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ABSTRACT

In this paper a new methodology using the conditional specification technique
intoduced by Arnold et al. (1999) is used to obtain bonus-malus premiums.
A Poisson distribution for which the parameter is a function of the classical
structure parameter is used and a new class of prior distribution arises in a
natural way. This model contains, as a particular case, the classical compound
Poisson model and is found to be much more robust than earlier ones. An exam-
ple is given to illustrate our ideas.
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1. INTRODUCTION

Many actuarial papers are based on the distribution of annual claim numbers
(Lemaire, 1995, Dionne and Vanasse, 1989; among others). One of the most
popular models in this context is the Poisson-Gamma model, which describes
the behaviour of premiums to be charged when heterogeneity in the portfolio
is considered not to vary with time. The classical Poisson-Gamma model is
based on the assumptions that the portfolio is heterogeneous and that all pol-
icyholders have constant but unequal underlying risks of having an accident.
These assumptions can be modelled assuming:

• given Q = q, the number of claims X are independent and distributed con-
forming to the Poisson distribution with mean q,
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• Q has a probability density function (structure function) of the Gamma
family

• random variables Q and X are independent.

Under the above hypothesis, it is straightforward to prove that the unconditional
distribution of the number of claims follows a Negative Binomial distribu-
tion. In fact, in the context of count regression models, the Negative Bino-
mial distribution can be thought of as a Poisson distribution with unobserved
heterogeneity. This, in turn, can be conceptualised as a mixture of two prob-
ability distributions, Poisson and Gamma. However, since the Poisson model
for count data imposes the restriction that the conditional mean should equal
the conditional variance, the Negative Binomial distribution derived can be
criticized because the random count process should exhibit overdispersion
(i.e. distributions of counts often have variance greater than the mean). Thus,
alternative models to the standard Poisson distribution have been proposed;
these mainly focus on the well-known generalized Poisson distribution (GPD)
introduced in Consul and Jain (1973), and extensively developed in other
papers, such as Goovaerts and Kaas (1991), Scollnik (1995), among others.
Since empirical evidence (Sichel, 1971 and Willmot, 1987, among others) sug-
gests that overdispersion is a common feature of claim count data, in this paper
we take the Poisson-Gamma (or equivalently, the Negative Binomial) model as
the benchmark and consider generalization based on it. As is well known, a mixed
Poisson distribution can be developed by a conjugate Bayesian model. As in
all Bayesian conjugate analysis, the choice of the structure function is moti-
vated by mathematical convenience and perhaps also, in actuarial practice, by
the goodness of fit of the Negative Binomial distribution (Panjer and Willmot,
1988). However, Gómez et al. (2002) recently investigated the effect of prior
elicitation in bonus-malus premiums and showed how the choice of the prior
can critically affect the relative premiums.

In this paper we derive a new distribution for prediction of the count data
process. As a generalization of this scenario, we seek the most general distri-
bution of a bivariate random variable (X, Q) such that its conditional distribu-
tions are Poisson and Gamma. In this sense, we refer to such a distribution as
a generalized negative binomial distribution, which is different from that derived
in Gerber (1991). This new class of distribution arises in a natural way, using
the conditional specification from an exponential family (CEF) (see Arnold
et al., 1999). This new family of distributions is very flexible and contains, as
particular cases, many other distributions proposed in the literature. This model
is discussed in the next section. Basic properties, like conditionals and marginal
distributions, are derived in Section 3, which also includes equations to obtain
maximum likelihood estimations. Sections 4 and 5 contain numerical illustrations
and conclusions, and a discussion of related work, respectively.

