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ABSTRACT. Ice-sheet surfaces have scales of fluctuation that are similar to the
diameter of the area illuminated by a satellite radar altimeter. The present theory of
altimetry, developed to describe scattering from the ocean surface. does not deal
properly with the geometry of ice-sheet surfaces. In this paper, the theory of altimetry
is extended to cover this geometry. A general relation for the altimeter echo from a
surface of unknown geometry is developed, including the effects of the penetration of
the surface by the radar waves. This expression is linearized, using the characteristic
operating geometry of satellite altimeters and the gentle nature of ice-sheet gradients.
From this expression, an integral equation is derived, from whose solution the spatial
average of the height of the surface relative to a spherical datum can be determined.
The integral equation is of a Volterra type, which permits the uniqueness of the
solution for the average height to be investigated simply. The method is extended to
provide a solution for the spatial average of the height of a local region of the ice sheet,
provided the region remains large in comparison with the arca illuminated by the
altimeter, and to deal with variations in the antenna boresight alignment. The results
have a number of implications for the collection and reduction of echoes in an
experiment to determine the average height of an ice sheet. The unique determination
of the average height requires the echo to be known over a time interval that depends
on the extrema of the surface, which therefore must be known a priori. The average
height itself can be determined by the operation on the echo of a linear operator whose
kernel is derived from the solution of the Volterra-type equation. This marks a change

from the procedures currently used in practice to reduce echoes from ice sheets.

1. LIST OF SYMBOLS

A

fo
h
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Jits See Equation (63)
Iy, See Equation (73)
Arca of the projection of the ice surface on to Iy Bessel function of imaginary argument
the reference sphere (Abramowitz and Stegun, 1965, section 9.6)
Velocity of propagation in air 1 See Equation (86)
Velocity of propagation in ice J See Equation (54)
See Equation (58) JWL See Equation (87)
Height of the surface above the reference J See Equation (88)
sphere Jwi See paragraph following Equation (90)
Maximum height of the surface above the k See Equation (49)
reference sphere ky Extinction coefficient of ice
Minimum height of the surface above the ky Power-transmission loss at interface
reference sphere L(#) Power-transmission loss along a path length ¢
See Equation (95) P Echo power
Average height of the surface above the Pa Time-advanced echo power
reference sphere i Incident-power density
Weighted average height of the surface above P See Equation (48)
the reference sphere pw See Equation (61)
Altimeter power gain PsA Echo-power density at the altimeter antenna
Satellite altitude above the reference sphere from a surface element
A constant satellite altitude above the Psv Echo-power density at the altimeter antenna
reference sphere from a volume element
Location of the satellite q Transmitted power envelope
See Equation (44) q See Equation (37)
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N See Equation (60)

r(A,B) Distance between two points A and B

R Radius of the reference sphere

s See Equation (53)

i Time

to See paragraph succeeding Equation (50)

ly See paragraph succeeding Equation (50)

T, Duration of transmitted power envelope

T Minimum time for which the advanced echo
1s known

Ty Maximum time for which the advanced echo
is known

U See Equation (89)

T, Ty, Ta, T3 Solutions of Equation (51)

7] Solution of Equation (53)

2 Elevation measured normally to the reference
sphere

6A Area of a surface element

oh The departure of the satellite altitude from

the constant altitude hg

85,685, 88" See paragraph preceding Equation (23)

ov Volume of an element of ice

A Angle between tangent planes of the local
and geocentric spheres

The angle subtended by points A and B at
the centre of the reference sphere

ow Angular width of the weighting function

6(A, B)

O(H, A) The angle subtended at the altimeter by the
point A and the antenna boresight

e See Equation (77)

A Transmitted carrier wavelength

a’ Surface back-scattering coeflicient

o Volume back-scattering coefficient

A% Angle between the ice surface and the
tangent plane to the reference sphere

n See Equation (20)

K See Equation (76)

2. INTRODUCTION

The mapping of the ice sheets and ice shelves of
Antarctica and Greenland by satellite altimetry has,
for the past 15 years, exploited measurements from an
experimental design developed in the 1970s to
determine the shape of the marine geoid (McGoogan,
1975). This design arose from the theoretical under-
standing, developed at the time and brought to a
closed form by Brown (1977), of the shape of the
altimeter echo from the ocean surface. This under-
standing allowed the mean height of the ocean surface
to be determined uniquely from a truncated measure-
ment of the echo. It has long been recognized (see e.g.
Robin and others, 1983) that the geometric differences
between the shape of the geoid and the shape of an ice
sheet introduce a uniqueness problem in extending the
experimental method to ice sheets. However, no
extension to the theory of altimetry has been given
that would permit the problem to be closed in theory,
nor has any usefully general description been given of
what assumptions are needed to close the problem in
practice.

The theory of Brown (1977) requires the surface to
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have two widely separated scales of surface undulation.
The diameter of the area illuminated by the altimeter
is assumed much smaller than the larger scale and
much larger than the smaller scale. The smaller-scale
undulations, termed roughness, are assumed to have a
known probability density function. The larger-scale
undulation can then be regarded as the ensemble mean
of the roughness, which is small enough in scale that its
effect on the altimeter echo can be taken to equal the
ensemble mean echo. Ice sheets, however, have
topography over a wide range of spatial scales which
includes the diameter of the arca illuminated by the
altimeter. In this circumstance, statistical arguments
are of limited use, because the interchange of a spatial
average and an ensemble average is no longer a simple
matter.

The purpose of this paper is to extend the theory of
alimetry to deal with topographic surfaces, without
depending on statistical arguments or constraints on the
scale of undulation. In particular, we seek to answer the
following four questions: What is the relation between the
altimeter echo and the height of a topographic surface?
Can a method be found for the inversion of this relation-
ship for the average height? In what circumstances is the
result of this inversion unique? What do the answers to
these questions imply for the design of an experiment to
determine the average height of ice sheets?

In section 3, the first of these questions is dealt with.
A general expression for the echo from a topographic
surface is given, including the effects of the radar
penetration of the surface discovered by Ridley and
Partington (1988). The surface height, relative to a
spherical datum, enters this expression in an extremely
complicated way and the remainder of the section is
devoted to using the special character of satellite-
altimeter geometry to simplify the height-dependence
of the echo. In section 4, the spatial average of the height
is introduced. The task of determining it from the echo is
reduced in section 4.1 to solving an integral equation
with a Volterra kernel. The form of the kernel allows us
to deal simply in section 4.2 with the issue of uniqueness,
which turns out to depend on the echo gating. In section
4.3 we show how simple modifications allow the area
over which the average is formed to be varied. These
results are restricted to the case where the antenna
boresight is maintained normal to the datum sphere, so
in section 4.4 we lift this restriction. In section 3, the
implications for the collection and reduction of altimeter
echoes are discussed, we comment on the methods of
reduction employed presently in practical reconstruction
schemes and we summarize the limitations of the
method. Finally, in section 6 we present some conclu-
sions.

The results of this work should find their most
important practical application in helping to constrain
the mass balances of the large ice sheets of Antarctica and
Greenland, where it is the variation with time in the
height averaged over large length scales that is principally
of interest. We do, in passing, consider the determination
of the height itsell. However, one of the results of this
paper is that the determination of the height is a more
complicated problem which deserves a separate treatment
in its own right.
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3. THE FORWARD PROBLEM

The problem we consider in this paper is to determine the
average height of an ice sheet from observations of the
radar echo scattered from its surface. This problem is in
two parts. The first part, the forward problem, is to form
an integral expression for the echo. The second part, the
inverse problem, is to solve the integral expression for the
average height. The forward problem is the task of this
section; the inverse problem is dealt with in section 4.

Inverse problems are generally very much simpler if
they can be linearized. The main task of this section is to
give approximate forms for the echo thar allow us to
approach the inverse problem within a linear framework.
We start by giving a general expression for the echo [rom
an ice sheet that contributes surface- and volume-scatter
to the echo. We then make a number of approximations
to arrive at a form suitable for linear inversion.

