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MEASURE OF WEAK NONCOMPACTNESS
AND REAL INTERPOLATION OF OPERATORS

ANDRZEJ KRYCZKA, STANISLAW PRUS AND MARIUSZ SZCZEPANIK

A new measure of weak noncompactness is introduced. A logarithmic convexity-type
result on the behaviour of this measure applied to bounded linear operators under
real interpolation is proved. In particular, it gives a new proof of the theorem showing
that if at least one of the operators T : Ai —» Bi, i = 0,1 is weakly compact, then so
is T : Ag<p -> Be,p for all 0 < 6 < 1 and 1 < p < oo.

1. INTRODUCTION

In 1960, Krasnoselskii [20] proved that under the hypotheses of the Riesz-Thorin
interpolation theorem (that is, if T is a linear operator such that T : LPi —> Lqi is
bounded for i = 0,1 where p,-,^ € [l,oo]) and the additional assumption that T :
Lpo -» Lqo is compact and q0 < oo, it follows that T : Lp -¥ Lq is also compact. Here
1/p = (l - 6)/p0 + 9/pi, l/q = (1 - e)/q0 + 6/qi and 0 < 6 < 1.

This has initiated a series of theorems which refer to the question whether in the
above theorem the pairs (LP0,LPl), (Lqo,Lqi) and the spaces Lp, Lq can be replaced by
pairs of Banach spaces (Aa,A\), (B0,Bi) and real interpolation spaces AgtP, BgtP. More
generally, we can ask if T, viewed as a map from A$tP to B6yP, inherits any compactness
properties which it may possess as an element of L(A{, Bi).

Since the works of Lions and Peetre [21], several authors have obtained results of
different degrees of generality. Finally, Cwikel [15] showed that if T : Ao -> Bo is compact
and T : Ax -* Bx is bounded, then T : A6iP -»• B6<p is also compact for all 0 < 6 < 1
and 1 < p < oo. The similar problem for weak compactness properties of T was studied
as well. Here a key result is due to Beauzamy [8], who proved that if the embedding
/ : Ao n Ai -> Ao + Ai is weakly compact, then so is / : AgtP -» Ae,p. Next, Heinrich [18]
extended this result to closed operator ideals. Other generalisations of Beauzamy's result
are due to Aizenstein and Brudnyi (see the book [9]), and to Maligranda and Quevedo
[22] (see also Mastylo [23]) who established the following: i f O < 0 < l , l < p < o o and
T : Ao n Ax -> Bo + B\ is weakly compact, then so is T : AgtP -¥ Be>p. In particular, this
is the case if T : Ao —> Bo or T : A\ -» Bi is weakly compact.
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The Riesz-Thorin theorem gives also a logarithmically convex estimate for the norms
of an interpolated operator. This motivated some authors to find quantitative versions
of the above-mentioned results on compact and weakly compact operators. The main
tools in such investigations are measures of noncompactness and weak noncompactness.
Measures of noncompactness appear in various contexts, so it is convenient to define
many different measures (see [1]). Here let us mention only the Hausdorff and separation
measures. In contrast, very few measures of weak noncompactness can be found in the
literature. Most authors use the measure of weak noncompactness w introduced by De
Blasi [16], which can be seen as a counterpart of the Hausdorff measure of noncompact-
ness. De Blasi's measure was successfully applied to operator theory and to the theory of
differential and integral equations (see [5] and the references given there). The measure
UJ was also used by Aksoy and Maligranda [3] in order to obtain a quantitative version
of the theorem on real interpolation of weakly compact operators. (Similar results for
the Hausdorff measure of noncompactness were earlier proved in [27].) Recently the
thorough study of this kind of estimates for operators under real interpolation was un-
dertaken by Cobos, Fernandez-Martinez, Manzano and Martinez in the series of papers
[10, 11 , 12, 13, 14]. In particular, some essential restrictions on interpolation of De
Blasi's measure are indicated (see [12, 14]).

In this paper we introduce a new measure of weak noncompactness 7, which can
be treated as a counterpart of the separation measure of noncompactness. Its definition
bases on an idea due to James [19]. In the general case, the measures w and 7 are not
equivalent. The measure 7 appeals directly to the norm topology, while in the definition
of to the weak topology is involved. This seems to determine a more geometric character
of 7. However, 7 can be expressed by various formulae. In particular, we show that
7 coincides with the function based on the double-limit criterion of weak compactness,
which was considered by Astala and Tylli in [4]. Our main result shows that Riesz-Thorin
type estimates hold for the measure 7 without any additional restrictions.