1.1. Notation

Let us establish the general notation used below:
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Poisson Distribution (l > 0):

,( ) ( ) ! , , , , ...PrX X x e x xl lP 0 1 2
x

l+ = = =- (1)

Gamma Distribution (�, b > 0):

,( , ) ( ) ( ) , >�
�

X f x x e xb
b

GG 0� xb1+ = - -
�

(2)

Negative Binomial Distribution (r > 0, 0 < p < 1, q = 1 – p):

,( , ) ( ) ( ) ( )
( )

, , , , ...PrX r p X x x r
x r

p q xG G
G

NB 1 0 1 2x+ = =
+

+
=r (3)

2. CONDITIONAL SPECIFICATION MODELS

A bivariate distribution can be specified through its conditional distributions.
If we assume that conditional distributions belong to certain parametric fami-
lies of distributions, it is possible to obtain the joint distribution using the
methodology described in Arnold, Castillo and Sarabia (1999). See also Arnold,
Castillo and Sarabia (2001) for an introduction to this topic. To obtain the joint
distribution, it is necessary to determine the resolution of certain functional
equations. By means of this methodology, highly flexible multiparametric dis-
tributions are obtained. Formally, we seek the more general bivariate distribu-
tion (X,Q) whose conditional distributions satisfy:

X | Q = q ∼ P (l(q)) (4)

and
Q | X = x ∼ G(�(x), b (x)) (5)

where l (q): �+ → �+, and �(x), b(x): � → �+. This leads us to the following
theorem:

Theorem 1. The most general bivariate distribution with conditional distributions
(4) and (5) is given by:

( , ) ! exp log logf x x m m x m m x m m xq q q q q q1
00 10 01 11 02 12= + - - + +" , (6)

where x = 0,1,2,… and q > 0. The parameter m00 is the normalizing constant and
is a function of the rest of the parameters. The parameters {mij} must be selected

to satisfy Q ( ) <f dq q
0

3
# ∝ or ( ) <Pr X x

x 0

3=
3

=

! .

Proof: Since both conditional distributions belong to an exponential family
(i.e., Poisson and Gamma), this is a particular case of Theorem 4.1 in Arnold,
Castillo and Sarabia (1999). ¡
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The distribution (6) was initially considered by Arnold, Castillo and Sarabia
(1999), but these authors do not deal with the problems considered here.

3. BASIC PROPERTIES OF THE MODEL

In this section the basic properties of the Poisson-Gamma conditional model are
studied.

Firstly, we note that the normalizing constant is given by:

.log exp expm m m m dq q q q qm m
00

1
01 10 11

0

02 12= - - + -
3

-# "#& ,- 0 (7)

Now, any univariate integration rule could be used to obtain (7). For this situa-
tion, Gauss-Hermite rules (Davis and Rabinowitz, 1984; among others) could be
used to approximate the normalizing constant. The conditions to ensure that (6)
is a genuine probability density function are

m01 > 0, m02 > 0, m11 ≥ 0, m12 ≥ 0. (8) 

3.1. Conditional Distributions

The conditional distribution (4) of X given Q is Poisson with mean:

l(q) = exp{m10 – m11q + m12logq}. (9)

The conditional distribution (5) of Q given X is Gamma with parameters:

�(x) = m02 + m12x, (10)

b (x) = m01 + m11x. (11)

3.2. Marginal Distributions

The marginal distribution of Q is obtained from (6) by summation in x. We obtain
(q > 0):

( ) .exp expm m m mp q q q q qm m1
00 01 10 11

02 12= - + --
"# ,- (12)

The marginal distribution of X is obtained by integrating (6) with respect to q.
We then have:

( ) ! , , , , ...Pr X x x
e

m m x
m m x

x
G

0 1 2
m m x

m m x
01 11

02 1200 10

02 12
#= =

+

+
=

+

+
^

^

h

h
(13) 
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Note that (13) is a five-parameter model, and m00 is the normalizing constant,
and m00 = m00[m01, m02, m10, m11, m12]. In order to identify the moments of (13),
we obtain the moment generating function GX(s) = � (esX), which is given by:

GX(s) = exp{m00 – m00}, (14)
where:

m00 = m00[m01, m02, m10 + s, m11, m12]. (15)

The mean and variance of X are:

X( ) ( ) ,� X G s
m

0
s

00

0
2
2

= = -
=

� ( 2 (16)

X( ) ( ) ( ) .X G G sVar
m

0 0X
s

2

2

2
00

0
2

2
= - = -

=

�� & )0 3 (17)

Estimation of m�s in the generalized Negative Binomial can be accomplished
via maximum likelihood. The log-likelihood based on the distribution (13) is
such that,

m t m
m
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i
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where:

( ) ( ) ( )
( )

,logx dx
d x x

x
c G G

G�
= =" , (23)

is the digamma function or the Psi function.