3.1. The altimeter echo; the basis for its
approximation

The general arrangement is shown in Figure 1. An
altimeter at the point H transmits a pulse ¢(t) of duration
T,. (A list of symbols is given in section 1.) The pulse
travels out towards the surface at velocity ¢, occupying at
any time a spherical shell of radius ¢t and thickness ¢T5,.
The pulse amplitude is modulated by the antenna-gain
pattern g(sin(#)), where 8 is the angle subtended by the
antenna boresight and a line joining the point H to a
point on the shell. The power per unit area pi(#) incident
at a point P on the air-ice interface a path length 7(H, P)
from H is

g(sin(0(H, P)))q(t — r(H,P)/c)

Pi(H,Pyt) = 4mr2(H, P) 2 Al

There are two contributions to the echo scattered back
to the altimeter. One is a contribution from the air-ice
interface. This is modelled with a surface back-scattering
coefficient 0, such that the power per unit area incident
at H, scattered from an area element A4 of the surface, is

a'pi(H, Pt — r(H,P)/c)é A

poa(H, Pit) = 472 (H, P)
~ o'g(sin(0(H,P)))q(t — 2r(H,P)/c)6 A @)
B (47)*r4(H, P)

where the second line uses Equation (1).

The second contribution to the echo comes from
energy that penetrates the interface and is scattered from
a volume element around a point Q within the volume of
the ice. Before reaching the point Q, the incident energy is
first reduced by a factor ki in passing the interface at P/,
Since, later, we shall assume all angles of incidence are
small, we shall neglect refraction at the interface and, in
this case, P’ is the point of intersection of the line HQ and
the surface. Within the volume of the ice. the pulse travels
at a velocity ¢j. Travelling within the ice, the pulse is
further reduced by losses L in traversing the path length
r(P’.Q). To model the loss experienced along a path
length £, we follow Ridley and Partington (1988), and usc
an exponential decay law
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Fig. 1. The geometry of a radar-altimeter measurement of
an ice sheet. Power {ransmitted from an altimeter at the
point ] receives power scattered from a point P on the
surface of the ice sheet. Power reaching P is reduced by the
inverse square of the path length v(H,P) and power
scattered back to the altimeter suffers a_further reduction by
the same factor. Power entering the ice is scattered from a
point Q within the body of the ice. In reaching Q from the
point P and returning to the point P’ , the power suffers an
additional attenuation thal is a_function of the path length
(P, Q). The power received by the altimeter is modulated
by the antenna gain of the altimeter, which is a_function of
the angle O subtended by the direction of the antenna
boresight and the line joining H to the scattering point. The
points O, N and M are described in the text. Note that the
geomelry is shown grossly distorted for clarity.

L(€) = exp(—hf) (3)

where Ej is termed the extinction coefficient. Assuming
that the interaction at the surface is weak enough that
forward scatter from the surface can be ignored, the
power per unit arca incident at the point Q is

pi(H, Q.t) = (g(sin(8(H, ')k exp|—kir (P, Q)]
q(t = r(HLP)/c— (P, Q)/a))
/(4w2(H. Q)). (4)

The scattering from the element around the point @ is
modelled with a volume back-scattering coeflicient .
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Encrgy scattered from Q and received at the altimeter
returns along the path HP'Q. The power per unit area
incident at H, scattered from a volume element 6V at Q, is

pov(H,Q,¢) = (oug(sin(B(H, P') ks exp[—hur (P, Q)]
Pi(H, Q. t = 7(H,P') e — r(P', Q) )8V )
[ amr*(5,Q))
= (cvlsin(8(H, P'))K; exp[~2kir(P', Q)]
qlt = 2(r(H, P')fe — (P, Q) /a))6V )
[(m)r'(H, Q) (5)

where the second line uses Equation (4).

From antenna theory (Collin and Zucker, 1969), a
power per unit area p, incident on the antenna from a
direction @ results in a received power Ag(sin 6)p,/(47),
where A is the transmitted carrier wavelength. The total
received power p is then the surface and volume
contributions integrated respectively over the surface
and volume of the ice:

p(H,t) :i—w ( /f dAg(sin(0(H, P)))psa (H, P, t)

Surface

+ f f dVg(sin(8(H, P")))psv (H, Q, t))

Volume

) (4):)3 ("n ff >

Surface

- (g (sin(6(H, P)))q(t — 2r(H,P)/<) ) / (r'(H, P))

+ ok [[[ av(g(sintoca, )

Volume

- exp[—2kr(P'Q)]g(t — 2(r(H,P")/c
(P, Q)/a))

[, Q))) . (6)

We term p the echo.

We will be concerned in section 4 to determine the
average height of the point P above a sphere, from
observations of the echo. For this purpose, we need to
relate the quantities in Equation (6) to the sphere shown
in Figure 1. Let the reference sphere have a radius R with
an origin at a point O. We use a coordinate system such
that any point X is then defined by the point Y lying at
the intersection of the line OX and the sphere, and the
height z of the point X, measured normal to the sphere.

Let M lie at the intersection of the line OP and the
sphere. The surface is then defined by the function

2= F(M). (7)

128

https://doi.org/10.3189/50022143000017822 Published online by Cambridge University Press

As it stands, f(M), the height of the surface and the
quantity of interest, enters Equation (6) in a very
complicated fashion. To simplify its dependence in
Equation (6), we shall make a number of geometric
approximations, whose bases we now discuss.

Let N lie at the intersection of the line OH and the
sphere as shown in Figure 1. Let z = h(N) describe the
satellite altitude. For a radar-altimeter satellite, the altitude
is typically 1000 km. Ice-sheet topographies range, typic-
ally, over a few kilometres. We assume, therefore, that

F oo e
e 1l ", (8)

The antenna-gain pattern of satellite altimeters is
chosen so that the power is appreciably non-zero only
within a small range of angles subtended at H, typically of
order 1°. We will assume that the boresight lies close to
the line HO. In determining the power received at H, one
therefore need only consider points P for which the angle
OHP is of the order of 1°, It will be convenient to express
this in terms of the radian angle ¢(N,M), subtended by
the points N and M at O. Specifically, we assume that

Rsing

~10-2
p 107 9)

The radius R of the reference sphere is not small. It is of
the order of an Earth radius, about 10000 km. We assume

h =4
—_—~ P 1
=~ 10 (10)

With Equation (9), this implies sin ¢ ~107".

The radial component of the orbit of satellite
altimeters does not vary greatly in comparison with the
satellite altitude. In view of this, let A(N) be described by
a perturbation 6h(N) about a constant height hy above
the sphere. We assume

—ne 102, (11)

The magnitude of the extinction coefficient near the
surface of ice sheets can vary considerably with carrier
frequency and surface conditions but a typical path
length will be of order 10 m. We assume that

hky ~ 107 (12)

The surface gradients of ice sheets, relative to the
tangent plane to the sphere, are small, rarely larger than
a few degrees. Denoting this gradient by tanV, we
assume that

tanV ~ 101, (13)

The last characteristic scale that is important to us is
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the duration T, of the pulse ¢. This is typically a few
nanoseconds. With the observation that the wave speed is
close to that of light in a vacuum, we assume

%N 10°. (14)

P

In the theory we develop in this paper, we will ignore
contributions to the integrands in Equation (6) that are
0(1072) or smaller. In the next section, Equation (6) is
approximated by truncating a series representation of
the arguments of the functions forming the integrand.
One needs, therefore, a method connecting the order of
approximation of an argument to the order of
approximation of a function. For this purpose, one
may observe that, for some function v(z), if one ignores a
term & in its argument, one is ignoring a term /(z)éz
in the function to first order; to determine the order of
the approximation to the integrand in Equation (6),
then, one needs an approximation for the magnitudes of
the functions ¢ and ¢'. We shall take the view that, if a
function wv(x) is appreciably non-zero over an extent z,
and, if it does not vary rapidly on scales of z., then one
may take »(x)/z. as an approximation to the size of
v/ (z). This is a reasonable assumption for theoretical
approximations to the functions that appear in Equation
(6) in practical altimetry. Specifically, we assume for the
function g that

g(RS;f‘“’ (1+...010™))
NQ(R*"::"b(l +...))(1+0(10-")) (15)

where we have used (R/h)sin¢ as the extent of g.
In the case of the pulse function ¢, one may use for its
extent the duration T},. Our assumption is that

q(t _ (%)(1 + ...0(10")))
Nq(t_ (%)(H...)) (1 +0(C%10-"))

- q(f - (%) {14 .))(1 +0(107"%)  (16)

where the second line uses Equation (14),
Finally, for the exponential in Equation (6), we asume

exp(—kih(1+... 0(10™™)))
~ exp(—hih(1 +...))(1 + O(kih10™"))
= exp(—kih(l+...))(L +0O(107")  (17)

where the second line uses Equation (12).

