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ABSTRACT. I ce-sheet surfaces have scales of flu ctua tion that a re similar to the 
diameter o[ the a rea illuminated by a sa tellite rada r a ltimeter. The present theory of 
altimetry, developed to describe scattering from the ocean surface, d oes not deal 
properly with the geometry of ice-shee t surfaces . In this p a per, the theory of altimetry 
is ex tended to cover thi s geometry. A general rela tion for the altimeter echo from a 
surface of unknown geometry is developed , including the effects of the penetration of 
the surface by the rada r waves. This expression i linearized , using the characteristic 
opera ting geometry of sa tellite al timeters and the gen ti e na ture of ice-sheet gradien ts. 
From this expression, a n integral equa tion is derived , from whose soluti on the spa ti a l 
ave rage of the height of the surface relative to a spherical da tum can be d etermined . 
The integral equa tion is of a Volterra type, which permits the uniqueness of the 
solution [or the average height to be inves tigated simply. The method is ex tended to 
provid e a solution for the spa ti al average of the height of a local region of the ice shee t, 
provided the region remains large in comparison with the area ill umina ted by the 
altimeter, and to deal with varia tions in the antenna boresight alignment. The results 
have a number of implications for the collection a nd red uction of echoes in an 
experiment to determine the average height of an ice shee t. The uniqu e d etermination 
of the a verage height requires the echo to be known over a time interva l tha t depends 
on the extrema of the surface, which therefore must be known a priori. The average 
height itself can be de termined by the opera tion on the echo of a linear operato r whose 
kernel is derived from the solution of the Volterra-type equa tion. This ma rks a change 
from the procedures currently used in practi ce to reduce echoes fro m ice shee ts. 

1. LIST OF SYMBOLS See Equation (63 ) 
See Equation (73 ) 

A Area of the projection of th e ice surface on to Bes el fun c ti o n of im agin a r y a rg um ent 
the reference sphere 

c V eloci ty of propaga tion in a i r 
Ci Velocity of propaga tion in ice 
C See Equ a tion (58) 
1 Height of the surface a bove the reference 

sphere 
10 Maximum height of the surface above the 

reference sphere 
h Minimum height of the surface above the 

reference sphere 
Is See Eq ua tion (95 ) 
1 Average height of the surface above th e 

reference sphere 
lw Weighted average height o f the surface above 

the reference sphere 
9 Altimeter power gain 
h Satell ite a ltitude above the reference sphere 
ho A co nsta nt sa tell ite a ltitud e a bove th e 

reference sphere 
H Location of the satellite 
I See Equ a tion (44) 

I ] 

J 
j WL 
J 
J WL 
k 
kJ 
kt 

L(e) 
P 
Pa 
Pi 
P 
pw 
PM 

Pov 

q 
ij 

(Abramowitz a nd Stegun , 1965 , sec tion 9.6) 
Sec Equation (86) 
See Eq uation (54) 
See Equation (8 7) 
See Equation (88) 
See paragraph following Equ ation (90) 
See Eq uation (49 ) 
E xtinction coeffi cient of ice 
Power-transmission loss at interface 
Power-transmission loss along a pa th length e 
E cho power 
Time-advanced echo power 
I ncident-power density 
See Equation (48 ) 
See Equation (6 1) 
Echo-power density a t the altim ete r antenna 

from a surface elemcnt 
Echo-power density a t the altim eter antenn a 

from a volum e element 
Transmitted power envelope 
See Equation (37) 
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qw 
r (A , B) 
R 
5 
t 
to 
t 1 
Tp 
To 

See Eq uation (60) 
Distance between two points A and B 
R adius of the reference sphere 
See Equa tion (55) 
Time 
See paragra ph succeeding Equa tion (50) 
See paragra ph succeeding Equa tion (50) 
Duration of transmitted power envelope 
Minimum time for which the ad vanced echo 

is known 
M aximum time for which the ad vanced echo 

is known 
See Eq ua tion (89) 