Throughout this paper, by a Banach space we mean a real one. However, the results
presented here can be easily restated and proved for complex Banach spaces. We denote
the open unit ball of a Banach space X by Bx and its closure by B*. Furthermore, conv A
stands for the convex hull of a set A C X and the closure of conv A will be denoted by
Conv A. For simplicity of notation we use the same letter to designate an element of a
Banach space X and its canonical image in the second dual X". The abbreviations with
the beginning w* refer to the weak-star topology.

2. MEASURES OF WEAK NONCOMPACTNESS

2.1. MEASURE 7 Let (xn) be a sequence in a Banach space X. We say that (yn) is a
sequence of successive convex combinations, or sec, for (xn) if there exists a sequence of
integers 0 = pi < p2 < P3 < .. • such that yn E conv(xi)f:2^+1 for every n. Similarly,
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vectors Uj, U2 are said to be a pair of sec for (xn) if uj € conv(xi)^=l, U2 € conv(xj)^.p+1for
some p € N.

The following theorem, motivated by [25], will play a significant role in the sequel.

THEOREM 2 . 1 . Let (xn) be a bounded sequence in a Banach space X. For every
e > 0 there exists a sequence (yn) of sec for (xn) such that ifu\,U2 and V\,V2 are any
pairs of sec for (yn), then \\\ui — u2\\ - \\vi - v2\\\ ^ e.

oo

PROOF: Let An = Conv(xi)?ln for n e N. Assume first that f] An ^ 0. Then we
n=l

can find a convergent sequence of sec for (xn) and, by ignoring a finite number of terms
oo

if necessary, we get a sequence as required. Suppose now that |~) An = 0. Reasoning
n=l

similar to that in the proof of the corollary of Theorem 2 [25] (see also [26]) gives a
constant d > 0 such that for any e > 0 there exists (yn) of sec for (xn) such that
d — e ^ ||ui — U2II ^ d for any pair u\, U2 of sec for ($/„)• Clearly, (yn) fulfills the assertion
of the theorem. D

Now, following [6], we introduce an axiomatic approach to the notion of a measure
of weak noncompactness. Let \x be a real-valued function defined on the family of all
bounded and nonempty subsets of a Banach space X. We call /x a measure of weak
noncompactness on X, if the following conditions are satisfied for any subsets A, B and
c £ l :

(1) n{A) = 0 if and only if A is a relatively weakly compact set;

(2) ifAcB, then fi{A) ̂  n(B);

(3) n(Conv A) = fi(A);

(4)

(5)

(6)
DEFINITION 2.2: We introduce the function 7 defined for every nonempty and

bounded set A C X by the formula

7(A) = sup{csep(in) : (xn) C conv A},

where

csep(zn) = infills ~ 2/211 :2/1,2/2 is a pair of sec for (zn)}.

THEOREM 2 . 3 . 7 is a measure of weak noncompactness on X.

PROOF: Conditions (2), (3) and (6) are easy to check. Implications in (1) for 7 are
consequences of the James theorem [19] and Mazur theorem [24] respectively.

To prove (5), let us take bounded A,B C X and a sequence (xn) C conv(A + B). For

every n 6 N there exist nonnegative A",... , AJĴ , where 5Z A" = 1, and elements u" 6 A,
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v? e B, 1 i* i ^ mn such that xn = E K(ui + vi)- L e t Vn = E •*"""> 2n = E <*"«"
t=i «=i i=i

and fix e > 0. By Theorem 2.1 there exists a sequence (y'n) of sec for (yn) such that

|||t«i — W2W — \\w[ — w'2\\\ $J £ for any pairs Wi, W2 and Wj,w2 of sec for ( J4 ) . Each term

in (j/JJ takes the form y'k — E /*?l/i> where //* are nonnegative and E M? = 1- Set
nt+i t=nt + l i=nk + l

z'k = E A4?2*- By aPPlymg again Theorem 2.1 we get a sequence (zJJ) of sec for (2 ,̂)
t=nt + l

such that |||wi — u2|| — \\z" — 4'll| ^ £ for any pair Di ,^ of sec for (2^'). For such obtained
(z%) we can construct a sequence (j/^) of sec for (y'n) in the similar way as we constructed
(z'n) for a given (i/J,). Then

||2/i' - j/̂ 'll ^ csep(^) + e and | K - z»||

Note that x" = j / ' / + z", x'2 = y% + z% form a pair of sec for (a;n) and therefore

csep(xn) ^ \\x'( - xi'|| < ||2/1' - î H + Hzl1 - 4'll < csep(i£) + c s e p « ) + 2f

^ y(A) + j(B) + 2e.