On comparing Equations (15), (16) and (17), one
notices the fact that the integrand of Equation (6) is very
much more sensitive to small changes to the ranges in the
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arguments of ¢ and the exponential than it is to small
changes in the angle in the argument of g. This is
characteristic of pulse-limited altimetry.

3.2. The Fresnel and related approximations

In this section., we simplify the way the height of the
surface enters the integral in Equation (6).

Starting with the path length 7(H,P), one has, on
applying the cosine rule to the triangle OHP,

r(HP) = ((R+h(N)? + (R + f0M))*

1

3

= 2(R + h(N))(R + f(M)) cos(4(N, M))) - (18)
Expanding the square root in Equation (14), one has

P(H,P) =

6h(N)  f(M) 2Rsin?(¢(N,M)/2)
h0(1+ o = o = ho?

: (1 +%‘i) +0(10—3)) . (19)

The factor 1 + hg/R will appear repeatedly, and we
introduce the notation

n= 1+h(]/R. (20)

From Equation (10), it is apparent that 77 is O(1).
For the terms in 7 that occur in the denominator of
Equation (6), one has, simply

= he'(1 + 0(1072)). (21)

This, with Equation (19), constitutes the Fresnel approx-
imation, widely used in the analysis of surface scattering
(a good example is Berry (1973)), although not, to date,
in altimetry theory.

We consider now the argument of the antenna-gain
pattern g. This is a function only of sin@(H, P). Later, we
derive, correct to the lowest order, the approximation
Equation (79) to sinf(H,P) for a more general case
which allows the antenna boresight to lie away from the
normal to the sphere. In the case that the antenna
boresight is normal to the sphere, this approximation
simplifies to give

sinf(H,P) = 2h—Rsin (@) (1+00107Y). (22

0

To deal with the area element 8 A of the surface, let 85
be an element of area of the sphere containing the point
M. Let 45" be the spherical projection of 8S on to a second
sphere with origin O that passes through the point P on
the surface. Let 65" be the planc projection of 65’ on to
the tangent plane to the second sphere at P; tan V is then
the gradient of the surface with respect to this plane. Let
0A be the plane projection of 65" on to the surface. Then,
as the area element A tends to zero,
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6A -V 1+ tan® V88" — /1 + tan® VS’
_ B*V1+tan’ V6§
~(R+ D)
= 65(1+0(107%)). (23)

The limits on the surface integral are now the spherical
projection of the ice surface on to the sphere.

Turning now to the volume integral on the RHS of

Equation (6), let M” lie at the intersection of the line OQ
with the sphere, and let M’ lie at the intersection of the line
OP’ with the sphere. This is shown in Figure 2. Let 2(Q) be
the height of the point Q above M". Since Q lies within the
volume, z(Q) < f(M"). The volume integral is compli-
cated by the fact that the location of the point P’ is an
implicit function of the position of the point ) and the
shape of the surface. To avoid this, we use below the gentle
gradients of ice sheets to show that we can replace the point
P’ with the point P”, lying at the intersection of the line
OQ and the surface. With this replacement, one then has

Sh(N) (M)
hg ho

'J"(I‘lj P’) = h[} (1 -+

o i T
| 2R%sin f(:ng,M )/2 +0(10-3)) -
0

fM") - 2(Q)

T{P"’ Q) = h(]( h,u

+ 0{10-*)) (25)
and

B, D)= gy (ﬂ;ﬁ) (1+0(10%). (26)

0

Fig. 2. The approximation to the path lengths v(H, P")
and 7(P', Q). The location of the point P' is determined
implicitly by the location of the point Q and the shape of
the surface. To avotd the difficulties this introduces, the
path lengths v(H,P') and v(P',Q) are replaced res-
pectively with the path lengths r(H,P") and v(P", Q).
The figure is grossly distorted for clarity.
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To sustain Equations (24), (25) and (26), one needs in
addition to the approximations we have already made

sin (N, M') = sinp(N,M") + O(107")  (27)
and

1) _ o)

102 .
- B +0(107%) (28)

For, with the Fresnel approximation, one has
6h(N)  f(M)

HP) =h|1
r( ) Ln( i 7 Yo By

P 2R*nsin®(4(N, M) /2)
h.gg

+ 0(10—8)) (29)

and substituting Equations (27) and (28) into Equation
(29) then gives Equation (24). Similarly, one has

f(NIl) s Z(Q) 2R277 W G
= - e (sin?(p(N,M")/2

(P, Q) = hn(
_ sin(6(N, M')/2)) + 0(10—**)) (30)

and Equation (25) then follows on substituting Equations
(27) and (28) mto Equaton (30). Equation (26) com-
bines the approximation of Equation (22) with Equation
L

Equation (27) needs the condition Equation (12) that
has not been used thus far. To obtain Equation (27), one
has on applying the sine rule to the triangle P'OQ

sin(¢(N,M") — ¢(N, M’))

(P, Q) sin(6(H, P') + (N, M)
u R+2Q) B

r(P’,Q) is the path length in the ice whose length is of
order 1/k. Using Equations (8) through (12), one finds
the quantity on the RHS is zero to order O(1077), which
is a bertter approximation than is neceded to sustain
Equation (27).

To obtain Equation (28), we suppose that P’ is close
to P, since Equation (27) tells us that
(N, M") — ¢(N,M') is a very small angle, and we
assume that the surface can be assumed locally plane
between P’ and P, Then, applying the sine rule to the
triangle OP'P”, one has

B+ f7)
cos(p(N,M") — ¢(N,M') + V)

_ R+ f(P) ;
~ eosV b2

Using Equations (13) and (27), one may obtain Equation
(28).

One has for the volume element
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2
—(RZ.EQ)) 5552(Q)

= 6862(Q)(1 + O(107%)). (33)

oV =

The volume integral is bounded above at 2(Q) = f(M").
The exponential loss into the volume allows one to make
the lower limit infinite.

Making the approximations, Equations (15), (16),
(17); (19); (21); (22), (23); (24), (25); (26) and (33);
together with the tidying substitution v = 2(f(M")
—2(Q))/ci, Equation (6) takes the form

NP 2 2R . (N, M)
I)(H,t) - ml //ngz (ESIll(T))

Surface

; {q(t e (h.u + oh(N) — f(M)
@

| 2Resin((N, 1\:1)/2)))

h[]

..+.

%€ yk - G
- ggnt / dv exp|—cikiv|
Jo

€

qft—v- f (Ro + 6h(N) — F(M)

. ZRzr']sinzj(i(N‘ 1\1)/2)) H

(34)

to O(1072).
3.3. The measurement interval

The echo p(H,t) is a function of time and space. The
boundaries of this space are important theoretically; they
impact directly on the question of the uniqueness of any
deduction from the echo concerning f. In practice, these
boundaries are determined by a number of complex
mteractions between the altimeter-control system and the
echoes. In this paper, we shall simplify these boundaries
with a view to illuminating the uniqueness issue. We shall
nonetheless find that the results have important practical
implications.

The time origin in Equation (34) is the instant of

transmission of the pulse. It is convenient to change this
origin by introducing the time-advanced echo

pa(H, 1) =p(H,t+§(hu FORN)) . (39)

This changes the time origin to the instant an echo from
the point N on the reference sphere is received at the
altimeter. We shall assume that the time-advanced echoes
are known over an interval of time t € [Tj, 71|, where T}
and 7T} are fixed constants.