X,X1,X2,X3 Solutions of Equation (51) 
y Solution of Equation (53 ) 
z 

8A 
8h 

Elevation measured norma lly to the reference 
sphere 

Area of a surface element 
The departure of the sa telli te altitude from 

the consta nt altitude ha 
8B, 8B', 8B" See paragraph preceding Equation (23) 
8V Volume of an element of ice 
,1 Angle between tangent pla nes of the local 

q;(A , B) 

q;w 
e(H,A ) 

e 
,\ 
(To 

and geocentric spheres 
The angle subtended by points A and B a t 

the centre of the reference sphere 
Angular wid th of the weigh ting function 
The angle subtended a t the altimeter by the 

point A and the antenna boresight 
See Equa tion (77) 
Transmitted carrier waveleng th 
Surface back-scattering coeffi cient 
Volume back-scattering coeffi cient 
Angle between the ice surface and the 

tangent p la ne to the reference sphere 
See Equa tion (20) 
See Equa tion (76) 

2. INTRODUCTION 

The m a pping of the ice sheets and ice shelves of 
Antarcti ca and Greenland by satellite a ltimetry has, 
for the p as t 15 years, exp loited mea urem ents from a n 
exp erimenta l d esig n d eveloped in the 1970s to 
d etermine the sha pe of the marine geoid (M cGoogan , 
1975 ) . This design arose from the theoretica l under
standing, developed a t the time and brought to a 
closed form by Brown (1977), of the shape of the 
altime ter echo from the ocean surface. This und er
standing allowed the m ean height of the ocean surface 
to be d e termined uniquely from a truncated meas ure
ment of the echo. It has long been recognized (see e .g . 
Robin and others, 1983 ) that the geometric differences 
between the shape of the geoid and the shape of a n ice 
sheet in trod uce a uniqu en ess problem in ex tending the 
experimenta l meth od to ice shee ts . However , n o 
ex tension to the theory of a ltimetry h as been given 
that would permit the pro blem to be closed in theory, 
nor h as a ny usefull y gen eral description been given of 
wh a t assumptions a re n eed ed to close the problem in 
prac tice. 

The theory of Brown ( 1977 ) requires the surface to 
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have two widely separated scales of surface undula tion . 
The dia m eter of the area illumina ted by the a ltimeter 
is assumed much smaller tha n the la rge r scale a nd 
much larger than the smaller scale. The sm aller-scale 
undu la tion s, termed roughness, are assumed to have a 
known pro bability density function. The la rger-scale 
undula tion can then be regarded as the en semble mean 
of the ro ughness, which is sm a ll enough in scale th a t its 
effec t on the altimeter ech o can be taken to equa l the 
ensemble m ean echo . I ce sh ee ts, however , have 
topograj;/ry over a wide r a nge of spa tial scales which 
includ es the diameter of the a rea illumina ted by the 
a ltimeter. In this circumsta nce, sta tistical a rg uments 
are of limited use, because the interchange of a spatial 
average and an ensemble average is no longer a simple 
matter. 

The purpose of this paper is to extend the theory of 
altimetry to deal with topographic surfaces, without 
depending on sta tistical arguments or constrain ts on the 
scale of und ula tion. In pa rticu lar, we seek to answer the 
following four ques tions: ''''ha t is the relation between the 
altimeter echo and the height of a topographic surface? 
Can a method be found for the inversion of this rela tion
ship for the average height? In what circumstances is the 
res ult of this inversion unique? What do the a nswers to 
these ques tions imply for the design of an experiment to 
determine the average height of ice sheets? 