An arbitrary choice of £ yields csep(xn) ^ j(A) + y{B). Thus j(A + B) ^ 7(/l) + 7(5).
To obtain (4), first we see from (2) that max{7(yl),7(B)} < j{A U B). For the

opposite inequality let us choose a sequence (xn) in conv(^4 U B). Each xn takes the
form xn — tnyn + (1 - tn)zn for some tn € [0,1], yn € convyl and zn e conv B. There
exists a subsequence (in t ) convergent to some t e [0,1]. The sets A,B are bounded,
so M = sup{||a:|| : x e A U B} < 00 and for arbitrarily fixed e > 0 we can assume
that \tnk -t\ ^ e/(M + 1) for all k. Then \\{tnk - t)ynk\\ ^ (e/{M + 1)) | | y n j ^ e
and similarly ||(1 — tnk)znk — (1 — t)znk\\ ^ e. It follows that \\xnk - Uk\\ ^ 2e, where
Mfc = tynk + (I — t)znic. Since (u*) is a sequence in tconv A + (1 - t) conv5, we have

7(tconvA + (1 - t)convB) ^ ty(A) + (1 - t)j(B)

But csep(xnt) ^ csep(ufc) + 4e, which shows that

csep(xn) < csep( i n j ^ max{7(yl),7(B)} +4e.

Finally, -y(AL) B) ^ max{-y(A),<y(B)}. U

In the next two results we establish alternative formulae for the measure 7.

THEOREM 2 . 4 . Let A be a nonempty and bounded subset of a Banach space X.
Then

(2.1) -y(A) =supdist(x",conv(a;n)),

where the supremum is taken over all sequences (xn) in conv A and all w*-cluster points
x" 6 X" of a sequence (xn).
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P R O O F : Let us denote by ~/{A) the right-hand side of formula (2.1). In order to
show that 7 ' ( J4) ^ l{A) we argue as in the proof of [26, Lemma 2.1]. Indeed, for e > 0
let us find a sequence (xn) in conv A such that 'y(A) —e ^ csep(xn) and fix x € conv(xn).
There exists m € N such that if y £ conv(xi)~m, then x, y is a pair of sec for (xn) and
therefore ||x - y\\ > csep(xn) > j(A)—£. By applying a separation theorem, we can find a
functional x* € X* such that ||x*|| < 1 and x*(y - x) ^ j(A) - e for all y G conv(zi)gm.
Let x" G X** be a u>*-cluster point of (xn). Then x**(x*) = lim x*(xn.) for some
subsequence (xnk) and consequently \\x** - x\\ > (x" - x)(x*) — lim x*(xnk — x) ^
7(/l) - e. This gives dist(x**,conv(xrl)) ^ 7(A) - e and finally, j'{A) ^ "f(A).

The proof of the opposite inequality is a modification of reasoning in [19] (see also
[17]). For each e > 0 there exists a sequence (xn) in conv A and its ^'-cluster point
x** e X" such that dist(i**,conv(a;n)) ^ j'(A) — e. By a separation theorem we
obtain a functional x"* € X*" such that ||a;*"|| ^ 1 and x*"(x** - x) ^ 7'(A) - e
for all x € conv(xn). We now choose by induction a sequence of functionals (x*k) C X*
and a subsequence ( x n j with the following properties: \\x*k\\ ^ 1 + e for all k e N,
z£(znj) ^ I * " ( I " ) - e if /c ^ i and xj(xn j) = x*"(xni) iii < k. To construct these
sequences, we apply the principle of local reflexivity [17, p.33]. By this principle, there
exists x\ € X* such that | |xj | | ^ 1+e and x"(x{) = x"*(x"). Since x" is the ^'-cluster
point of (xn) we can find n\ G N satisfying |a;J(xni) — x**(xi)| ^ e. Let us assume now,
that we have obtained the required x\,... , x*k_x and xni,... , xnt_1. There exists x*k e X*
such that \\x*k\\ ^ 1 + e, x^(xni) = i ' " ( x n s ) for i = 1 , . . . , k - 1 and x**(xk) = I * " ( I " ) .