Itis apparent from Equations (34) and (35) that the
function p,(H,t) is a function that depends on the
location of H only through the location of the point N
on the sphere, and may be written p,(N,¢). We shall
now assume that p,(N,#) is known over the entire
sphere.
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4. THE INVERSE PROBLEM

In this section, we are concerned with determining the
average height of the surface

f= %/f dS f(M) (36)

Surface

where “gyface’” 18 the projection of the surface on to the
sphere, and A is the area of the projection. We can,
equally, determine the quantity

g(t) = %f/ dSq(t +L(CM)) - (37)

Surface

With ¢(t) determined, f can be calculated. This
statement holds, because we may assume without loss of
generality (WLOG) that the function g(t) has the
properties

[ " dbale) =1 (38)

/"‘- ditq(t) = 0. (39)

o0

Equation (38) holds because ¢(f) is non-negative and
time-limited. The LLHS of Equation (38) therefore equals
a positive constant. If this constant does not equal unity,
one could replace g(t) with a normalized function such
that it did. One may assume Equation (39) holds because,
if it did not, one could always replace g(t) with a shifted
version of itself’ such that the new function satisfied
Equation (39). With Equations (38) and (39), one has

_i / / ds /:c dtfq(t+w)

Surface

G 2 ..
- 2/_1 dttq(t)

T
= f dS (M) (40)

Surface

and f can be determined from Equation (36).

The average height is to be determined from the
measurements p, (N, t) : t € [T), T1]; N € Sphere. For this
purpose. it is better to reformulate the expression for the
echo in a way that treats the function g(t — 2f(M)/c) as
the unknown. This is straightforward. With Equations
(34), (35) and the relation

ol = /'x gl 85 — 1) (a1)

T=—00
one has
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e 2 [ 2m o (S0NM)
(4m)’he* U_ Tf/ - (’Tusm( )

Surface

{ ( 4Ry sin?((N, M) /2))
A6l t—T—
Chn

3 2 o
clm’kt/ dv exp[—cikiv]

20’0 0

-6(t—fﬁv4R nsin®(o(N, M)/2)}

Ch-g
(o220

Equation (42) is a linear, integral equation for
q(t +2f(M)/c). Clearly, one could deal with the problem
by solving Equation (42) for g(t +2f(M)/c), and using
first Equation (37) and second Equation (40) to determine
the average height. This method of solution is certainly of
interest if one were concerned with the height of the surface
f- However, our interest is only in the average height, and
the central result of this paper is that a simpler solution is
available for the average height. Some practical aspects of
solving Equation (42) for the height have been given
elsewhere (Wingham and others, 1993).

In this section, we first derive a linear integral equation
for g(t). The form of this equation allows us to investigate
simply sufficient conditions for the unique recovery of the
average height from the altimeter echoes. In the remainder
of the section, we extend our results to determining the
average height of a local region and finding the average
height relative to a locally selected datum. These
extensions will later allow a relaxation in practice of the
criteria for an unique determination of the average height.

pa(N,t) =

t € [Ty, T1); N € Sphere. (42)

4.1. An integral equation for {(t); its solution space

To obtain an integral equation for §(t), we integrate both
sides of Equation (42), change the order of the
integrations on the RHS, and obtain

Nagd
f dSpa(N,t) = @t
Sphere
2f{M))
dr | dSq (
/ S;{é(‘
i 2 o0
; {I(M,t —T)-}-% J dv
I(ML L —T—v) exp[cik:tu]} te [Ty, T1] (43)
where
2R . r¢(N,M)
I(M, ) = ngz( ( ))
Sp[!ﬂ
-6(t— 4Ry sin®(¢(N, M)/Q) )
Chu
182
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To determine the function [, choose a polar
coordinate system with an origin at the point O and an
axis of rotation through the point M. Let ¢ and p be
respectively the polar and azimuthal angles of the point
N. One has that

& 2R p
I =R sin g’ | —sin (<
(M,t) =R /(; dysin g (hoqln(z))
e 4R?nsin’(p/2) fhdp
) chg 0
o . gl 28 . pe
=27rR2f desin pg? | =—sin (=
Meamn (hu (2))
4 t_4R2nsin2(cp/2)
Ch()

.

mengy e 9 ci

= dug™| 2 o(t—u
n /(; § ( 477hn) ( )

0 t¢[0,4R/(chy)|

(wcho/n))g?(v/ct/(nho) t € [0,4R*n/chy)].
(45)

Equation (45) gives two pieces ol information con-
cerning [ which are important to us. First, I is
independent of the location of the point M, which is
essential to the argument of this section. Secondly, [ is a
causal, time-limited function. Its causality simplifies the
questions of uniqueness we will consider in section 4.

The time-limiting of I arises because, for a spherical
surface, there is a minimum and a maximum interval
over which echoes may arrive at the altimeter,
corresponding to points on the sphere nearest to, and
farthest from the altimeter. The value of the upper limit
is incorrect, however, because in section 3.2 we
approximated the argument of the ¢ function in
Equation (44) by assuming that the angle ¢(N, M) was
small, which is not the case for points farthest from the
altimeter. The basis for assuming that ¢(N, M) is small is
that the antenna-gain pattern illuminates only a small
region of the sphere. Thus, by assumption, the gain
function ¢* in Equation (45) is negligible except for small
values of its argument, and one need be concerned only
with values of ¢ for which

et (46)

a relation that will be useful later on. Equation (46) is
simply a restatement of Equation (9). Equation (46)
limits the times of interest to values very much smaller
than the upper limit of the time interval in Equation (43),
and we will treat the function I as if it were one-sided,
rather than time-limited.

The RHS of Equation (43) may now be simplified.
One has
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e el dsq(ﬁﬁjﬂ)

Surface

i ykg B
SI(Mt—7) 4+ i f dvI(M,t — 7 — v) exp[—cik]
20’0 0

- A)\QO'U fx i

(4m)3hot J-oo

. 2 poo
.{I(t —-7)+ %f dvi(t — - u)exp[ciklu]}
0
AXeg? :

= d

(4m)°hg? /_x

v ‘t2 t—1
.{j(t ] asuk ./u‘ dvi(t—7—-v) exp[ciklf/]} (47)

q(7)

7q(7)

209

where the second line uses the independence of I on the
position of M and Equation (37), and the third line uses
the causality of 1.

Substitution of Equation (47) into the RHS of
Equation (43) gives the desired result. The introduction
of some notation, however, allows a more compressed
representation. Let us set

) = [[ aswpy.o

Sphere

on the LHS of Equation (43), and use

Ma'A
K =2
(4dm)” ho

. B
. {I(t) ..

to compress the RHS of Equation (47). Then, combining
Equations (43), (47), (48) and (49) provides

dvexp|—ekw|I(t — u)} (49)

pl) = f drk(t—7)g(r)  te[TT]  (50)

which is a linear integral equation for g(t).

To complete the specification of the problem, we now
constrain the interval of the solution of Equation (50). We
assume that there are two numbers fy and fi such that,
for all points M € Surface, f(M) € [fi, fo]. Since the
pulse q(t) has a duration T, the function g(t+
2f(M)/c) is necessarily zero for times less than —2f;/c
—T}, and greater than —2f, /¢ + T},. From Equation (37),
this is true too for g(t). Denoting these two times ¢ and t;
respectively, the solution interval of Equation (50) is res-
tricted to t € [t, 1]

4.2. The solution to Equation (50); its uniqueness

In this section, we consider solutions Z(t) : £ € [tg, 1] to
the equation
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p(t) = -/riE drk(t — 7)%(7) t e [Ty, 1. (51)

From Equation (50), this equation admits at least the
solution g(t), and we need not, therefore, consider the
question of existence. However, we need to be assured
that @(t) is the only solution. In what follows, we shall
assume we are working in an Ly space, which is sufficient
for our purposes.

The uniqueness of a solution to Equation (51)
depends, generally, on the relation of the measurement
interval [Ty, Ti] to the solution interval [ty,#;] and on the
properties of the function k(t).

The simplest result one has is the following. If 77 < 1,
the solution to Equation (51) is not unique. To show this,
let T;(t) :t € [to,t1] be a non-trivial function such that
Z1(t) =10,t € [tg,T1]- One has

t t
[ drk(t — 7)(g(t) + z1(t)) = [ drk(t — 7)q(t)

0
tE [ﬂ]?Tl]

= p(t) te [, Ty] (52)

showing (t) + Z,(t) : t € [to,t1] is a second solution of
Equation (51), and the result follows.