In sec tion 3, the first of these ques tions is dealt with. 
A general expression for the echo from a topographic 
surface is given, including the effec ts of the radar 
penetra tion of the surface discovered by Ridley and 
Partington ( 1988). The surface height, rela tive to a 
spherical d a tum, enters this expression in an extremely 
complicated way and the rem ainder of the sec tion is 
devo ted to using the sp ecia l character of satellite
altimeter geometry to simplify the height-d ependence 
of the echo. I n sec tion 4, the spa ti al average of the height 
is introduced . The task of d e termining it from the echo is 
reduced in section 4.1 to solving an integra l equa tion 
with a Volterra kernel. The form of the kernel a llows us 
to deal simply in sec tion 4 .2 with the iss ue of uniqueness, 
which turns out to depend on the echo ga ting . In section 
4.3 we show how simple modifications allow the area 
over which the average is formed to be va ried. These 
results a re restri cted to the case where the a ntenna 
boresight is maintained normal to the da tum sphere, so 
in sec tion 4.4 we lift this res triction. In sec tion 5, the 
implica tions for the collec tion and reduction of a ltimeter 
echoes a re d iscussed, we comment on the methods of 
reduction employed presently in practi cal reconstruction 
schemes a nd we summarize the limitations of the 
method . Finally, in section 6 we present some conclu
sIOns. 

T he res ults of this work should find their most 
important practical applica tion in helping to constrain 
the mass ba lances of the la rge ice sheets of An tarctica and 
Greenland , where it is the varia tion with time in the 
height averaged over la rge length scales tha t is principally 
of interes t. W e do, in passing, consider the de termination 
of the height itself. H owever, one of the results of this 
paper is tha t the determina tion of the height is a more 
complica ted problem which d eserves a separa te treatment 
in its own right. 
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3. THE FORWARD PROBLEM 

The problem we consider in this paper is to determine the 
ave rage height of a n ice shee t from observations of the 
rad a r echo scattered from its surface . This problem is in 
two pa rts. The first part , the forward problem, is to form 
a n integral expression for the echo . The second pa rt, the 
inverse problem , is to solve the in tegra l expression for the 
average height. The forward pro blem is the task of this 
sec tion; the inve rse problem is dealt with in section 4 . 

Inverse problems a re genera ll y very much simpler if 
they can be linea rized. The main task of this sec tion is to 
g ive approx ima te forms for the echo that a llow us to 
a pproach the inverse problem within a linear fram ework . 
W e sta rt by giving a general expression for the echo from 
an ice sheet tha t contributes surface- and volume-scatter 
to the echo. \ Ve then make a number of approxima tions 
to a rri ve a t a fo rm suitable [or linear inve rsion . 

3.1. The altilIleter echo; the bas i s for its 
approxitnation 

The general a rra ngement is shown in Figure I. An 
a ltim eter a t the point H transmits a pulse q(t) of dura tion 
Tp. (A list of symbols is gi\'en in section \ .) Th e pulse 
travels out towards the surface a t ve locity c, occupying a t 
a n y time a spheri ca l shell of radius ct and thickness cTp . 

Th e pu lse amplitude is modula ted by the antenna -gain 
pa ttern g(sin(e)), where e is th e a ng le subtend ed b y the 
a ntenna boresight a nd a line joining the poin t H to a 
point on the shelL The power per unit a rea Pi(t) incident 
a t a point P on the a ir- ice interface a pa th leng th r( H, P ) 
from H is 

.( ) _ g(sin(e(H,p )))q(t - r( H,P)/c) 
P, H, P ,t - 47T1,2(H, P ) (1) 

There arc two contributions to th e echo sca ttered back 
to the altimeter. One is a contribution from the air- ice 
interface. This is m odelled with a surface bac k-sca ttering 
coefli cient 0'0, such tha t the power per uni t area incid ent 
a t H, sca ttered from a n area elem en t 8A of the surface, is 

(
H P ) _ (J°pi(H, P ,t - r(H, P )/c)8A 

PM , ,t - 47T1,2(H, P) 

(J°g(sin(e(H,p )))q(t - 2r(H,P)/c)8A 

(41Ilr4 (H , P) 

where the second line uses Eq ua tion ( I). 