We choose a number nfc > nk-\ to satisfy |x,*(xnfc) -x**(x*)| ^ e for i = 1 , . . . , A:. Let us
consider now a pair u, v of sec for (xn i). There exists k > 1 such that u € conv(xni)*:T1

1,
t; € conv(x n i )^ t . Of course xj(u) = x"*(u) and xj(w) ^ x"*(x**) - e, and hence
(1 + e) \\u - v\\ > x*k{v -u)^ x""(x" - u) - O i{A) - 2e. From this it follows that

csep(xni) ^ (•y'{A)-2e)/(l+e), which gives 7(A) > (7 / (^) -2e) / ( l - | -e) . Letting e-)• 0
we obtain 7(^1) ^ 7'(^4), and the proof is complete. D

The measure 7 is equal to the function measuring the deviation from relative weak
compactness based on the classical double-limit criterion. A function of this type was
considered also in [4].

THEOREM 2 . 5 . Let Abe a nonempty and bounded subset of a Banach space X.
Then

k
(2.2) l(A) = sup'l limlimir

n(a;fc
I n k

(xk) C conv A, (Fn) C B*. and t ie limits exist | .

PROOF: Let us denote by e(A) the right-hand side of formula (2.2). From the proof
of Theorem 2.4 it follows that there exists a such that for every e > 0 one can find
sequences (xjt) C conv ,4 and (Fn) c Bx- satisfying the following: Fn(xk) ^ a — e for
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n ^ k and Fn(xk) ^ a - j(A) + e for n > k. By passing to a subsequence, if necessary,
we can assume that all the limits a.\ — limlim.Fn(:z;fc) and «2 = limlim.Fn(a:A) exist. Of

n k k n

course, 7(^4) - 2e < a i - a2. Hence j(A) - 2e < e(A) and -y(A) ^ e(A).

Let (xk) C conv A and (Fn) C B*. be any sequences for which the limits /?i =
limlim.Fn(:rfc) and /?2 = limlimFn(a;fc) exist. By Theorem 2.1 for arbitrary e > 0 we can

n A An

find a sequence (z*) of sec for (x/t) such that ||z,- — Zj\\ — csep(zk) ^ £ for every i ^ j . Then
/?! = limlimFn(z/t) and 02 = limlimir

n(zjb). Therefore Pi - /32 ^ liminf liminf ||ZJ - zA\.
n k k n j i

Consequently, we get & - /32 ^ csep(zjb) + e ^ 7(>1) + e. Hence 7(/l) + e ^ e(/l) and
finally j(A) > e(A). D
2.2. 7 AND D E BLASI 'S MEASURE W The axiomatic approach to a measure of weak
noncompactness, presented in subsection 2.1, was preceded by a definition of the measure
w introduced by De Blasi (see [16] and the references given there). For a nonempty and
bounded subset A of a Banach space X let

ui(A) = inf {t > 0 : A c C + tBx and C C X is a weakly compact set}.

Theorem 2.5 and a result of Astala and Tylli (see [4]) show that, in general, the measures
7 and u) are not equivalent. Certainly, if X is reflexive, then B* is weakly compact and
UJ(BX) = 0. Otherwise it is shown [16] that u>{Bx) = 1- Similarly, for reflexive spaces
•y(Bx) = 0. The nonreflexive case for 7 differs from the one for w.

EXAMPLE 2.6. Consider the vectors en = (0 , . . . ,0 ,1 ,0 , . . . ) € lu n e N, where 1
occupies the n-th place. It is evident that csep(en) = 2 and therefore 7(Bjj) = 2.

EXAMPLE 2.7. The case of CQ is more complicated. From the next theorem we shall
see at once that 7(BC0) = 1.

THEOREM 2 . 8 . Let A be a nonempty and bounded subset in CQ. Then

(2.3) y(A) = sup dist ( z " , CQ) ,

where the supremum is taken over all sequences (xn) in conv A and all w*-cluster points
x" ecs* of(xn).