The marginal distribution X is obviously a generalization of the Negative Binomial
distribution (3), and can be interpreted in terms of mixture distributions:

( ) ( ) ,Pr X x f x dq p q qX Q
0

= =
3

# ^ h (24)
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where fX | Q (x |q) is given in (4) and p(q) is given in (12).
Furthermore, empirical Bayes estimates q̂ of q are provided by (12) with

estimates mij substituted for mij.

3.3. Sub-Models

The probability distribution given by (13) is a broad-based model and contains
as particular cases several common probability distributions; this modelling,
thus, includes classical distributions proposed in the literature.

• Poisson Distribution. The Poisson distribution corresponds to the choice:

m11 = m12 = 0. (25)

and X ∼ P (em10). In this case the random variables X and Q in (6) are inde-
pendent.

• Negative Binomial Distribution. This model corresponds to the choice:

m10 = m11 = 0, m12 = 1. (26)

In this case X ∼ NB (m02, 1 – em10 · m–1
01), with m01 > 1.

• Nested Negative Binomial Distribution. In this new model we assume:

m10 = 0, m12 = 1. (27)

This new model depends on three parameters and presents the advantage of
including the Binomial Negative distribution as a particular case (nested).
The probability mass function is given by:

( ) ! , , , , ...Pr X x x
e

m m x
m x

x
G

0 1 2
m

m x
01 11

0200

02
#= =

+

+
=+

^

^

h

h
(28)

The Negative Binomial distribution corresponds to the choice m11 = 0. The
likelihood test ratio can be used to test this hypothesis. The parameter vector
is � = (m01, m02, m11). The maximum likelihood estimator �̂ of � is calcu-
lated using the following formulas:

m t m
m
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m xL
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Equations (30)-(32) can be solved simultaneously for m�s by standard iter-
ative procedures. We now estimate the vector � with the constraint that
m11 = 0. The vector � with the new constraint is represented by �*. The crit-
ical region for the null hypothesis H0 : m11 = 0 is given by:

2{log , (�̂ ; ≈) – log , (�̂*; ≈) (32)

whose distribution is a chi-squared random variable with 1 degree of freedom.

4. APPLICATION TO A BONUS-MALUS SYSTEM

In this section, the results obtained above are illustrated with real data from
Lemaire (1979). We consider a group in which the claim proneness of a risk
is represented by a risk parameter l(q). The risks are assumed to be indepen-
dent, so we take a risk l(q) and assume that the distribution of the number of
claims for each policyholder is a Poisson distribution with mean l(q) > 0 as
in (9), whose parameter q varies from one individual to another, reflecting the
individual’s claim propensity, l(q) = �(K |q). This parameter is assumed to be
a random variable and presents a structure function given by

( ) ( )
( , )

.exp expf k
f k

m m m mp q q
q

q q q qm m
0

1
00 01 10 11

02 12= = - + --
"# ,-

Note that the case m11 = 0, m12 = 1 corresponds to the compound Poisson dis-
tribution, K | Q = q ∼ P (qem10), Q | K = k ∼ G (m02, (m01 – em10) / em10) and can be
seen as a reparametrization of the classical model.

Consider a policyholder, drawn randomly from the insurance portfolio, who
is observed to have the sequence of claims k1, k2, …, kt over t periods. These are
assumed to be independent and equidistributed. Let k = tk = kii

t
1=

! . The likeli-
hood function is then given by

, ,..., ( )
!

( ) ( ) .expf k k k
k

tl q l q l q1
t

ii
t

k
1 2

1

= -
=

%^ ^h h" , (33)

The posterior distribution p0(q | k, t) is conjugated with respect to the likelihood
in (33) but now with the updated parameters.

m*
00 = m00 + m10 tk,

m*
01 = m01 + m11 tk,

m*
02 = m02 + tk,

m*
10 = m10 + log|1 – t |,

m*
11 = m11,

m*
12 = m12.