(2) 

The second con tribution to the echo comes from 
energy tha t penetra tes the interface a nd is scattered from 
a volume element a round a poin t Q within the volume of 
the ice. Before reaching the point Q, the incident energy is 
firs t reduced by a fac tor kt in passing the interface a t P' . 
Since, la ter, we shall ass ume a ll a ngles of incidence a re 
sm all , we sha ll neglect refraction a t the interface a nd , in 
thi s case, P' is th e point of intersec tion of the line HQ and 
the surface. Within the volume of the ice, the pulse travels 
a t a velocity Ci. Travelling within the ice, the pulse is 
further reduced by losses L in traversing the pa th leng th 
r( P' , Q). T o mod el the loss ex peri enced along a pa th 
leng th e, we follow Ridley and Pa rting ton ( \988), a nd use 
a n exponenti a l d ecay law 

H 

Fig. 1. The geometry oJ a radar-altimeter measurement of 
an ice sheet. Power transmilled from an altimeter at the 
point H receil'es power scallered from a point P on the 
sll1jace of the ice sheet. Power reaching P is reduced b), the 
i11verse square oJ tlte patlt length r(H, P) and power 
scattered back to the altimeter suJJers ajurther reduction by 
the same Jactor. Power entering the ice is scattered from a 
point Q within the body oJ the ice. In reaching Q from the 
point p i and returning to the jJoin/ p i, the power suJJers an 
additional attenuation that is a Junction oJ the path length 
r( P' , Q). The power received b)' the altimeter is modulated 
by the antenna gain oJ the altimeter, which is afilllction oJ 
the angle e subtended b)' the direction oJ the antenna 
boresight and the lille joinillg H to the scattering /Joint . The 
poill ts 0 , N and !VI are described in the text. Note that the 
geometry is shown grossly distorted Jor clarify. 

(3) 

where kl is termed the extinction coeffi cient . Assuming 
tha t the interaction a t the surface is weak enough th a t 
forward sca tter from the surface can be ignored , the 
power per unit a rea incid ent a t the poin t Q is 

pitH , Q, t) = (g(sin(B(H , P'))) kt exp [-klr(P' , Q)] 

. q(t - r (H, P')/c - r( P' , Q)/Ci) ) 

j (41fr2(H,Q)). (4) 

The sca ttering from the clement aro und the point Q is 
mod elled with a volume back- ca ttering coeffi cient (Jv. 
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Energy scattered from Q a nd received a t the altimeter 
returns along the path HP'Q. The power p er unit area 
incident at H , scattered from a volume element 8V at Q, is 

P6V(H, Q, t) = (avg(Sin(e(H, P ')))kt exp[- klr (P ' , Q)] 

. Pi(H, Q, t - r (H, P')/c - rep' , Q)/ci)OV) 

/(41l'r2(H,Q)) 

= (avg(Sin(e(H, P')))k; exp[-2klr(P', Q)] 

. q(t - 2(r( H, P')/c - re p' , Q)/ci))OV) 

/((41l')2r4(H, Q)) (5) 

where the second line uses Equa tion (4). 
From a ntenna theory (C ollin and Zucker, 1969), a 

power per uni t area Pr incident on the antenna from a 
direction e results in a received power ).2g(sine)pr/(41l'), 
where ). is the transmitted carri er waveleng th. The to tal 
received p ower P is then the surface a nd vo lume 
contribu tions integrated respectively over the surface 
and volume of the ice: 

p(H, t) = ~: (ff dAg(sin(B(H, P)))P6A(H, P , t ) 
Surface 

+ fff dVg(sin(e(H, P' )))pw(H, Q, t)) 
Volume 

= (4~)3 (ao ff dA 
Surface 

. ( l(Sin(e(H, p )))q(t - 2r(H, p )/c) ) /(r4 (H,p )) 

+ avkt2 fff dV (l(Sin(e(H, p'))) 
Volume 

. exp[-2klr(P'Q)] q(t - 2(r( H,P') /c 

- re p', Q)/Ci)) ) 

/ (r4( H, Q))) . 

We term P the echo. 

