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Abstract

Research on design and analysis of complex systems has led to many functional representations with several meanings of
function. This work on conceptual design uses a family of representations called structure–behavior–function (SBF) mod-
els. The SBF family ranges from behavior–function models of abstract design patterns to drawing–shape–SBF models that
couple SBF models with visuospatial knowledge of technological systems. Development of SBF modeling is an instance of
cognitively oriented artificial intelligence research that seeks to understand human cognition and build intelligent agents for
addressing complex tasks such as design. This paper first traces the development of SBF modeling as our perspective on
design evolved from that of problem solving to that of memory and learning. Next, the development of SBF modeling as a
case study is used to abstract some of the core principles of an artificial intelligence methodology for functional modeling.
Finally, some implications of the artificial intelligence methodology for different meanings of function are examined.

Keywords: Conceptual Design; Functional Modeling; Functional Reasoning; Functional Representation; Structure–Be-
havior–Function Models; Systems Thinking

1. INTRODUCTION

Research on design and analysis of complex systems has led
to many functional representations (FRs) with several mean-
ings of function (e.g., Hubka & Eder, 1988; Andreasen, 1991;
Chittaro et al., 1993; Bracewell & Sharpe, 1996; Pahl &
Beitz, 1996; Stone & Wood, 2000; Chakrabarti & Bligh,
2001; Hirtz et al., 2002; Carrara et al., 2011; Eckert et al.,
2011). Erden et al. (2008) and Garbacz et al. (2011) present
two recent reviews of what is common among some of the
FRs, and what is different, why, and how. In two companion
position articles in this Special Issue of AI EDAM, my col-
leagues Pieter E. Vermaas (2013) and Claudia Eckert (2013)
examine several meanings of function in the design literature
and design practice, respectively.

We posit that some differences in the meanings of function
may arise due to different goals and methodologies of the var-
ious FRs. Thus, a comparison of different FRs requires a clear
and precise articulation of their goals and methodologies. In
this article, first we conduct a reflective study of a long line of
artificial intelligence (AI) research on FR. We want to under-

stand what aspects of the representation remained stable over
time, and why; and what representational elements changed,
how and why? Next, we use this analysis as a case study to
abstract some of the core principles of one specific AI method-
ology for functional modeling. Finally, we examine some im-
plications of the AI methodology for different meanings of
function.

We start with the FR scheme that Chandrasekaran and col-
leagues at Ohio State University’s Laboratory for Artificial
Intelligence Research developed in the early to mid-1980s
(Sembugamoorthy & Chandrasekaran, 1986; Chandrasekaran
et al., 1993; Chandrasekaran, 1994a, 1994b). Initially, the do-
main of interest was medicine, the task was diagnosis, and the
context was automated reasoning in intelligent agents. Later,
Chandrasekaran and his students, including me, used the FR
scheme for supporting automated reasoning for a variety of
tasks such as design, diagnosis, and explanation, in domains
ranging from engineering to medicine (Goel & Chandrase-
karan, 1988, 1989; Sticklen & Chandrasekaran, 1989; Keu-
neke, 1991; Chandrasekaran, 1994a). The cognitive perspec-
tive on FRs in this early work was that of problem solving.

In the late 1980s, we developed an intelligent agent for au-
tomated design in which retrieval and adaptation of past de-
signs was grounded in FRs of the designs (Goel & Chandra-
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sekaran, 1988; Goel, 1992; Goel & Chandrasekaran, 1992).
This helped change our perspective on FRs from that of prob-
lem solving to that of memory and learning, led to new onto-
logical commitments, and resulted in structure–behavior–
function (SBF) models. In the mid-1990s, Sambasiva Bhatta
in our Design & Intelligence Laboratory at Georgia Institute
of Technology developed a technique called model-based
analogy that uses SBF models of designs to abstract and
transfer behavior–function (BF) models of design patterns
from one design domain to another (Bhatta & Goel, 1994,
1996a, 1996b, 1997). In the middle of the last decade, Patrick
Yaner at Georgia Tech’s Design & Intelligence Laboratory
developed a technique called compositional analogy for un-
derstanding design drawings by analogical mapping and
transfer at multiple levels of abstraction in drawing–shape–
SBF (DSSBF) models (Yaner & Goel, 2007a, 2007b, 2008).

Research on the FR scheme and SBF models is an instance
of cognitively oriented AI research on functional modeling.
The twin goals of this kind of AI research are to understand
human cognition and to build cognitively inspired intelligent
agents (Goel & Davies, 2011; Langley, 2012). The general
methodology is to observe human behavior as they address
complex tasks such as diagnosis and design, build knowl-
edge-based intelligent agents for addressing the tasks, use
the knowledge-based methods as hypotheses for explaining
human reasoning on the tasks, and build interactive tools
that use the representations and knowledge-based methods
for aiding humans in performing the tasks. Unlike cognitive
psychology that often focuses on the microstructure of human
cognition and behavior, cognitively oriented AI typically em-
phasizes the macrostructure: the content and representation of
knowledge, the inferences enabled by the knowledge, and the
tasks addressed by the inferences.

In cognitively oriented AI, knowledge content and repre-
sentation are closely related to the reasoning task as noted
above. This leads us to the first AI principle for functional
modeling:

Principle 1: Functional models are constructed to support
functional reasoning. Thus, any theory of functional
modeling needs to be situated in a theory of functional
reasoning: the whys, whats and hows of functional rea-
soning for various tasks are good starting points for an-
swering the whys, whats and hows of functional models.