Alternative premium calculation principles can be used to compute bonus-malus pre-
miums. In this case we assume the net premium principle (Lemaire 1979, 1985).
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The posterior mean of l(q) under prior p0 is given by

( , ) ( ) , .k t k t dd l q p q q
Q 0= # ^ h

Then, the bonus-malus premium to be charged using the net premium principle
is given by

BM( , ) ( , )
( , )

k t
k t

d d
d

100
0 0

p0 #= (34)

Additionally, estimation of the bonus-malus premiums under the classical
Bühlmann model from the CEF prior distribution can be performed as follows.
The classical credibility formula establishes,

( ) , , ..., ( ) ( ) ,� k k k Z t Z t ml q k 1t1 2 = + -^ ^h h

where l(q) = �(K | q), m = �p0
[l(q)] and

Z(t) = tVarp0
[�(K | q)] ≈ {tVarp0

[�(K | q)] + �p0
[Var(K | q)]}–1,

with �p0
and Varp0

being the mean and the variance, respectively, with respect
to p0(q).

In the bonus-malus scenario and using the conditional specification model,
the premium adjusted with a credibility formula has the following form,

BM( , ) ( , ) ( ) ( ) ,k t Z t Z t md d k
0 0

100 1
p0 = + -6 @# - (35)

where

( ),

( ) ( ) ,

( ) .

�

� � �

� �
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q l q l q

q l q
p
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2 2

0

0 0

=

= -

=

^

^

^

h

h

h

6 6 6

6 6
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Table 1 shows fits from the above models to data in Lemaire (1979). We use
NB to denote the model derived from a standard Poisson-Gamma distribution
or, equivalently, from a Negative Binomial distribution, and use GNB to denote
the Generalized Negative Binomial model. The Akaike information criterion
(AIC) and the Bayesian information criterion (BIC) are used to compare the
estimated models (Leroux, 1992). As is well-known, a model with a minimum
AIC value is to be preferred.

Note that to resolve equations (18)-(22) we must identify the partial deriva-

tives of the type m
m

ij

00
2
2

. To perform this estimation by maximum likelihood, we

proceed as follows: firstly, the integral in (7) is approximated by a Gauss-Her-
mite type squaring formula, which enables us to obtain the approximation as
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a function of the other parameters mij. The partials are then obtained and the
non-linear system resolved by the numerical routines of the Mathematica soft-
ware package. In all the cases resolved, we test the convergence conditions of
the series and the integrals necessary for the marginal distributions. The esti-
mation of the parameters m�s by the maximum likelihood method produces
the following values:

• Poisson-Gamma: m10 = m11 = 0, m12 = 1, m02 = 1.6131, m01 = 17.1384.

• Generalized Negative Binomial: m12 = 1.47011, m02 = 1, m01 = 3.1, m10 = 10–3,
m11 = 1.45883001.

• Nested Negative Binomial: m10 = 0, m12 = m02 = 1, m01 = 7.58, m11 = 1.3.

The observed distribution in Table 1 provides a fairly good fit for both models.
Nevertheless, the x2-test of goodness of fit for the three models considered is
very poor (xNB

obs = 11.97, xNNB
obs = 24.59, xGNB

obs = 25.27, respectively). Probably,
the asymptotic character of the standard x2-test and the limited number of
classes in the example considered here would largely explain this lack of fit
(observe that the class “more than 4” contains almost all the value of the x2 sta-
tistic). We then have to take into account the differences in the log-likelihood
results and the BIC and AIC values. Table 1 reveals that the GNB model per-
forms very well in fitting the distribution, compared to the NB model. The highest
gain in log-likelihood is obtained from NB, although the data support adding
additional terms and the preferred model is a GNB model. Moreover, when
using BIC and/or AIC to discriminate between models, GNB is preferred to NB.