Next, consider the case Ty = t;, 77 = #; so that the
measurement and solution intervals are coincident. In
this case, the solution g(t) to Equation (51) is unique. To
show this, consider the equation

B(t) = kO)g(t) + ] drk(t—T)g(r) € [to,tl.

(53)

Differentiating both sides of Equation (51) with respect to
(WRT)t, and setting Ty = tg, T} = ¢; on the RHS, shows
that, in this case, any solution &(t):t€ [tp,t1] to
Equation (51) is also a solution to Equation (53). Thus,
to show that the solution g(t) to Equation (51) is unique,
it is sufficient to show that Equation (53) has a unique
solution. But Equation (53) is a second-kind Volterra

equation. The solution

w(t) —k—((g)hﬁ/% drjt— (1) L€ [to ]
(54)

exists and is unique (Whittaker and Watson, 1927,
p-221-22). Thus, Equation (51) has the unique solution
q(t). The function j(t) :t € [0,t; — to] in Equation (54)
may be determined by successive approximation or other
means.

Consider now the possibility that the measured
interval lies within the solution interval, that is T}, > g,
Iy =, Ty =10: 71 < 31 ov' T > to, i < ti.. In this case,
the solution is not unique. We have already established
that when T} < t;, the solution is not unique, so we need
only consider the case Ty > ty, 77 = t; to establish this
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result. For this, we make use again of the fact that
Equation (53) is a second-kind Volterra equation. Let
&(t) : t € [ty,t1] be a non-trivial function such §(ty) =0,
5(t) =0:t € [Ty, t1]. The Volterra equation

8'(t) = k(0)z3(t) + -/rll drk/(t — T)z3(r) ¢ € [to,ta]
(55)

has a solution @3(t) : £ € [tg, t1] that exists and is unique.
Integrating both sides of Equation (55) over t € [to, 1],
one obtains

Bl = /t “drk(t—)Es(r)  telmt]  (56)

on using the fact that $(tg) = 0. But when t € [Ty, 1],
Equation (56) becomes

ot
= / drkli—rimstr)  telfd] (60

because §(t) =0:t € [T, t1]. Clearly, there are many
functions we could choose for 3§(f). Thus, the homo-
geneous Equation (57) has non-trivial solutions, and thus
Equation (51) has more than one solution.

The results we have obtained are suflicient to reach
the main conclusion of this section, which is that the
average height of a surface may be determined uniquely
from observations of the advanced echo p.(N.t):
N € Sphere, t € [Ty, T1], provided the limits of the
observation interval satisfy Tj < ¢y,T) < ¢;. It is worth
stressing here that this uniqueness proof arises from the
general properties of linear equations; it does not carry
over if the assumptions we have made to linearize the
problem do not hold in any given situation.

It is not generally possible, however, to state that these
conditions on the measured interval are necessary. There
exists the possibility that cases for which Ty > £y, T > £
will provide unique solutions to Equation (51). When
Ty > tg, 11 > t), however, the equation analagous to
Equation (47) is no longer of the Volterra type, and the
situation is not straightforward. The uniqueness or
otherwise of solutions to Equation (51) depend on the
particular properties of the function k(f) (not on its
causality), which in turn depend on the particular form of
the antenna pattern, and these have to be investigated on
a case-hy-case basis. We would remark, however, that for
the antenna pattern introduced by Brown (1977), and
widely used since, as an approximation to practical
altimeter patterns, it turns out that the kernel is
separable, and in this case it is easy to demonstrate that
the conditions above are suflicient and necessary. (By
separable, we mean the kernel k(t — 7) may be written as
the product of a function of ¢ and a function of 7.)

4.3. Locally averaged topography

In the previous two sections, we described how the
average height of the surface may be determined. It may
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well be useful, however, to determine the average height
of a local region of the surface. This average will
obviously depend on the size of the region. As the region
becomes very small, the average height will tend to the
height itself. In this section, we wish to determine how
small the local region can be before the reduction of the
problem by integration to a one-dimensional integral
equation is no longer possible?

Let S be a point on the sphere, and let ¢(S, M) be the
angle subtended at the point O by the lines OS and OM.
Let Cexp(—(1 —cos(¢(S,M)))/ tan®(¢pw/2)) be a
weighting function, whcre the constant €' is chosen to

satisty
/ / dSex (

Surface

— cos ¢(S, M)) -

tan (dw /2 (08)

When ¢w is small, the argument of the exponential is
large and negative except when ¢(S, M) is small. In this
case, the weighting function behaves as exp(—2(¢(S, M)/
qbw)z). As ¢gw — m, the weighting function tends to unity
over the whole sphere. We define the local average of the
height to be

f“ A / dS exp(

Surface

—cos ¢(S, M) "
w700 09

and one may regard fw(S) as the height averaged over a
region around the point S, subtending the angle ¢w at the
point O. Corresponding to the function §(t) of Equation
(37), we introduce the function

S [ asexo (

Surface

qw(t) =
&

— cos (S, M)) q(t &

2f(M))
tan®(dw/2)

(60)

from which fy(S) can be determined in the manner of
Equation (40). We also introduce the function

pw(S, 1) /f dSy exp( Bk

tan? (dw /2
Sphere

)Pn(Nat)
(61)

in place of Equation (48).
We proceed along the same lines as in section 4.1.
Equation (43) is replaced by the equation

,\2 9 2 (M
h.()
Surface
- {Iw(s, M, t— T‘)
ao ke’ [

207 J, dvlw(S, M.t — 7 — v) exp[—cikiv/] }]

t € [Ty, T1] (62)


https://doi.org/10.3189/S0022143000017822

Wingham: Determining the average height of a large topographic ice sheet

where

N
Iw(S,M, £) f/ dSx Fxp( — <88, })

tan®(pw/2)
Sphere

ol 2R (N, M) AR*nsin®(p(N, M)/2
7 (hu m( 2 )>6(t chy )

(63)

To evaluate Iw, choose as before a polar coordinate
system with an axis of rotation OM, and let ¢ and p be
respectively the polar and azimuthal angles of the point
N. Let s and pg be the polar and azimuthal coordinates
of the point S. In this system, a standard result from
spherical geometry provides

cos (S, N) = cos ps €os @ + sin g sin g cos(p — ps) .
(64)

With the help of the integral in section
Gradsteyn and Ryzhik (1980), one has, on following the
steps of Equation (453) and Equation (46), that Iy is a
causal function whose value at non-negative times is

. mehy 2( ct ( 1 — cos g )
Iy (t,S, M —_—T
wi )= n g nho tan?(pw /2)

I sin _ singg hoct hoct
tan®(pw /2 R\ 4Ry

- hoct cos g
P\ T 2R tan® (9w /2)

(65)

where Iy is a Bessel function of imaginary argument.
Expanding in Equation (65) the Bessel function, using
equation (8.447.1) of Gradsteyn and Ryzhik (1980), and
the exponential, in powers of their argument, one has

sin _ sings hoct hoct
tan?(dw /2 Ry 4H3

hoct g
-exp(— oct Cos g )

2R2n tan®(gw/2)
~ 14t ('ﬂ)’ ‘"_t) (sin” g — 2 tan® (dw/2) cos pg)
N 4\ R nhy tan'(dw/2)

+o((%”)3 (%)2) (66)

Using Equations (10) and (46), it is apparent that
provided that tan(¢w/2) is not smaller than

tan(pw/2) ~ O(1071) (67)

the RHS of Equation (66) is 1 +O(107%), and therefore
that Equation (63) becomes

I;_i) 10)(1+0(10°).

I\\'(Sa I\f:[s t) = exp (_ tan‘g((ﬁ\\r/?

(68)
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8.431.3 of

Thus, Iy is a causal function whose dependence on the
position of the point M is, to an approximation consistent
with those already made, only through the multiplicative
weighting function.

