) +2(M - E)))

(HY . gM) = 2 > h(D1, D, D3)
D1+ Do+ D3=D-E

X(—(L-D)(M - D)+ ((L-D)(M - D)
+(L - D1)(M - D) — (L - D1)(M - D1)
—(L - D2)(M - D) — (L - D3)(M - Dg)).

In the last formula, we divide by 2 becauBe and D3 are not distinguished
from one another.

Now we are ready to write down the three formulas that we mentioned at the
beginning of this chapter. Before we carry out the computation, we can explain
briefly the procedure. We have to look at the relatieih and keep track of the
Severi degrees on which the characteristic numbers depend.

(a) The first relation we shall use is
(r*C - 7*C) = 3N(D).
This will give a formula expressing
N(D) intermsof N(D') and N(D") with
D'<D and D"<D-E.

This is clear; sincéC - E) = 0ifwe apply(LM) to L = M = Og(C) the Severi
degreeN3(D — E) disappears.

(b) Now we need a formula faw, (D). We will imitate what we did to compute
the degree of the variety of rational curves tangent to a fixed line in the plane. We
defineF to be the class of the irreducible componentof (E) that dominates3.
Then we have

E=m*E —3Gp —2Kp — Ko — 2Ky — Ky — Hp.

This is obtained as follows: for the coefficient®f we notice that for any € Bg
we have(E - Ggp) = 0, while on the other hant*E - Gg ) = —3. The same
procedure yields the remaining terms.

Ny(D) = E* + (E - wy,p).
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This will give a recursion expressing
Np(D) intermsof N(D),N(D'),N3(D — E), and N(D") with
D'<D and D"<D-E.

(c) The third and last step will be to find a formula f¥g(D — E). This will
be done by using

(r*F-7*F) =0

which, as one can imply using), will give
N3(D — E) intermsof N(D') and Ny(D") with
D'<D and D"<D-E.

Example.If D = 2C we have on one hand that*C' - 7*C) = 3N (2C), and
on the other hand our formulas give

(7*C - 7*C) = 3[—124%2 — 3j(C, C) — k(C + 2F, F) — 25k'(F,C + 2F)
—14h(F,F,C + F) — 2h(C + F, F, F)].
Here are the relevant numbers for the cAse 2C.
j(C,C) =105 k(C + 2F,F) = 14, K'(F,C + 2F) = 2,
h(F,F,C+ F) =1, h(C+ F,F,F) =21, ny = 60,

TLK:TLKIZZ, nH:13,
so that
A% =49

and we can conclude that(2C) = 69.
We will now state our main result fd#s:

THEOREM. Let D € Pic(F3). Let N(D) be the number of irreducible rational
curves in|D| that pass througho(D) general points. Then

ND) =X S N(DYN(Dy)(D:-Dy)
D1+Dy=D
ro(D) —3 ro(D) — 3 ,
' Kro(Dn - 1) (P D2 ) = (To(Dl) - 2) (P2:€) ]
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+ ). No(D1))N(D2)(E- Dy)

Dy1+D,=D—E
ro(D) —3 ro(D) —3 2
(TO(Dl) - 2) (Pr P2 C) = (TO(Dl) - 3) bz ]
+ > N(D1)N2(D2)(E- Dy)
Dy1+D,=D—E
ro(D) — 3 ro(D) —3 2
<7"o(D1) - 1> (D1 O)(D2:€) = (To(Dl) - 2) (P2-€) ]
. 3 N(D1)N(D2)N(D3)(E - D1)(E - D2)(E - Ds) -

Dy+Dy+ Ds=D—E
‘ [(TO(D) -3 )
ro(D1) — 1,70(D3) — 1
x [2(C - D1)(C - D2) + (C'- D1)(C - Ds)
+(C - D2)(C - D3) — (C - D3)?]

B <7"0(D) -3 >
ro(D1) — 2,r0(D2)
X [(C - D)%+ (C - D3)? 4 (C - D3)(C - D3)]|.

Proof. We just have to compute. Applyirng) to 7*C' gives

(1*C)? = —(C-D)?A*— Y j(D1,D2)(C - Dy)?
D1+Dy=D

— > 3k(D1, D3)(C - D3)?
D1+ Dy=D—-FE

— > 3k'(Dy1, D2)(C - Dy)?
D1+ Dy=D—-FE

- > h(D1, D2, D3)[(C - D2)?
D1+Dy+D3=D—F

+(C - D3)*+ (C - D2)(C - Ds)].
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This gives
N(D) =1 S N(DYN(D)(D1 D)
D1+Dy=D

ro(D) —3 ro(D) — 3 )
(ro(Dl) B 1> (D1-C)(D2-C) — (ro(Dl) _2> (D7 - C) ]

+ ). No(D1))N(Dy)(E - Dy)

- [2 (”’ED) _32> (D1 C)(Dy - ©)

ro(D) — 3 ) ro(D) —3 )
_< 1>(D1‘C) _<T0(D1)—3>(D2‘O)]

41 3 N(D1)N(D2)N(D3)(E - D1)(E - D2)(E - D3)
D1+Dy+D3=D-E
‘ [(C D)2 ( ro(D) — 3 )
ro(D1) =1, r1o(D2) —1

—((C - D2)?+ (C - D3)* + (C - D,)(C - D3))

( ro(D) — 2 )]
ro(D1) =1, ro(D2) )|

And this concludes the proof.
We will write as well the formulas for the degrees of the other loci that we need.
The first formula is obtained by

Ny(D) = E* + (E - wyp),
which gives

N2(D) = —3N(D) 4+ 9N3(D — E) + (E - D)A?

+ Y (D1, D2)(E- Dy)

Dy+Do=D
+ > 6(k(D1,Dp) + k'(D1,Dp))

D1+ Dy=D—FE
+ > h(D1, D>, D3)[2(E - Dp) + 2(E - D3) — 1].

D1+ Do+ D3=D-FE
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Finally, the degree of the Severivariety parametrizing rational curves having a point
of contact of order at least 3 withi is obtained byr* F? = 0, which translates into

N3(D — E) = —(F - D)?A?

— > (D1, D) (F - Dp)?
D1+Dy=D

o Z k(DlaDZ)[1+2(FD2) —{—3(FD2)2]
D1+D,=D—-E

— Y K(Dy,Dy)2+4(F - Dy) + 3(F - Dy)?
D1+Dy,=D—E

- Z h(Dla DZ, D3)
D1+ Dy+D3=D—FE

x[(F - D)2 — 2(F - D)(F - Dy) + (F - D1)?
+(F - D2)? 4 (F - D3)?].
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