Obviously, the model presented is somewhat more complex than the nega-
tive binomial and therefore it might appear that we run the risk of overfitting
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TABLE 1

OBSERVED AND FITTED DISTRIBUTIONS OF NUMBER OF CLAIMS: NEGATIVE BINOMIAL MODEL (NB),
NESTED NEGATIVE BINOMIAL (NNB) MODEL AND GENERALIZED NEGATIVE BINOMIAL (GNB) MODEL

k Observed NB NNB GNB

0 96978 97086.90 96917 96978
1 9240 9138.01 9316 9239
2 704 696.63 696 712
3 43 48.95 42 43
4 9 3.29 2 2

More than 4 0 0 0 0

Total 106974 106974 106974 106974 

– log(L) 187789 73443 44351.7 
BIC 375613 146909 88761.3 
AIC 375584 146890 88713.4

AIC = – 2log(L) + 2k, BIC = – 2log(L) + k log(N).
L, k and N are the maximized log likelihood, number of parameters and observations, respectively.
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(which is not strictly the objective of this paper), particularly taking into
account that in the example presented we only consider five or six classes for
a model with five parameters. Of course, the methodology presented can easily
be applied to cases with more than 6 or 7 classes, in which, obviously, the good-
ness of fit would be much greater. As shown below, the GNB and NNB models
present additional advantages.
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TABLE 2

BONUS-MALUS PREMIUMS UNDER THE NET PREMIUM PRINCIPLE IN THE CLASSICAL NB MODEL

k

t 0 1 2 3 4 5 6 ZNB (t)

0 100 – – – – – – 0
1 94.165 152.540 210.916 269.291 – – – 0.058348
2 88.973 144.131 199.288 254.445 309.601 364.758 – 0.110263
3 84.324 136.600 188.875 241.150 293.424 345.699 397.974 0.156753
4 80.137 129.817 179.496 229.175 278.854 328.523 378.212 0.198626

TABLE 3

BONUS-MALUS PREMIUMS UNDER THE NET PREMIUM PRINCIPLE IN THE NNB MODEL

k

t 0 1 2 3 4 5 6

0 100 – – – – – –
1 94.818 147.456 179.741 201.013 – – –
2 89.884 142.641 175.830 197.954 213.415 224.646 –
3 85.205 137.864 171.858 194.808 210.944 222.692 231.506
4 80.787 133.146 167.837 191.582 208.391 220.666 229.884

TABLE 4

BONUS-MALUS PREMIUMS UNDER THE NET PREMIUM PRINCIPLE IN THE GNB MODEL

k

t 0 1 2 3 4 5 6

0 100 – – – – – –
1 94.364 152.673 178.283 192.009 – – –
2 88.901 148.665 175.753 190.348 199.213 205.070 –
3 83.646 144.548 173.603 188.601 198.005 204.198 208.531
4 78.623 140.337 170.336 186.766 196.737 203.283 207.847
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Note the following comments, always in comparison to the NB model:

• In the NNB model. there is a slight increase in premiums for good-risk pol-
icyholders (k = 0). On the other hand, to guarantee the financial stability of
the insurance company, there is a significant fall in the premiums payable
by bad-risk policyholders (k > 0), except in the case of k = 1 for t = 3 and 4.

• A similar effect is observed with the GNB model. All premiums fall signif-
icantly for the policyholders located in k > 1, and also for the good-risk
group k = 0 for t > 1. Again, to balance the former effect, there is a slight
rise in the premiums payable by other policyholders.

Tables 5 and 6 show the Bonus-Malus premiums adjusted with a credibility for-
mula. Both tables show, in comparison with the NB model, that the premiums
payable by good-risk policyholders (k = 0) rise slightly, while those for bad-risk
policyholders (k > 0) fall significantly. The variation is always greater with the
GNB model, because

ZNNB(t) < ZGNB(t) < ZNB(t),
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TABLE 5

BONUS-MALUS PREMIUMS AND CREDIBILITY FACTOR, ZNNB(t), UNDER THE NET PREMIUM PRINCIPLE

IN THE NNB MODEL ADJUSTED WITH A CREDIBILITY FORMULA

k

t 0 1 2 3 4 5 6 ZNNB (t)