P R O O F : Let us denote by Y(A) the right-hand side of formula (2.3). In view of
Theorem 2.4 it is enough to prove that j(A) ^ '/{A). Choose M such that A C MB^ and
fix a sequence (xn) C conv A. For each uAcluster point x** = (x**(A:)) of (xn) there exists
a subsequence (xni) such that x" = w*-limxni. Let q — dist(x**,co) = limsuplx" (k)\

and \ji = xni for i £ N. Fix e > 0 and N € N. Let us choose a subsequence (j/n,-)jli and
an increasing sequence (kt)^1 of natural numbers such that \x" (k)\ < q + e for k > k\,
and satisfying the following conditions: \yni (k) —x" (k)\ < e for k ^ fcj and \yni (k)\ < e

N

for k > ki+i, i = 1 , . . . ,N. Let us define x = (l/N) J2 2/n{ € conv(xn). Then for k > ki
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we have

M M
I /1 \ * * / f \ l I • • / I \ I O

and for k ^ k\

\x{k)-x"(k)\<e.

Both the inequalities and an arbitrary choice of e and N yields dist(x**,conv(xn)) ^ q

and hence 7 (.<4) < 7' (>1). D

THEOREM 2 . 9 . The measures 7 and w are equaJ in CQ.

PROOF: Given q ̂  0, we set

Next, let i?, : Co -> Co be given by the formula Rqx = (rq(x(k)) ), where a; =

We take a nonempty bounded set i C Co and put q = j{A). We shall show that

i(Rq {A)) = 0. Let (xn) C A and suppose that the limit w*- lim a;n = x" £ c " exists.

By Theorem 2.8, limsup|x"(fc)| ^ q. Therefore

lim sup
k-Hx>

(w*- lim Rqxn) (k) = limsup rq(x** (k))\ = rg(limsup|x** = 0.

In view of Theorem 2.8 we obtain 7(/2,(A)) = 0. It follows that Rq (A) is relatively
weakly compact. Since A C Rq {A) + qB^, we get LJ (A) ^ q = 7 (v4).

On the other hand, we have 7(^1) ^ 7(BC0)w(>l) = w(A) (see [7]). D

3. R E A L INTERPOLATION OF OPERATORS

3.1. MEASURE OF WEAK NONCOMPACTNESS FOR OPERATORS By L(X, Y) we denote
the space of all linear and bounded operators T : X -> Y between Banach spaces X and
Y. Using the measure 7, introduced in the previous section, we can define the measure of
weak noncompactness for every operator T € L(X, Y). This measure provides in addition
a seminorm in L(X, Y).

DEFINITION 3.1: For every T € L(X,Y) the number T(T) = 7(T(BX)) is called
the measure of weak noncompactness of the operator T.

Let X be a Banach space. We denote by lp(X), 1 < p < 00 the Banach space of all

sequences x = (x(i)) such that x(i) € X for a l i i € N and ||x||, ^ = (5Z||a;(*)||P)
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finite. A standard verification shows that we can identify (lp(X))' with lq{X*), where

1/p+l/q = 1, and for each 0 = {<j>{i)) G {lp{X))* we have 4>(x) = £0(i)(x(*)) for all

x G /P(X) (see [21]). If X,Y are Banach spaces and T € L(X, Y), then the operator
f : lp(X) -> ip(y) given by fx = (Tx(i)) is also bounded and \\f || = ||T||.

To deal with the measure 7, ultrafilters will be used in several cases. For more details
concerning filters we refer the reader for instance to [2]. We recall two important facts.

LEMMA 3 . 2 . Let U be an ultrafilter on a nonempty set I and I\ UI2 = I. Then

11 or I2 belongs to U.

LEMMA 3 . 3 . An ultrafilter U is free if and only ifU does not contain a finite set.

Let T be a Hausdorff topology in a space E and let U be an ultrafilter on the set
of positive integers N. An element x G E is said to be the limit over U of a sequence
(xn) in E, if {n G N : xn G V} € U for every neighbourhood V of x. Then we write
x = r-lima;n or simply x — limxn. Let us recall that if E is compact, then limxn exists
for each sequence (xn) in E.

The next lemma, roughly speaking, can stand for a passing to a subsequence. In the
light of Lemma 3.3, the proof is straightforward.

LEMMA 3 . 4 . Let U be a free ultrafilter on N and Nx G U. ff f : Ni ->• N is the
bijection given by f(nk) = k, then U\ = {f{N\ r\A):AeU}isa free ultrafilter on N.
Moreover, if limxn = x in a topological space X, then lim£njt = x as well.