AI is a wide and open field, and different AI researchers
make different assumptions and pursue different hypotheses.
Thus, several researchers have developed similar cognitively
oriented FRs with similar names, goals, and foci. FRs that
share some aspects or elements of our SBF models include
Freeman and Newell’s (1971) representations of software sys-
tems, Reiger and Grinberg’s (1978) representations of phys-
ical mechanisms, Rasmussen’s (1985) structure–behavior–
function representations of large-scale industrial systems,
Gero’s function–behavior–structure models (Gero, 1990;
Gero et al., 1992; Gero & Kannengiesser, 2004), Umeda

and Tomiyama’s function–behavior–state models (Umeda
et al., 1990, 1996; Umeda & Tomiyama, 1997), Govindaraj’s
qualitative approximations of complex systems (Vasandani &
Govindaraj, 1995), and Kitamura and Mizoguchi’s function–
behavior representations (Sasajima et al., 1996; Kitamura
et al., 2002, 2004). However, in this article we focus exclu-
sively on the evolution of our SBF models over nearly 30
years.

2. SYSTEMS AND MODELS

A complex system manifests a large number of heterogeneous
interacting components, nonlinear and cyclic processes, feed-
back, stochasticity, and/or emergence (Forrester, 1994). From
a cognitive perspective, it is useful to think of complexity as a
metaphor for the kinds of systems that are challenging for
humans to fully understand. A system may be cognitively
challenging to understand not only because of the properties
mentioned above but also because the causal processes in the
system may be invisible and occurring at multiple levels of
organization.

One common class of complex systems exhibits hierarchi-
cal organization (Simon, 1962, 1996, 1999). Hierarchically
organized systems are nearly decomposable: although causal
processes at one abstraction level in these systems emerge out
of interactions among components and processes at lower
levels, the interactions among subsystems at any level are
contained and can be organized hierarchically. Functions
are mental abstractions that enable a hierarchical decomposi-
tion of a system into subsystems (Simon, 1962, 1996, 1999).
This is an important cognitive feature because it implies that
analyzing such systems entails decomposing them into appro-
priate subsystems at different levels of functional abstraction
and understanding interactions among the subsystems at a
given level of functional abstraction. This leads us to our sec-
ond principle for functional modeling.

Principle 2: Functions are mental abstractions that enable a
hierarchical decomposition of a complex system into
subsystems.

We use the term model (not representation) in referring to
SBF models. Although the word model has been applied to a
variety of representations, we use the term in the sense of a
scientific model: a scientific model is a scientist’s interpreta-
tion of a phenomenon (e.g., Nersessian, 1999; Machamer
et al., 2000; Nersessian, 2008). We note two important cog-
nitive features of such models. First, models are abstractions
of reality: the abstractions constrain systems thinking by both
simplifying the systems and suggesting a course of analysis
(Darden, 1998). Second, scientists use models to generate ex-
planations: modern philosophers of science regard models as
essential to explanation (e.g., Bechtel & Richardson, 2010).

Technological systems are designed, monitored, measured,
explained, diagnosed, repaired, and redesigned to achieve the
desired functions. Analysis of technological systems is facili-
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tated by knowledge of causal mechanisms that result in the
system’s functions. It follows that functional models should
explain how a system’s causal mechanisms accomplish its
functions. This leads to our third principle for functional
modeling.

Principle 3: Functional models specify causal mechanisms
that explain how system functions are accomplished.

3. FR SCHEME FOR DIAGNOSIS AND
EXPLANATION

In the early to the mid-1980s, Sembugamoorthy and Chan-
drasekaran (1986) developed the FR scheme for describing
the functioning of physical devices to support automated di-
agnosis. Let us consider the example of the simple gyroscope
follow-up illustrated in Figure 1. Briefly, the gyrocompass,
with its ability to track true north as compared to the unreli-
able magnetic north, is an instrument for navigation and pilot-
ing aboard many ships. A gyroscope is an assembly with a
very rapidly spinning top. A gyroscope follow-up automati-
cally tracks and amplifies the movement of a spinning gyro.
The follow-up servo can drive any number of gyrocompasses
located anywhere on a ship, each of which replicates the read-
ing of the central gyro. Figure 1 illustrates the schematic of a
simple gyroscope follow-up with no feedback control. This
example actually is taken from the Ideal system described
in Section 5. However, we use it here to explain the FR
scheme and to illustrate the evolution of SBF modeling.

Figure 2a and b illustrate the representation of the function
and the behavior of the gyroscope follow-up in the FR
scheme. The description of the structure of the gyroscope fol-
low-up in the FR scheme (not shown here) would include
specifications of the components of the device as well as
the connections among them. The description of a function
(Fig. 2a) specifies the behavior that accomplishes it; thus,
functions in the FR scheme index behaviors responsible for
them, and the behaviors are organized by the functions they
achieve. The description of a behavior (Fig. 2b) specifies a
causal mechanism consisting of states and transitions among
them. The specification of a device function may also include

an ExternalStimulus clause that specifies an external trigger
and a Provided clause that specifies the conditions under
which the behavior accomplishes the function. A transition
in a behavior may be annotated by explanations for it, for ex-
ample, UsingFunction of some component of the device
(Fig. 2b). Annotations on the transitions may include By-
Behavior (for a more detailed description of the transition),
UnderStructuralConditions (for specifying the structural
conditions for the transition), and DomainPrinciple (for spec-
ifying a general principle that explains the transition).