Finally, following the remaining steps from Equations
(47) through (50), one arrives at

p“ (S f / dT’C t— T)Q'\\ (S T) te [Tg,Tﬂ (69)

in place of Equation (50). But for the leading constant,
Equation (69) is formally identical to Equation (50) and
has the same solution interval. When Ty < tp and T} > ¢,
qw(S.t) is determined uniquely by Equation (69), and
given by the formula

Cply (t) 2 1. .
AI:\(O) “1“%/’”(1”“ = 7)pw (S, 7)

t € [to,t] .  (70)

qw(S,t) =

Equation (67) gives an answer to the question with
which we opened this section. It shows that, if a local
average is formed over an area that subtends at the centre
of the Earth an angle very much larger than the angle
subtended by the area illuminated by the altimeter — two
orders of magnitude larger— the method carries over to
local averages. One can, however, argue that Equation
(67) is too conservative an estimate. Equation (67) ensures
that the approximation of Equation (68) holds for all
values of ws. However, the weighting function in Equation
(68) is negligible except for values of g less than or of the
same order as @w. Since we are concerned with small
values of pw, one may use sin® oW ~ 4tan2(¢\\:/2) n
Equation (66), in which case Equation (67) becomes

2

tan(gw/2) ~ 10, (i

Equation (71) describes an average formed over an
area that subtends at the centre of the Earth an angle an
order of magnitude larger than the angle subtended by
the area illuminated by the altimeter.

Finally, we remark that we have chosen a particular
weighting function so that approximations can be made
with a degree of definiteness. We suppose, however, that
the result does not depend strongly on this choice, and
any smoothly varying function would probably suflice,

4.4. A locally selected datum

Thus far, we have restricted our treatment to one in
which a single reference sphere is used. We now term this
sphere the geocentric sphere. There may be circum-
stances, however, when it is useful to consider using a
spherical datum surface whose origin varies with the
region of the local average. We term such a sphere the
local sphere. The use of a reference sphere chosen locally
complicates matters, because the antenna boresight will
not generally pass through the origin of the local sphere,
In this section, we extend the method to include this case,
assuming that the antenna boresight is held to pass
through the origin of the geocentric sphere.
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To form a local sphere, let O, lie at the centre of the
geocentric sphere, and let SG be a line making an angle A
with the tangent plane to the geocentric sphere at S. The
arrangement is shown in Figure 3. We shall assume that

A~1071. (72)

Fig. 3. The formation of a local datum sphere. The sphere
is _formed by rotating the line SOy through an angle A
about the point S. The point G, which lies in the tangent
plane at the point S to the local sphere, defines the plane of
rotation, In section 5, we will find there are practical
advantages in bringing the tangent plane of the local sphere
wnto coincidence with any regional trend in the ice-sheet
surface containing the point P. This is illustrated in the
Sfigure. The chowce of a local datum complicates the
problem, because the antenna boresight lies along the line
HO, and not, as previously, along the line HO. Note that
while the points O, Og, S and G are co-planar by
definition, the points H and P generally are not.

The points O, S and G define a plane. Rotate within this
plane through an angle A the line Og S about S in such a
way that a new line OS is formed normal to the direction
of SG. The local sphere is the sphere with centre O and
radius OS; its tangent plane at S contains SG. All our
previous geometric descriptions now apply to the local
sphere, so that the point O now lies at the centre of the
local sphere, the points M, N and S now refer to points on
the local sphere, and the satellite altitude is assumed
equal to the constant hy measured from the local sphere.

We now seek to find the local average height relative
to the local sphere. We proceed along the same lines as in
the preceding section. The change one needs to make is to
replace the function Iy in Equadon (63) with the
function
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IW'L(S,NI ff dSN exp(

Sphere

-g*(sinf(H,P))é (t

— cos ¢(8S, N))
tan®(pw/2)

4R’ nsin®((N, M)/2)
- che ) (73)

In the present case, the angle 6(H,P), on which
g(sin(H,P)) depends, is the angle subtended at H hy
the points P and Oy, and not, as previously, the angle
subtended at H by the points P and O.

We shall assume, for simplicity, that the radii of
the local sphere and geocentric sphere are equal.
The function sin(H,P) can be determined by
solving for the triangle O;PH. For this purpose,
set up a Cartesian coordinate system {z,y, z} with
an origin at the point O. Let the z axis coincide
with the line OS. Let the half-plane z > 0,y =0
contain the point Og. Then, the coordinates of the
point O are

{Rsin A,0,2Rsin*(A/2)},

the coordinates of the point P are

{(R + F(M)) sin ¢(S, M) cos p(S, M),
(R+ f(M))sin¢(S, M) sin p(S, M),
(R+ f(M)) coscb(S,M)}

and the coordinates of the point H are

{(R + ho) sin ¢(S, N) cos p(S, N),
(R + ho) sin ¢(S, N) sin p(S, N),
(R + hq) cosqﬁ(S,N)}.

In these expressions, p(S,M) and p(S, N) are respectively
the angles between the positive = axis and the projection
of the lines OM and ON on to the plane z = 0. With these
determinations, the lengths and angles of the triangle may
be found with some lengthy, but entirely straightforward,
algebra. The result 1s

sin0(H,P) = /1 — cos? 0(H, P); (74)
cos O(H, P) = [1 — (k(M)/n) cos(¢(N, M))
— (1/n){6(8,N) - (k(M)/n)6(S,M)}]
- (14 (5 (M) /m)*— 2 (M)/n}cos $(N,M)))
(1= (2/m)O(S,N) + 4/n)* sin®(A/2))) 2
(75)
where
k(M) = (1 +%) (76)
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with
(S, N) = sin Asin ¢(S,N) cos p(S, N)
+ 2sin®(A/2) cos ¢(S, N) (77)

and ©(S,M) is the function obtained by replacing N in
Equation (77) with M.

As previously, one looks for approximations to these
functions that will allow one to arrive at a separable form
for I'wy,, similar to Equation (68). However, the smallness
of the angles (N, M) and A are not sufficient for this.
One needs in addition to suppose that

#(S,N) ~ 1071, (78)

0), (72) and (78), one has

2 A
o
sin ( 5 )

(sin (S, N) cos p(S, N)

_ sin ¢)(S,M)cosp(S.M))] (79)

Then, with Equations (9), (1

2R
sin’

0

2 O(N,M)  hy®

sitif(H.P) = 9 Rt

hg sin A
2Rn

to O(10~2). Considering the integral of Equation (73) for
Iwi, one sees that this may be justified provided
tan(éw/2) is not of a larger order than

tan(ow/2) ~ 1071 (80)

for then the weighting function will ensure that only
values of ¢(S,N) of this order will contribute to the
integral. This constraint on tan(¢w/2) is consistent with
Equations (67) and (71).

Before proceeding, note that if one sets A=0 in
Equation (73), so that the geocentric and local spheres
are coincident and the antenna boresight is normal to
their surface, one obtains the result in Equation (22) we
have used previously for the argument of the antenna
pattern.

To evaluate Iwy. choose as before a polar coordinate
system with an axis of rotation OM, and let ¢ and p be
respectively the polar and azimuthal angles of the point N.
Let g and pg be the polar and azimuthal coordinates of the
point S. Let psy be the angle p(S,M). In this coordinate
system, one has with Equations (9), (10) and (78)

sin ¢(S,N) cos p(S, N) — sin ¢(S, M) cos p(S, M)
= sin @ cos(p — psn) + O(1072), (81)

Then, with Equations (73), (79) and (81), one has
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Iwr (S, M, t)

/ / dysing

1 — cos g cos p — sin g sing cos(p — ps))

tan?(dw/2)

5 t_flRQT]Sinz((p/Q) 7 g?_
Chg h.(]

h AN By
,\/&1n2¢+R;’ i ‘2(2) 2Ry ——sin Asin g cos(p —PSM))

_chy
=%

0
Ch,()t Ch(]t
1 cos s (1~ o) — sinpsy [
- (_ cows( 5Rzy) S0 an%(p Ps))
p

dﬂ

tan? ((,‘b“/Q)

ct 4  L(A D chot ‘
92( W+n2:ﬂn( )+m 1A‘}%L05(f) Psm))

t € [0,4R*n/chy)]  (82)

to O(1072). For t & [0, 4R*n/(chy)], Iwy is zero. One
now proceeds, as previously, by regarding Iy as a
one-sided function, and using Equation (71) to ignore
the time-dependent terms in the exponential. The
result is