LEMMA 3 . 5 . Let Y be a Banach space and 1 < p < 00. If y = (y(i)), yn =

(yn{i)) € lp(Y**) f°r all n S.N and y = w*-\imyn over some free ultrafilter U on N, then

y(i) = w*-\imyn(i) for each i g N .

P R O O F : Let us first recall that if / : X —> Y is a continuous function between topo-

logical spaces, (xi)i€[ C X and x = limxi over a free ultrafilter W on a set of indices / ,

then f(x) = \im f{xi). Fix i & N and take v = (0 , . . . , 0, v(i), 0 , . . . ) € lq(Y*). The func-

tional /„ given by the formula fv(z) = z(v) — z{i)(y(i]) for z € lp(Y") is ^/-continuous.

Consequently, fv(yn) = yn(i)(v{i)) and y(i)(v{i)) = fv(y) = w'-limyn(i)(v(i)) for every

v(i) G Y*, which is equivalent to y(i) = w*-\imyn(i). D

THEOREM 3 . 6 . Let X, Y be Banach spaces and 1 < p < 00. IfT G L(X,Y)
and f G L(lp(X), lp(Y)) is defined by fx = (Tx(i)) for x = (x{i)) G lp(X), then
r(T) = r(?).

PROOF: Since T = f \ {(x, 0 , 0 , . . . ) } , we see that T(T) ^ r ( f ) . For the proof of
V(T) ^ T(f), assume that T(T) > 0, otherwise at once T(T) = T(f). Fix 0 < e < T(T)
and let r \ = F(T) — e. There exists (xn) C &ip(x) such that for yn = Txn we have
0 < Vi ^ dist(j/,conv(yn)) ^ dist(y, (?/„)), where y G lp(Y") is a ^'-cluster point of
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[9] Weak noncompactness and interpolation 397

the sequence (yn) and therefore y = w*-\imyn over some free ultrafilter U in N. By a

separation theorem there exists <j> G lq(Y"*) such that ||<£|| < 1 and <f>(z) ^ Fx for all
OS

z G y — con\{yn). Now, fix m G N satisfying JZ ||0W I < e ' - The boundedness of
i=m+l

2/ — conv(yn) gives a constant c > 0 such that

1/9 / oo \ l/P

m

for every n e N, where, by Lemma 3.5, y(i) = •u;*-limyn(i) for all i. Writing / = {l

i ^ m : <j>{i) ^ 0} and

by Holder's and Minkowski's inequalities we obtain

1/9 / «»

^u+^n .....E(a' + ^) j

We set T2 = ( r : - ec)(l + em1'""1)"1. Then

/ r\ -I \ T^ _*» YY^n-m. nj*( n \ ( ( * \ ^ " \ \

for all n G N. For each 1 ^ i ^ m let Ni denote the set of all natural numbers n for which
the maximum in (3.1) is attained for i. It is clear that (J Ni = N and, by Lemma 3.2,

Nj G U for some j . Let us apply Lemma 3.4 for the set Nj D I n G N : | |xn(j)| | — «; <

e/m \ = {nk} G U and change W to a free ultrafilter U\ as given by this lemma. It follows
that

for k € N. Considering convex combinations of the obtained sequence yields

But (vnt{j)) C T{BX) and v(j) = w'-\imvnic{j), which gives T2 ^ T(T). By letting

e ^ O w e conclude that F(T) ^ T(T) and this finishes the proof. D
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REMARK 3.7. We can consider a space lp(X) of sequences indexed by the set of all
integers Z. The same properties as stated at the beginning of this section, Lemma 3.5
and Theorem 3.6 also hold in that case.

3.2. R E A L INTERPOLATION We shall say that Banach spaces Ao and Ax are compatible
if they are continuously embedded in a Hausdorff topological vector space X. Then
Ao n Ai and Ao + A\ with norms

= m a x { l l a IL • IHU} and IHU+zii = a=™lai{

respectively, are also Banach spaces. Let A = (AQ,AI) denote a pair of compatible
Banach spaces Ao and A\. A Banach space A is said to be an intermediate space with
respect to A if

Ao n Ai C A C Ao + Al

and both inclusions are continuous. Let A = (Ao,Ai) and B = (BQ,BI) be two pairs of
compatible Banach spaces and T a linear operator from Ao + A\ into Bo + Bi. We write
T : ~A -¥ ~B for brevity, if T e L(A0,B0) and T € L{Ax,Bi), viewed as the restrictions
of T. If A and B are intermediate spaces with respect to A and B respectively, and
T : A —>• B implies T 6 L(A, B), then A and B are said to be interpolation spaces with
respect to A and B.