Note that a function of a system in the FR scheme is an in-
tended output behavior of the system as well as an abstraction
of an internal causal behavior. Note also that the annotation
UsingFunction on the behavioral transitions provides a de-
composition of the function of the system into functions of
its components. However, instead of a function–subfunction
decomposition, in the FR scheme, internal causal behaviors
are an intermediate level of abstraction between function
and structure. Thus, the abstraction hierarchy takes the form
of F! B ! F! B . . .! F(S), where the decomposition
can go to as many levels as needed. Sticklen and Chandrase-
karan (1989) describe MDX2, an intelligent agent that uses
the FR scheme for automated diagnosis. Keuneke (1991)
describes the use of the FR scheme for automated explanation
of the functioning of complex systems. The FR scheme leads
to three additional principles for functional modeling.

Principle 4: Behavior is an intermediate abstraction be-
tween structure and function. Internal causal behaviors
of a system specify the composition of a system function
from the functions of its subsystems and components.

Principle 5: Organization of functional models is important
for localizing reasoning. Functions may act as indices into
behaviors; behaviors may be organized around functions.

Principle 6: Functional models need to be evaluated through
experimentation. Construction of knowledge systems forFig. 1. A schematic diagram of the gyroscope follow-up.

Fig. 2. Representations of (a) a function in the functional representation (FR)
scheme and (b) behavior in the FR scheme. [A color version of this figure can
be viewed online at http://journals.cambridge.org/aie]
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automated reasoning is one experimental method for test-
ing, refining, and revising functional models.

4. CASE-BASED DESIGN: SBF MODELS
OF DESIGNS

My 1989 PhD dissertation at Ohio State University under
Chandrasekaran’s supervision integrated case-based and
model-based reasoning for adaptive design (Goel, 1989).
Much of practical design is adaptive in that new designs are
generated by adapting known designs. In the paradigm of
case-based reasoning (Riesbeck & Schank, 1989; Kolodner,
1993), the intelligent agent is endowed with a memory popu-
lated with past experiences (called cases). Given a new prob-
lem, the agent retrieves a similar case from memory and, if
needed, modifies it to suit the given problem. The agent eval-
uates the candidate solution and, if needed, repairs it. When the
agent encounters a new case, it indexes and stores it in memory
for potential reuse. While case-based reasoning provides a
computational process for reasoning, it does not provide a con-
tent account of cases (i.e., the case-based reasoning does not
specify what knowledge should be contained in a case). The
knowledge contained in the cases should support the tasks of
indexing, retrieval, modification, evaluation, and storage.

My dissertation described the use of functional models of
known designs as the contents of design cases and the func-
tions of the designs as indices to the design cases (Goel,
1992). The core of the task of conceptual design is an F !
S mapping: it takes a specification of a set of desired functions
as input and has the goal of giving as output a specification of
the structure of a design that can achieve the desired functions.
For example, a target design problem may specify the desired
function of propagating angular momentum with only small
fluctuations. Hence, the proposal to index design cases by
the functions delivered by the stored designs so that the knowl-
edge system can retrieve the design case most similar to the de-
sired function. Further, if each design case contains an S! B
! F map, where the behavior B specifies how the structure S
of the design achieved its function F, then the map may guide
the modification of the design to achieve the desired function
of the new problem. Hence, the proposal to include S ! B
! F maps (or models) as the contents of the design cases,
which explains the origin of the name of SBF modeling.

When I tried to use the FR scheme to specify the contents
and indices of design cases, I encountered two problems.
First, the FR scheme of the 1980s did not provide a vo-
cabulary for specifying functions so that two functions could
be compared to measure similarity between them. This is be-
cause the Given and Makes states in the function specifica-
tion (e.g., AngularMomentumLi) are simply strings of char-
acters with little semantics. Thus, the FR scheme of the time
could not support case retrieval. Second, the FR scheme of
the 1980s did not provide a vocabulary for specifying func-
tions so that one function could be substituted by another
function during design case adaptation. This is because the

functional annotations on the behavioral state transitions
(e.g., FunctionName1ofLinkageAB) are simply character
strings with little semantics. Thus, the FR scheme of the
time could not support case adaptation either.

To support design case retrieval and adaptation, we needed
an ontology of states and functions. I adapted this ontology
from a technique of compositional modeling called consoli-
dation (Bylander & Chandrasekaran, 1985; Bylander, 1991).
Consolidation is a technique for incrementally composing
the output behaviors of a physical device from the output be-
haviors of its structural components. It subscribes to an ontol-
ogy of components and substances, where a component can
contain a substance and substances can flow between compo-
nents. Components can have modes (such as open and
closed). A substance can be any “stuff” that is conserved (un-
less explicitly created or destroyed by some component).
Thus, a substance, for example, may be material, energy, or
information; a substance may be physical or abstract (e.g., an-
gular momentum).

This basic ontology leads to a small number of primitive
output behaviors of components and devices (Bylander,
1991): Allow, Move, Pump, Expel, Create, Destroy, and
Change_Mode. The technique of consolidation used a small
set of domain-independent rules to compose potential output
behaviors of a device from the output behaviors of its compo-
nents. Note that the technique of consolidation focuses on the
output behaviors of components and systems, not their inter-
nal causal behaviors as in the FR scheme. The functions of a
system in the sense of the FR scheme are a desired subset of
the set of all output behaviors. For example, a flashlight elec-
trical circuit may have the output behaviors of producing light
and generating a small amount of heat, where the desired func-
tion may only be to produce light. Although the FR scheme
represented the functions of a system (e.g, production of light
in case of the flashlight), SBF models represent all output be-
haviors of the system (e.g., production of light as well as gen-
eration of heat for the flashlight; Goel & Stroulia, 1996).