IWL(S, M, T)

. Ch[] exp 1 — cos ws fzw d
2n tan®(ow/2) | Jo F

9 ct 4 9 A QR . chyt
: o ol g = i A
q ( hnT} = ?72 S111 7 o= Ve sIn RQ‘r] COb(p pg,\j)

to O(1072). The integrand in Equation (83) is
periodic and the integration is over one period. The
integral is therefore independent of pgy. One is now
free to extend the method. Following the steps of
Equations (47) through (50),
equation

one arrives at the

t
Pw(S,t) = / drkwi(t — 7)qw(S,7) [To, T1]
(84)
where
kww(t) =
/\QUUC C;io-uk:tz i
—— | Li(t) + dvexp|—cikiv|L(t — 7
= ( 10+ 255 [ dvexpl-cikwin(t - )
(85)
and I1(t) is a causal function given by
137


https://doi.org/10.3189/S0022143000017822

Fournal of Glaciology

Ch() an

Li(t) = Ty
0

2R chot

& e 4 . /A4 s LI
.g( %—Fﬁsm (—2— —E-Hnsmd R—anobp =i

Equation (84) has the solution

= P (t) 1
Fwi(0)

aw(S, 1) f a7 (t — )i (5,7)

kw(0) J3,
teftot] (87)

that is unique under the conditions previously discussed.

5. DISCUSSION

In this section, we consider the implications of the results
of section 4 for the design of experiments to determine the
average height. These relate to the collection and to the
reduction of observations. At the end of the section, we
consider the extent to which present practice is in keeping
with the results.

5.1. Separable estimation of the average height

This paper distinguishes between the problems of
determining the height and the average height of a
topographic surface from observations of the radar
echo. Comparing Equation (42) with Equation (50),
the distinction between these two problems is clear. The
former requires the solution of a three-dimensional
integral equation but the latter is a one-dimensional
integral equation. The distinction does not arise from
the general properties of linear equations. The average
height can be regarded as a projection of the height —
the operator in Equation (36) is a projection
operator —and it is normally no easier to determine
the projection of a solution of a linear equation than the
solution itsell. The distinction is a special property of
the problem, and it arises in part from the Fresnel
approximation, but also because the datum surface is
spherical. Theoretically, the distinction allows one to
deal more simply with the uniqueness question
concerning the average height. In practice, the
distinction is important because it permits the average
height to be determined by separable operations. By
secparable, we mean they proceed with an operation on
the echoes that is independent of the coordinate 2,
followed by an operation that is independent of the
coordinate N. Separability is a useful property if a
procedure is to be applied to a multi-dimensional set of
observations.

To obtain a compact form for these operations, the
kernel

J(t) = §'(t) + 5(0)8(t) — 5'(t) (88)

is introduced. For a function (t) € [to, 1], integration by
parts provides

138

https://doi.org/10.3189/50022143000017822 Published online by Cambridge University Press

L II;iTJ(t A

i f, dr(#/(t—7) + 5(0)8(t — ) — 7 (t — )i(r)

a@'(t) + j(0)a(t) — [(t—7)i(r) :; £ ]'dq-j(t _ ()

to

= i/(t) + f drj(t — 7)i' (1) (89)

provided (fy) = 0. Since Equation (54) determines g(t)
uniquely, one has on comparing Equation (89) and

Equation (54)

6(t)=ﬁ/m]dﬂ(t—f)ﬁ(f) teltot]  (90)

provided p(ty) = 0, which may be assumed WLOG. In
the case that a local datum is used, the kernel J(t) is
replaced with the kernel Jwi(t) by replacing j(t) in
Equation (80) with jwr (). Equation (90) is the first-
kind form of the solution to the first-kind Equation
(50). Using Equations (40) and (36) on the LHS of
Equation (90), and Equation (48) on the RHS, one has
finally

i c t ot
f= _—Qk(o) /m dit L drJ(t — T){f dSpé,(N,f)}_

Sphere

(91)
Equation (91) describes separable operations on the echo.
5.2. Continuity of spatial and temporal coverage

The question of uniqueness is important in practice, I
the average height is not uniquely determined by the
observations, a situation exists where the measured
echoes are consistent with more than one average
height. The importance of section 4.2 is that it
provides, for the first time, a clear description of that
interval of time over which the echo from a
topographic surface uniquely determines the average
height. Returning to the definition of the times ¢y and
t; in the paragraph following Equation (50), this
description is

2 2
T()(%— ps T],z—%—O-Tp (92)

where the LH hard inequality ensures that p(ty) =0
which we required to satisfy Equation (90). The des-
cription can be put in simple physical terms i’ we ignore
the contribution of the pulse duration: the average height
may be determined uniquely if the echo is measured over
a time interval that brackets the vertical extent of the
topography.

The extrema of the surface, over the area under
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consideration, defines a volume, and the design of an
experiment to determine the average height must aim to
provide continuous coverage of the volume. The vertical
dimension of the volume maps to a time interval.
Continuity of coverage is required in the spatial and
temporal senses. Therefore, if one is to use time-gated
echoes, it is necessary to have some a priori knowledge of
the surface in determining the gating. The more closely
the surface can be a priori constrained relative to the
datum surface, the shorter the duration of the time gate
need be.

5.3. The size of the local region

The separable quality of Equation (91) is gained by
restricting the problem to that of determining only the
average height of the surface. Section 4.3 was concerned
with determining the minimum area over which an
average height can be determined by a separable
operation. It was established there that the method
could be extended to local averages, provided the
averaging is done over a region large enough. Equation
(71) tells us that a region an order of magnitude greater in
radius than the area illuminated by the altimeter is
sufficient. This is why the qualification *“‘large” is included
in the title of this paper.

The limitation on the size of the local region arose
from our need to use the approximate Equation (68) for
the function Iy (S, M, ¢). Two arguments were used to do
this: that the weighting function effectively restricts the
angular extent of the function Iy to those points M near
the centre S of the local region, and that the antenna-gain
[unction limits the temporal extent of fy to those times ¢
satisfving Equation (46). From Equation (49), one also
sees that Equation (46) limits the effective extent of the
function k(t). However, there is also a constraint on the
time interval over which the average echo pw(t) need be
known: the uniqueness constraint Equation (92), which
limits our interest to times of order

t~2(fo - fi)/ec. (93)

We therefore need to consider which ol the two
limitations, Equation (46) or Equation (93), is approp-
riate to determine the minimum size of the local region.

There are three possibilities one need consider. The
first is that +/2(fo — f1)/(nho) < 1072, In this case, the
time interval needed to bracket the vertical extent of the
topography is very much smaller than the extent of the
function k(t). From Equation (69), onc sees that
Equation (93) is the appropriate limit to use. In this
case, the minimum size of the local region is determined
by the extent of the topography. This is the situation that
arises in ocean altimetry. The second case is that

2(fo — f1)/(nhg) ~ 1072, in which case Equations
(46) and (93) result in the same time interval, The final
2(fo — fi)/(nho) = 1072 Here, Equation (46) is
the appropriate choice, since, to the order of approxima-
tion we are using, the contribution of the function k(t) to
the integral on the RHS of Equation (69) 1s negligible for
times larger than that given by Equation (46). In this
case, it 1s the width of the antenna pattern that limits the
minimum size of the local region.
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5.4. The practical usefulness of the local average
and local datum

Local averages allow one to resolve fluctuations in the
surface height on scales much larger than the area
illuminated by the antenna beam. However, they have
other practical uses. First, they permit a relaxing in
practice of the uniqueness constraints. The vertical extent
of a local region of an ice sheet is typically very much
smaller than the vertical extent of the ice sheet as a whole.
It is apparent [rom Equation (59) that the weighting
function can be chosen in such a way that the height of
the surface a long way distant from the centre of the local
region makes a negligible contribution to the local
average height. One could take these distant heights to
have any value one wishes without significantly altering
the problem and, in particular, one could take them to
have the same vertical extent as the local region. One
may, therefore, with sufficient a priori knowledge, reduce
the interval of time over which the echoes are recorded to
encompass the range of heights in the locality rather than
the range of heights of the ice sheet as a whole.