In the sequel, we restrict our considerations to one of the equivalent constructions
of so called real interpolation spaces, that is, a discrete method introduced by Lions and
Peetre [21]. Let 0 < 6 < 1, I < p < oo and for each a e Ao + Ax

where the infimum is taken over all (ao(i)) C Ao, (ax(i)) C Ax such that ao{i)+ai(i) = a
for all i € Z. Then AgiP = {a € Ao + Ax : \\a\\gp < 00} is an intermediate space with
respect to A and moreover one can show [21] that for a € AgtP

n i i i - 0 n n0
(J.2; a 6j, ^ z v ' mi \\(z ao(i))\\ (^ au*JJ
V P oo(i)+oi (0=« II /Wlp(Ao)\\K 'HipUi)

The spaces Ag:P and Bgp, obtained by this method, are interpolation spaces with respect
to A and B. Furthermore, for every T : A —> B

where \\T\\$p and HT^, i = 0,1 are norms of operators T : A$tP -» BgtP and T : A{ -> B{,

i = 0,1 respectively.

We prove an analogous inequality for our measure of weak noncompactness for op-
erators. Note that a similar result for De Blasi's measure does not hold (see [12]).
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THEOREM 3 . 8 . Let AgtP and BgtP be interpolation spaces with respect to A =

(A0,Ai) and H = (B0,Bi) obtained by the real method described above for some 0 <
9 < 1 and 1 < p < oo. Then for every T : A -t B

where TgtP and Fj, i = 0,1 are measures of weak noncompactness for operators T : A$J> ->
BgiP and T : A{ -» B{, i = 0,1 respectively.

PROOF: Fix e > 0 and a sequence (an) c B ^ p. For each an there exist

(2i6aon(i))iez 6 BlpiAo) and {^-'Wd))^ G B^(>ll)

such that aon(i) + aln{i) = an for all i € Z. Let yn = (2iBTaOn(i))ieZ, zn =
(2'(fi-1)Tain(i))i6Z and bn = Tan for every n € N. By a similar method to that used
in the proof of condition (5) of Theorem 2.3, we can obtain sequences (y!^), (zJJ) of
sec for (yn), (zn) respectively. They satisfy therefore the assertion of Theorem 2.1,

rfVj a n d zjt = Z) ^i z j f°r some 0 = nx < n2 < n3 < . . . and some

*+i "Jfc+i

nonnegative coefficients A*t + 1, . . . , A*t+]with 5Z Â  = 1. We set 6'A' = ^Z A*fy for
j+l + 1

A: = 1,2. Then

c s e p ( M ^ H6'/ - 6JH, , ^ 29(1-") 112/1' - y'i\\];{
e
Bo) \\z'{ - z'Xp(Bl).

the last inequality being a consequence of (3.2). But \\y'[ - y'{||t (Boj ^ csep(^) + e and

IK' - 4\\h{Bl)^ csep(z^) + e. Moreover, y« 6 f0(B,p(/lo)) and <' G T1(B,,,(y,l)) for all

n € N, where fj : /P(A,) -+ ip(Bj). i = 0,1 is defined as in Theorem 3.6. Hence

csep(6n) < 2"(1-fl'(r(fo) +e)l-e(T(f1) +e)e.

Finally, Theorem 3.6 with Remark 3.7 and an arbitrary choice of £ and (an) lead to the
desired conclusion. D

Since F(T) = 0 if and only if T is weakly compact, the above theorem brings a new
proof of the following: \i T : AQ —* B$ oi T : A\ —> B\ is weakly compact, then so
is T : AgiP -> Be<p for all 0 < 0 < 1 and 1 < p < oo. Let us also formulate another
immediate consequence of Theorem 3.8.

COROLLARY 3 . 9 . Let 0 < 6 < I, 1 < p < oo and let AgtP be the interpolation
space with respect to A = (A0,Ai). Then

In particular, if Ao or Ai is reflexive then Ag<p is reflexive as well.
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