I used this ontology of components and substances, of out-
put behaviors and functions, to develop a vocabulary for spec-
ifying the states in a system as well as functional annotations
on the behavioral state transitions in the FR scheme. Figure 3a
and b illustrate the representations of the gyroscope of Fig-
ure 1 in the new language. The representation of function in
SBF models (Fig. 3a) may be compared with the representa-
tion of function in the FR scheme (Fig. 2a). Note that the rep-
resentation of function in SBF models is no longer a string of
characters. Instead, it has a semantics that enables comparison
of two functions and measurement of similarity between
them. This enabled retrieval of cases similar to the given
problem based on the similarity between their respective
functional specifications.

Similarly, the representation of behavior in SBF models
(Fig. 3b) may be compared with the representation of behav-
ior in the FR scheme (Fig. 2b). The functional annotations on
the state transitions in the SBF models have a semantics that
enables reasoning about the modifications needed to the re-
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trieved design in order to achieve the desired function speci-
fied in the target problem. (The representation of behaviors
illustrated here is only partial. For example, the last transition
in the behavior TransferAngularMomentum depicted in
Fig. 3b points to a state transition in another behavior Pro-
duceTorque that is not shown in the figure.)

An intelligent agent called Kritik implemented the case-
based method for adaptive design, grounding the case-based
process in SBF models (Goel & Chandrasekaran, 1988; Goel,
1992; Goel & Chandrasekaran, 1992; Goel et al., 1997). The
SBF models provided the vocabulary for indexing the design
cases, as well as methods for retrieving, adapting, evaluating,
and storing designs. Sycara et al. (1991) used another mod-
el-based scheme for indexing and retrieving design cases.
Murdock et al. (1997) and Szykman et al. (2000) describe
attempts at building large-scale libraries of design cases in
engineering domains. The development of SBF models resulted
in two more principles for functional modeling:

Principle 7: Functional modeling should support memory
tasks in addition to problem-solving tasks. Memory
tasks include case indexing, retrieval, and storage.

Principle 8: Functional modeling needs to be grounded in an
ontology of systems. An ontology provides a disciplined
vocabulary that in turn enables principled inferences.

5. ANALOGICAL DESIGN: BF MODELS OF
DESIGN PATTERNS

The above theory of grounding the case-based process in
functional models of design cases addressed conceptual de-
sign problems in which the desired function was almost iden-
tical to the function delivered by a design case so that known
design needed to be modified only locally to obtain the de-
sired design. The SBF models proved sufficient to support
local modifications such as adjusting the parameters of
some component or substance, or substituting some compo-
nent in the design with another component at the same loca-
tion as the first component. What additions to functional
models might support more creative conceptual design, for
example, problems requiring insertion of new components
into the structure of the design case?

Let us consider as an example a design case containing the
simple flashlight electrical circuit illustrated in Figure 4.
(Briefly, the circuit contains a switch, a battery, and a bulb.
When the switch is pressed, the circuit is closed, and the
bulb produces light of an intensity that depends in part on
the voltage of the battery.) Now suppose that the new design
problem specifies the desired function to be several times the
amount of light created by this system. One possible modifi-
cation to the electrical system depicted in Figure 4 might be to
replace the battery of 1.5 V in the circuit with a battery of
higher voltage. However, let us further suppose that a battery
of higher voltage is not available. What functional knowledge
may enable an intelligent agent to adapt the design of this
electrical circuit to achieve the desired function of generating
light of a higher intensity?

For his PhD dissertation at Georgia Tech, Bhatta (1995) de-
veloped the technique of model-based analogy for innovative
design adaptations based on the notion of design patterns. A
design pattern in architecture specifies an abstract design
goal, a generic design strategy for achieving the design goal
in the form of an abstract spatial arrangement of structural
components, and applicability conditions for instantiating the
abstract design strategy (Alexander, 1977). Bhatta adapted
this notion of design patterns for conceptual design of en-
gineering systems, once again introducing behavior as an in-
termediate abstraction between function and structure in the
specification of design patterns. Figure 5a illustrates the de-
sign goal of the cascade (or repetition) design pattern in terms
of the functional descriptions of a desired function and of the
function delivered by a known design case. It specifies that
the output of the desired function is many times the output

Fig. 3. Representations of (a) a function in structure–behavior–function
(SBF) models and (b) behavior in SBF models. [A color version of this
figure can be viewed online at http://journals.cambridge.org/aie]

Fig. 4. A flashlight electrical circuit.
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of the design case. Figure 5b illustrates the design strategy for
the cascade design pattern in terms of description of how to
compose the behaviors of the design case into a behavior
for achieving the desired function, namely, repetition of the
behavior of the design case. Applying this pattern to the prob-
lem of the electrical circuit above results in a new circuit in
which the behavior of the 1.5 V battery is repeated as many
times as needed to achieve the desired intensity of light: the
new electrical circuit contains a cascade of 1.5 V batteries
in series. Note that in model-based analogy, function is an ab-
straction of a design pattern; a function corresponds to the
goal of the design strategy captured in the pattern.