0 100 – – – – – – 0
1 94.966 144.620 194.275 243.929 – – – 0.050339
2 90.414 137.689 184.964 232.239 279.513 326.788 – 0.095853
3 86.279 131.392 176.505 221.617 266.730 311.842 356.955 0.137205
4 82.506 125.646 168.785 211.925 255.925 298.204 341.344 0.174939

TABLE 6

BONUS-MALUS PREMIUMS AND CREDIBILITY FACTOR, ZGNB(t), UNDER THE NET PREMIUM PRINCIPLE

IN THE GNB MODEL ADJUSTED WITH A CREDIBILITY FORMULA

k

t 0 1 2 3 4 5 6 ZGNB (t)

0 100 – – – – – – 0
1 94.598 148.099 201.600 255.101 – – – 0.054014
2 89.750 140.510 191.269 242.028 292.787 343.546 – 0.102494
3 85.375 133.660 181.945 230.230 278.514 326.799 375.084 0.146246
4 81.407 127.447 173.448 219.528 219.528 311.608 317.608 0.185930
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and thus the NNB model gives greater weight to the group premium than to
individual claim experiences.

Lemaire (1979) remarked on the problem of overcharges arising in insurance
markets in which Bonus-Malus systems are applied. It was seen that, because
a posteriori distributions for different k and t overlap, there occur overcharges
among groups of policyholders who pay more, although their claim frequency
is lower than the mean of other policyholders who pay less. In Lemaire’s study,
this problem is corrected by resolving a problem of restricted optimisation.
The NNB and GNB models reduce overcharges in a direct way.

Thus, if we limit ourselves to the example adopted by Lemaire (1979), cal-
culating the area under the a posteriori distribution for k = 3, t = 3 between
q = 0 and q = mean of the a posteriori distribution for k = 0, t = 3 in the three
models presented in this article, we obtain

Posterior mean Area

NB 0.100256 0.0694900
NNB 0.115209 0.0580713
GNB 0.282739 0.0513790

It can be seen that the GNB model produces the smallest area, and therefore
the least overcharge for the case in question. This reduction, obviously, produces
a lower penalization when the number of claims made by high-risk policyhol-
ders increases (Table 7).

Finally, we calculated the average efficiency c (see Lemaire and Zi, 1994)
given by

( ) ( ) ,dc c q p q q
Q

= #

where

( )
( )

( ) ( )
( )

,log
log

c q q
d q

d q
q

q
d q

2
2

2
2

= =

is the efficiency or the elasticity of the stationary premium with d(q) repre-
senting the risk premium. In our case, i.e. d(q) = exp{m10 – m11q + m12logq},
under a quadratic loss function we have c(q) = – m11q + m12. The c values were
computed and found to be cNB = 1, cNNB = 0.816437 and cGNB = 0.968422.
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TABLE 7

PERCENTAGE OF PREMIUM INCREASE WHEN THE POLICYHOLDER PASSES FROM k = 1 TO k = 2

t NB NNB GNB 

2 30.64% 19.24% 15.11%
3 31.04% 20.48% 16.77%
4 31.40% 21.70% 17.84%
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The two models, NNB and GNB, present very high efficiency, with values
close to one.

5. CONCLUSIONS

As is well known, the classical model in which the Poisson distribution is
mixing distribution with a Gamma yields a Negative Binomial claim count
distribution. In this paper we use the conditional specification model as an
alternative, and equally general, mixing distribution. We obtain a discrete dis-
tribution that we call the Generalized Negative Binomial distribution; this has
some useful properties. The results and applicability of the proposed model
show that the new class of model is simple to estimate. The distributional fit
is quite good and reasonable predictions are obtained. Moreover, a bonus-
malus table is obtained in a direct way.

Naturally, the results shown in this paper can be applied to other premium
calculation principles and an analysis of Bayesian robustness could be per-
formed to analyse the sensitivity of the premiums obtained. Gómez et. al (2002)
showed how sensitive the Bonus-Malus premium can be when we move away
from a single prior. Both the NNB and the GNB model are very robust, and
this is a subject for future studies.
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