Secondly, in scction 3.3 we assumed that the
measurement interval includes the entire sphere. In
practice, the spatial-measurement interval will be trun-
cated, for a variety of practical reasons. However, the
local average height is determined from the local average
of the echoes in Equation (61). The choice of the
weighting function allows one to deal with edge effects,
arising from the spatial truncation of the measurement
interval. Provided one does not seek an average height too
close to the edge of the survey region, the weighting func-
tion can be used to weight out smoothly the truncation
effects.

The use of a local datum may permit a further
practical relaxing of the uniqueness constraint. If, within
the local region, the vertical extent is dominated by a
slowly varying trend, then aligning the tangent plane of
the local sphere with the trend may reduce the vertical
extent of the surface relative to the datum. With sufficient
a priori knowledge of the regional trend, this may further
reduce the time interval over which the echo need be
measured.

The use of a local datum does have a disadvantage, if
local averages are to be further averaged to determine the
average height of the ice sheet as a whole. If the local
averages are referenced to a common datum, this further
averaging 1s straightforward. If the local averages are
referenced to different data (datums!), then this further
averaging needs to be done with some care.

5.5. Comparison with present methods of echo
reduction

At present, altimeter echoes from ice sheets are reduced in
two stages. The purpose of the first stage is to reduce the
echo to a number that estimates the distance [rom the
altimeter to a point on the surface nearest to the
altimeter. The purpose of the second stage is to deduce
the shape of the surface from the shape of the surface of
nearest range. The first of these stages was performed with
a functional termed the “retracker” by Martin and others
(1983); the second stage was dealt with by an algorithm
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that calculated a height shift termed the “slope-induced
error’” by Brenner and others (1983). Other authors have
proceeded along similar lines since (e.g. Partington and
others, 1989; Remy and others, 1989).

There is, in the theory, a superficial analogy with the
retracking procedure. Changing the order of integration
in Equation (91), and writing

-:ﬁ ff dSx £.(N) (94)

Sphere
where the function fi(N) is

471'(,R2

L) = 2(0) f dti‘/tu drJ(t — 7)pa(N,t) - (95)

one finds that Equation (93) is a functional that reduces
the echo to a number. However, the quantity fs bears no
simple relation to the first arrival time. Generally, it has
no simple relation to the surface height at all. Its use lies
solely in the fact that, when averaged over space via
Equation (94), the result is equal to the average height,
relative to the datum used to determine the kernel J(t).

Because the theory here is a linear one, whereas the
retracking procedure is not, a usefully general theoretical
comparison of the methods is not possible simply. There
are, in addition, theoretical difficulties with the
“retracking” and “‘slope-induced error” procedures. As
is well known (see e.g. Robin and others, 1983), there is a
uniqueness problem in working with first-arrival times
and it is not at all obvious how it is to be closed.
Moreover, there are implicit assumptions in the retrack-
ing procedure concerning the scales of topography that
have not been imposed here, and which have never been
demonstrated to be self-consistent. Generally, the solution
determined by the algorithms summarized by the terms
“retracking” and “‘slope-induced error” will not be a
solution to the problem. It is therefore unlikely that
pursuing such a comparison would be a profitable
endeavour. One might also add that, when these proc-
edures are used in an experiment, one is faced with the
difficulty of showing in a general way that errors that
arise from the uniqueness problem, or because the
determined solution is not in fact a solution of the
problem, are negligible.

5.6. Limitations

This paper deals with the problem of altimetry of ice
sheets in a linear framework by exploiting the smallness of
a number of dimensionless parameters associated with the
geometry of satellite altimetry and ice sheets. These
parameters and our assumptions concerning their mag-
nitude are laid out in section 3.1 and Equations (8)-(17).
We have used the smallness of these parameters to neglect
contributions that are O(1072) in the defining expression
Equation (6) for the echo. In the practical situation, of
course, this may not be sufficient and one may need to
check the magnitude of some of the terms we have
neglected.

Small surface gradients characterize much of the large
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ice sheets, but large gradients do occur, particularly at the
continental margins, in regions of substantial crevassing
and near nunataks. Equation (13) restricts the method to
ice sheets with small gradients. We used Equation (13) to
reach the approximations of Equations (23) and (28).
Other problems will also emerge if one tries to extend the
method to larger gradients. Our scattering model is omni-
directional within the range of angles illuminated by the
altimeter, and this will not be the case if high surface
gradients are present. Small gradients are also implicit in
our neglecting the refraction at the air-ice interface.
Regions of high gradients should be excluded from the
average by use of a weighting function.

The model of penetration we have adopted is a simple
one. It is central to the method that the surface- and
volume-scattering is laterally constant (vertical variations
in volume-scattering may be dealt with by an extension of
the description here). Without lateral constancy, the
reduction of Equation (45) allowing a separable form is
not possible. It should be kept in mind that, since an
altimeter averages the power scattered from a region some
kilometres in lateral extent, it is the volume-scattering
averaged on this scale that matters in this context.
Variations on scales much larger than this can be dealt
with by an appropriate normalization; variations on
scales much shorter than this will be invisible to the
altimeter. In my experience, this is a good model for the
altimeter echoes from the dry cold surface experienced,
for example, over much of the Antarctic continent. Over
the warmer areas of the Greenland ice sheet, however, the
situation may be considerably more complex. Theoret-
ically, the introduction of an unknown lateral variation in
scattering coeflicients makes the problem non-linear and
difficult.

Section 4.4 dealt with a case in which the antenna
boresight was not aligned with the normal to the
reference sphere. It is important to stress, however, that
section 4.4 does not provide an argument that deals with
the most general case of a small “mispointing” angle
between the antenna boresight and the surface normal to
the sphere, which may arise as a result of pitch or roll of
the antenna. Moreover, I suspect that generally such an
extension is not possible. This is because the echo over a
topographic surface is sensitive to the yaw angle of the
antenna. In the case dealt with here, this angle is
constrained such that the boresight is sighted at a fixed
point in space—the centre of the geocentric sphere—
and this constraint was not added for convenience. It
ensures a very particular behaviour of the yaw angle. It is
only in this circumstance, combined with a limited local
region, that our results hold.

6. CONCLUSIONS

This paper is concerned with the altimetry of surfaces
with gentle undulations having a wide range of spatial
scales that includes the diameter of the area illuminated
by the altimeter beam. The aim of the work is to deal with
the four questions raised in the introduction: What is the
relation between the altimeter echo and the height of a
topographic surface? Can a method be found for the
inversion of this relationship for the average height? In
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what circumstances is the result of this inversion unique?
What do the answers to these questions imply for the
design of an experiment to determine the average height
of ice sheets?

The general relationship between the surface height
and the echo is complicated and non-linear. The
geometry of satellite-altimetry operation and the small-
ness of ice-sheet gradients can be used to give an
approximate form for the echo in which the surface
height appears only as a linear combination in the
argument of the pulse function. With this form, the
problem of determining the average height of the surface
from observations of the echo can be placed within the
framework of a linear inverse problem. Methods for the
solution of such problems are well known. The average
height determined from the solution of the inverse
problem is unique, provided the echo is observed over a
sufficient interval of time. The area over which the
average is formed may vary but it must be large in
comparison with the area illuminated by the altimeter.

These results have implications for the collection and
reduction of the echoes in an experiment to determine the
average height of a surface. The problem of determining
the average height is practically simpler than the problem
of determining the height. The average height can be
determined by operating on the echo with the kernel
resulting from the solution of a one-dimensional integral
equation. Continuity of spatial and temporal coverage is
needed to ensure a unique determination of the average
height and this requires a priori knowledge of the extrema
of the surface. This interval may be reduced with greater
a priori knowledge of the surface by minimizing the area
of the average or by selecting a datum surface aligned
with a regional trend in the surface.

This paper does not give a discrete representation that
would be needed for an experimental implementation of
the theory. There are substantial issues associated with
the transfer to a discrete representation. While the inverse
problem described here is well posed, it does not follow
that it is well conditioned. Numerical stability may need
attention. The spatial sampling of the echoes is irregular
and errors will arise in the quadrature of a spatal
average. This raises the question of what is a suflicient

density of spatial sampling? I shall deal with these matters
in a separate paper,
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