Theories of analogies in general are of two types. The first
kind of theory proposes general mechanisms for analogical
mapping and transfer (e.g., Falkenhainer et al., 1989; Ho-

lyoak & Thagard, 1989; Thagard et al., 1990; Forbus,
1995). The second kind of theory of analogy describes con-
tents of knowledge that drive the analogical mapping and
transfer (e.g., Winston, 1979; Clement, 1988; Nersessian,
1999; Clement, 2008; Nersessian, 2008). Model-based anal-
ogy is a content theory of analogy. Although model-based
analogy could potentially be implemented in some general
mechanism, its power comes from the identification and repre-
sentation of knowledge content driving the analogies (e.g., SBF
models of design cases and BF models of design patterns).

An intelligent agent called Ideal implemented and evalu-
ated the theory of model-based analogy for innovative con-
ceptual design (Bhatta & Goel, 1994, 1996a, 1997). Ideal
contained two libraries: a library of design cases and a library
of design patterns. Given a new design problem, Ideal first
operated like the Kritik agent, retrieving similar design cases
and using their SBF models to tweak the design cases to address
the new problem. However, if this tweaking of design cases was
infeasible or insufficient, then Ideal retrieved the BF models of
appropriate design patterns and instantiated them to modify the
design case to address the given problem. Balazs and Brown
(2002) developed a scheme for using SBF models to support
analogical simplification of design problems.

Altshuller’s (1984) TRIZ method often is viewed as a fun-
damental process of creative design in engineering. We con-
jectured that Ideal’s method of model-based analogy might
be a complementary process of creative design (Goel,
1997). Ideal learns BF models of design patterns from design
cases such as the patterns of various kinds of feedback and
feedforward. It uses these patterns to address cross-domain
analogies in which a pattern learned in one domain is used
to address a design problem in a different domain (Goel &
Bhatta, 2004). As Ideal thus generates new designs, it encap-
sulates them as new design cases and stores them in its case
library for potential reuse. It uses the SBF models of the de-
sign cases to learn the indices to the new cases (Bhatta &
Goel, 1996b). This work resulted in two additional principles
for functional modeling.

Principle 9: Functional modeling should cover not only
complex systems but also design- and domain-indepen-
dent abstract processes, patterns, and principles that sys-
tems embody.

Principle 10: Functional modeling should support learning
tasks in addition to memory and problem-solving tasks.
Learning tasks include learning of design cases and case
indices, learning of abstract design patterns, and learn-
ing of abstraction hierarchies.

6. ENVIRONMENTALLY BOUND SBF (ESBF)
MODELS OF SYSTEM–ENVIRONMENT
INTERACTIONS

Chandrasekaran and Josephson (2000) describe device-cen-
tric and environment-centric views of functions of complex

Fig. 5. (a) A functional description of the cascade design pattern and (b) a
behavioral description of the cascade design pattern.
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systems. In their revised FR scheme, while function in the
device-centric view is an abstraction of the internal causal
behaviors of the system, in the environment-centric view, a
function is an effect of the system on its external environment.

In parallel, Sattiraju Prabhakar developed ESBF models
that capture an environment-centric view of complex systems
(Prabhakar & Goel, 1996, 1998). Prabhakar noted that earlier
notions of functions were limited to systems whose external
environments play only a limited and passive role in the func-
tioning of the system. For such systems, it was possible to ab-
stract the system–environment interactions into Given and
Makes states of the system and stimuli from the environment
to the system. This is a system-centric view of function. How-
ever, the external environment plays an important and active
role in the functioning of many systems. Consider, for ex-
ample, an air-conditioning system for a room that can be
mounted in a window. The function of the air conditioner is
to lower the temperature in a room. Note that this function
is the result of both internal causal behaviors of the air condi-
tioner and behaviors in its external environment (e.g., heat
sources and air currents in the room). This is an environment-
centric view of function of a system: function as an abstraction
of a state change in the system’s external environment. Thus,
we extended SBF models into ESBF models (Prabhakar &
Goel, 1996, 1998). This results in another principle:

Principle 11: Functional models should support multiple
perspectives on a system, such as system-centric and
environment-centric perspectives.

7. DSSBF MODELS OF DESIGN DRAWINGS

Let us consider the vector-graphics drawing illustrated in
Figure 6a. Designers make drawings like this using compu-
ter-aided design (CAD) tools. If CAD programs could under-
stand such drawings, then they could interactively aid the con-
struction of such drawings, check if the design depicted in the

drawing is functionally and behaviorally correct, and acquire
functional and behavioral knowledge from design drawings.

For his PhD dissertation at Georgia Tech, Yaner (2007) de-
veloped the technique of compositional analogy for under-
standing design drawings. An intelligent agent called Archytas
implements and evaluates the method of compositional anal-
ogy (Yaner & Goel, 2007a, 2007b, 2008). Archytas constructs
SBF models of the design depicted in a drawing such as the one
in Figure 6a in analogy to known SBF models of similar de-
signs stored in a case library. For example, if Archytas’s case
library contains an SBF model of the design illustrated in
Figure 6b, then it can transfer and adapt the SBF of the known
design to construct an SBF model of the new design illustrated
in Figure 6a. (Briefly, the function of the piston and the crank-
shaft system illustrated in Fig. 6b is to convert translational mo-
tion into rotational motion: as the piston moves linearly inside
the cylinder depicted on the left of the figure, it generates angu-
lar motion in the crankshaft depicted on the right of the figure.
The function of the new piston and crankshaft system illustrated
in Fig. 6a is to generate rotational motion in two crankshafts.)

To support analogical transfer of the SBF model of a source
drawing to a target drawing, Yaner extended SBF models to in-
clude drawings and shapes, resulting in DSSBF models. Fig-
ure 7 illustrates the DSSBF scheme. Note that just as behavior
is an intermediate level of abstraction between structure and
function, shape and spatial relations are an intermediate abstrac-
tion between drawings and structure, and further, structure now
is an intermediate abstraction between shapes and behavior.
Thus, DSSBF models form an abstraction hierarchy from draw-
ings to function. Therefore, DSSBF models explicitly link func-
tional knowledge to visuospatial knowledge. Anthony et al.
(2001) describe another scheme for coupling SBF models
and visuospatial knowledge of engineering systems.

Fig. 6. (a) A target design drawing requiring interpretation and (b) a source
drawing in a case library for which a structure–behavior–function model is
known.

Fig. 7. The abstraction hierarchy of drawing–shape–structure–behavior–
function models.
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The method of compositional analogy first gathers individ-
ual lines, arcs, and intersection points in the target drawing
into shapes and then finds mappings between the source
drawing and the target drawing at this level of intersections.
Then it groups these mappings and transfers shapes from
the source drawing to the target drawing. Next, it finds a map-
ping between the source and target drawings at the level of the
shapes and transfers the structural model from the source
drawing to the target drawing. Thus, compositional analogy
finds semantic labels for the components and connections
in the unlabeled target drawing. Next, it finds a mapping be-
tween the source and target drawings at the structure level and
transfers the behavioral model from the source to the target,
and so on, all the way up to the level of function. Analogical
mapping and transfer thus are iterative, working up to each
level of the abstraction hierarchy of the DSSBF model, hence
the name compositional analogy. This work leads to three
more principles for functional modeling.

Principle 12: Functional reasoning should be coupled with
visuospatial reasoning. Functional knowledge should be
grounded in visuospatial knowledge.

Principle 13: Functional, behavioral, structural, and vis-
uospatial knowledge form an abstraction hierarchy.
Just as behaviors are an intermediate level of abstraction
between structure and function, structure is an inter-
mediate abstraction level between causal behaviors and
spatial relations among shapes.

Principle 14: Functional models should support analogical
mapping and transfer. In particular, mappings at one
level of abstraction in the abstraction hierarchy of a func-
tional model can support transfer at a higher abstraction
level.

8. FORMALIZATION OF THE SBF MODELING
LANGUAGE

One difficulty in comparing various FRs is that often they are
specified only informally. My Georgia Tech colleague Spen-
cer Rugaber used Backus–Naur form to formally specify the
syntax and structural semantics of the SBF modeling lan-
guage (Goel, 2009). Figure 8 illustrates a partial specification
of function in the Backus–Naur notation.

This leads to another principle.

Principle 15: For clarity and precision, functional models
should be specified in a formal language.

9. DISCUSSION AND CONCLUSIONS

In this article, we have tried to articulate the core principles of
a specific cognitively oriented AI methodology for functional
modeling by analyzing what remained stable in the evolution
of SBF modeling over nearly 30 years, and what changed,
how, and why. Table 1 summarizes the changes in the notion
of functions of complex systems from SBF models (described
in Section 4), to BF models (Section 5), to ESBF models
(Section 6), to DSSBF models (Section 7).

There are two primary reasons for these changes. First, our
notion of function changed from SBF models to ESBF mod-
els because of the expansion in the class of complex systems
under consideration. Initially, we analyzed systems in which
the external environment played only a limited and passive
role. For such systems, system–environment interactions
could be abstracted as states of the system and stimuli from
the environment to the system. As we analyzed the function-
ing of systems in which behaviors in the environment played

Fig. 8. Specification of function in a structure–behavior–function (SBF) model.
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a significant role, we developed an environment-centric view
of system functioning, with system function as an abstraction
of a state change in the environment.

Second, the other main reason for changes in our notion of
function from SBF models to BF models to DSSBF models is
the expansion in the range of tasks under consideration. Ini-
tially, we addressed the task of adaptive design (i.e., genera-
tion of conceptual designs by retrieving and adapting similar
design cases from the same domain). To address this task, we
used an ontology of components, substances, states, and
functions, to expand the FR scheme into SBF models.
Then, we addressed the task of analogical design (i.e., genera-
tion of conceptual designs by transferring design patterns
across domains). To address this task, we abstracted BF mod-
els from SBF models to capture design- and domain-indepen-
dent design patterns. Next, we addressed the task of under-
standing design drawings by constructing SBF models of
the design depicted in a drawing. To address this task, we ex-
tended SBF models of systems into DSSBF models that cou-
pled SBF models with visuospatial knowledge of the system.

9.1. Methodological principles

Table 2 summarizes the 15 principles for an AI methodology
for functional modeling enumerated above. Although I have
not mentioned it explicitly, a functional model of a system
should be correct and accurate. Because this principle is com-
mon to all modeling methodologies, we may call it the Zeroth
Principle of functional modeling.

We now briefly elaborate on six of these principles, which
are six basic, core principles not always followed in func-
tional modeling.

Principle 1: Functional models are constructed to support
functional reasoning. Any theory of functional model-
ing needs to be situated in a theory of functional reason-
ing: the whys, whats and hows of functional reasoning
are good starting points for answering the whys, whats
and hows of functional models.

Functional models of complex systems and functional reason-
ing about the systems are closely intertwined. Functional

models, and meanings of functions, are constructed to sup-
port functional reasoning (and not the other way around).
However, in the literature, functional models often are com-
pared relative to various notions of function or classes of sys-
tems. Although this coverage of systems is important, the use-
fulness of a functional model, or of a meaning of function, for
reasoning tasks is even more important. We hope that the
analysis presented in this paper exposes this constraint
clearly. Thus, as the task requirements on functional reason-
ing in our work evolved from adaptive design to analogical
design, so did the FRs from SBF models of design cases to
BF models of design patterns. Similarly, as the task require-
ments on functional reasoning evolved to understanding the
functioning of systems depicted in design drawings, so did
the FR from SBF models to DSSBF models. It follows that
the functional models we have described here likely will con-

Table 2. Fifteen methodological principle for functional
modeling

Issues Principles

Basics of functional
models

Principle 1 (functional reasoning)
Principle 2 (functional decomposition)
Principle 3 (functional explanation)

Basics of modeling
methodology

Principle 6 (experimental evaluation)
Principle 15 (formalization)

Abstractions Principle 4 (behavior)
Principle 9 (patterns)
Principle 13 (abstraction hierarchy)

Modality of reasoning Principle 11 (functional and visuospatial
reasoning)

Ontology Principle 8 (ontology of states and functions)
Principle 9 (ontology of patterns)

Knowledge and memory
organization

Principle 5 (functions as indices to behaviors)
Principle 7 (functions as indices to design

cases)
Analogy and learning Principle 10 (learning cases, indices, patterns,

abstractions)
Principle 14 (analogical mapping and transfer

in an abstraction hierarchy)
Perspectives Principle 11 (system and environment centric

views)

Table 1. Summary of evolution in our notion of function

Name of Model Primary References Notions of Function

Structure–behavior–function model Goel (1992), Goel & Stroulia (1996), Goel,
Bhatta, & Stroulia (1997)

An intended output behavior of a system; an
abstraction of an internal causal behavior

Behavior-Function Model Bhatta & Goel (1994, 1996a, 1996b, 1997) An abstraction of a design pattern; a design
adaptation goal

Environmentally bound structure–behavior–
function model

Prabhakar & Goel (1996, 1998) An abstraction of a state change in the external
environment of a system; an effect of the
system on the environment

Drawing–shape–structure–behavior-function model Yaner & Goel (2006, 2007a, 2007b) An intended output behavior of a system; an
abstraction of visuospatial knowledge
through an abstraction hierarchy
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tinue to evolve as we address increasingly complex tasks en-
tailing functional reasoning.

Principle 6: Theories of functional modeling need to be
evaluated through experimentation. Construction of
knowledge systems for automated reasoning is one ex-
perimental method for testing, refining, and revising
functional models.

Theories of functional modeling should be empirically
grounded. In particular, theories of functional modeling
must be experimentally evaluated. Empirical studies can
cover a wide spectrum, ranging from immersive cultural stud-
ies to controlled psychological experiments to neuroimaging
to interactive CAD tools to automated reasoning in knowl-
edge systems. Irrespective of the experimental method cho-
sen, it is critical to evaluate theories of functional modeling.
Nevertheless, many functional models in the literature remain
empirically unevaluated.

Principle 7: Functional modeling should support memory
tasks in addition to problem-solving and decision-mak-
ing tasks. Memory tasks include case indexing, retrieval,
and storage.

Reasoning about complex systems often is characterized in
terms of problem solving, decision making, constraint satis-
faction, and so on. Conceptual design, for example, is often
characterized as a kind of problem solving or a kind of deci-
sion making. From a cognitive perspective, these views ap-
pear limited as well as limiting: design also engages memory
and learning, for example. When we view design as decision
making, we tend to develop representations that support the
decision making and not necessarily memory. In our work,
functional models play multiple roles in memory organiza-
tion. For example, in adaptive design (the Kritik system)
and analogical design (the Ideal system), functions acted as
indices to design cases stored in a case library so that the right
cases could be retrieved to achieve a desired function. Fur-
ther, in analogical design, functions acted as indices to design
patterns so that the right design pattern could be retrieved for
analogical transfer.

Principle 10: Functional modeling should support learning
tasks in addition to memory and problem-solving tasks.
Learning tasks include learning of design cases and case
indices, learning of abstract design patterns, and learn-
ing of abstraction hierarchies.

Our argument for use of functional models for learning tasks
is similar to the one for their use in memory tasks. While the
literature on functional models for supporting problem solv-
ing and decision making is very rich, the literature on func-
tional models for supporting learning is quite sparse. Never-
theless, each episode of conceptual design also engages
learning, both during and after the episode. In our work, in

both within-domain case-based design and cross-domain an-
alogical design, functional models of design cases enable the
learning of indices to the cases for storing them in memory.
Further, in our work on cross-domain analogical design,
functional models of design cases enable the learning of de-
sign patterns. Like memory tasks, learning tasks impose
important constraints on functional modeling.

Principle 12: Functional reasoning should be coupled with
visuospatial reasoning. Functional knowledge should be
grounded in visuospatial knowledge.

Reasoning about complex systems typically engages not only
functional and causal reasoning but also visuospatial reason-
ing (e.g., Ferguson, 1992). For example, visuospatial reason-
ing often plays an early and important role in adaptive design
as well as redesign, yet the literature on functional reasoning
in general does not directly connect functional models with
visuospatial knowledge. On the contrary, knowledge of func-
tions in most functional models is viewed as amodal (i.e., sep-
arated from any perceptual modality). In our work on DSSBF
models, functional knowledge is grounded in visuospatial
knowledge and functional reasoning is coupled with visuo-
spatial reasoning.

Principle 15: For clarity and precision, functional models
should be specified in a formal language.

Comparison and evaluation of functional models requires
precise specification of the models. Symbolic logic, graph
theory, and set theory are among many mathematical formal-
isms available for specifying functional models, yet many
functional models are specified only informally in the litera-
ture.

9.2. Implications of the AI methodology

We posit two sets of implications of the above cognitively
oriented AI methodology for functional modeling. First, it
helps clarify the relationship between our SBF models and
functional models developed using other methodologies.
Let us consider, for example, Pahl and Beitz’s (1996) func-
tional models of technological systems. We see many deep
commonalities and broad similarities between Pahl and
Beitz’s functional models and our SBF models, for example,
explicit representation of functions, functional decomposi-
tion, and flow of substances in SBF models and flow of ma-
terial, energy, and information in Pahl and Beitz’s models. Of
course, there are also some differences that arise in part due to
different goals and methodologies. Pahl and Beitz’s theory of
systematic design is prescriptive, and their functional models
are intended to support the prescribed design methods. In
contrast, our theories of case-based design and analogical de-
sign are descriptive. Further, Pahl and Beitz’s functional
models, like the technological systems themselves, are exter-
nal to the human mind. In contrast, in our research, the SBF
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models typically are inside the “mind” of intelligent agent
and, at least hypothetically, inside the human mind as well:
that is, the SBF models are also hypotheses about mental
models.

These differences between the goals and methodologies
lead to different modeling constraints and affordances. For
example, one of the key constraints in Pahl and Beitz’s
(1996) methodology is accuracy and scalability of their func-
tional models. Thus, they emphasize the importance of sys-
tem ontology for constructing high-fidelity external represen-
tations of large-scale systems. Further, they tend to evaluate a
model’s representational vocabulary by its coverage of differ-
ent classes of technological systems. In contrast, one of the
key constraints in our work is explanation and tractability
of functional reasoning. Thus, our work on functional models
emphasizes the importance of knowledge abstraction (e.g.,
BF models of design patterns), organization (e.g., DSSBF
models), and localization of reasoning (e.g., functions acting
as indices to behaviors responsible for accomplishing the
functions and annotations on transitions acting as indices to
functions of subsystems). Furthermore, it tends to evaluate
functional reasoning by its coverage of functional reasoning,
including problem-solving, memory, and learning tasks. Al-
though we made the above comparisons in the context of
Pahl and Beitz’s functional models, they are equally applic-
able to other functional modeling schemes that share Pahl
and Beitz’s goals and methodologies, for example, Hubka
and Eder (1988).

We should state explicitly and specifically that we are not
arguing that our methodology for functional modeling is
“right” or that the our functional models are “better” than
those developed using other methodologies. Instead, we
view the two sets of goals and methodologies as complemen-
tary to each other. Chandrasekaran (2005) suggests one kind
of complementarity between them: Pahl and Beitz’s (1996)
functional models, for example, may provide domain-spe-
cific libraries of technological functions and structures, and
our methods of functional reasoning may provide computa-
tional methods for automated reasoning with the libraries.
We conjecture that construction of interactive tools for aiding
humans in complex tasks such as conceptual design will re-
quire both high-fidelity modeling of large-scale complex sys-
tems and a deep understanding of human reasoning about
functioning of complex systems. A challenging question is
how to translate these complementarities into interactive
tools for supporting design practice. This is a central issue
in our current work on biologically inspired design (Goel
et al., 2012).

The second set of implications of our AI methodology for
functional modeling pertains to various meanings of function.
We begin by noting that the evolution of SBF modeling illus-
trates three different kinds of meaning of function. First, the
meaning of function may lie in the objects, relations, and pro-
cesses in the real world to which the function refers (i.e., for
which the function stands in the functional model). For exam-
ple, the representation of function in the SBF model of the gy-

roscope follow-up illustrated in Figure 3a refers to, and stands
for, specific objects, relations, and states in the actual gyro-
scope follow-up. This meaning of function is the meaning
commonly used in functional modeling, including in the
companion targets articles of Vermaas and Eckert. Second,
the meaning of function may lie in the invocation of related
concepts. For example, the representation of function in the
SBF model of the gyroscope follow-up illustrated in
Figure 3a indexes and invokes in memory the behavior that
accomplishes the function. Similarly, the functional annota-
tions on the behavior illustrated in Figure 3b index and invoke
in memory specific functions of specific components of the
gyroscope follow-up. Third, the meaning of function may
lie in the inferences it enables. For example, given a specific
design scenario of finely regulating the angular momentum of
the gyroscope follow-up, the representation of the goal of the
design pattern of cascading in Figure 4a enables inferences
about whether or not the pattern is applicable to the scenario.
Similarly, the representation of the design strategy in
Figure 4b enables inferences about the application of the strat-
egy to the given design scenario.

As Table 1 indicates, our work on SBF modeling sub-
scribes not only to all three kinds of meanings of functions
but also to several different meanings of function of the three
kinds. Although we arrived at the different meanings at differ-
ent points in the evolution of SBF modeling, the latter mean-
ings augmented the earlier meanings instead of replacing
them. We see no contradiction in the coexistence of different
meanings of function. According to our Principle 1 of func-
tional modeling, functional models, and meanings of func-
tions, are constructed to support functional reasoning. Func-
tional reasoning, whether in human cognition or in intelligent
agents, is complex and makes many demands on problem
solving and decision making, attention and perception, mem-
ory and learning. As and when feasible, functional reasoning
makes opportunistic use of the different meanings of function
in the available knowledge; as and when needed, it strategi-
cally re-represents knowledge and constructs new meanings
of function. Thus, we see different meanings of function
not as an obstacle to functional modeling but as a critical
source of the power of functional reasoning.
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