(6) 

We will be concerned 111 section 4 to d e termine the 
average height of the point P above a sphere, from 
observations of the echo. F or this purpose, we need to 
rela te the quantities in Equa tion (6) to the sphere shown 
in Figure I . Let the reference sphere have a r adius R with 
an origin a t a poin t O. W e use a coordina te system such 
that a ny point X is then d efined by the point Y lying a t 
the in tersection of the line OX and the sphere, and the 
height z of the point X , measured normal to the sphere. 

Let M li e a t the intersection of the line OP and the 
sphere. Th e surface is then d efined by the function 

z = f (M). (7) 
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As it stands, f (M), the height of the surface a nd the 
quan tity of inter es t, enters Equ a tion (6) in a very 
complicated fashion . T o simp lify its depend en ce in 
Equation (6) , we shall make a number of geometric 
a pproximations, whose bases we now discuss . 

Let N lie a t the intersection of the line OH a nd the 
sphere as shown in Figure 1. Let z = heN) describe the 
sa tellite altitude. For a radar-altimeter sa tellite, the altitude 
is typically 1000 km. Ice-sheet topographies range, typic
ally, over a few kilometres. 'vVe assume, therefore, that 

(8) 

T he antenna -gain pa ttern of satellite altimeters is 
chosen so tha t the power is appreciably non-zero onl y 
within a small r a nge of angles su b tended a t H, typically of 
order 10. We will assume tha t the boresight lies close to 
the line HO. In d etermining the power received a t H , one 
therefore need only consider points P for which the angle 
OHP is of the order of 1°. It will be convenient to express 
this in terms of the radian angle <p(N, M), subtended by 
the points N a nd M at O. Specifically, we ass ume that 

Rsin 1> 0- 2 --- ,-..,, 1 h . (9) 

T he radius R of the reference sphere is not small. I t is of 
the order of a n E a rth radius, about 10000 km . W e assume 

!::.. '" 10- 1 
R . (10) 

Wi th Equation (9), this implies sin 1> '" 10- 3 

The radi a l component of the orbit of sa tellite 
a ltimeters does not vary grea tly in comparison with the 
satelli te altitude. In view of this, let heN) be described by 
a perturbation 8h(N) abo ut a constant height ha above 
the sphere. W e ass ume 

oh 0- 2 - ", 1 . 
ha 

(11) 

The magnitude of the extinction coeffi cient near the 
surface of ice sh eets can vary considerably with carrier 
frequency and surface conditions bu t a typical path 
length will be of order 10 m. W e assume that 

(12) 

The surface gradients of ice sheets, rela tive to the 
tangent plane to the sphere, are sm all, rarely la rger than 
a few degrees . Denoting this gradient by tan \7 , we 
assume that 

tan 'V ,-.." 10- 1 . (13) 

T he las t ch a racteristic scale tha t is importa n t to us is 
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the dura tion Tp of the pulse q. This is typicall y a few 
na noseconds. With the observation that the wave speed is 
close to tha t of light in a vac uum, we assum e 

h 6 
- rv 10 . 
cT p 

(14) 

In the theory we develop in this paper , we will ignore 
contributions to the integrands in Equa tion (6) tha t a re 
0 (10- 2 ) or smaller. In the nex t sec tion , Equ a tion (6) is 
a pproxima ted by truncating a series representa tion of 
the a rguments of the functions forming the integrand. 
On e need s, therefore, a m ethod connec ting the order of 
a pprox ima ti on of a n a rg um en t to th e o rd er o f 
a pproxima tion of a function. For this p urpose, one 
may o bserve tha t, for some fun ction v (x), if o ne ignores a 
term 8x in its a rgument, one is ignoring a term v'(x )8x 
in the function to first o rder; to determine the order of 
the approximation to the integrand in Equa tion (6), 
then, one needs an approxima tion for the m agnitudes of 
the functions g' and q' . vVe shall take the view that, if a 
fun ction v (x) is apprecia b ly non-zero over a n ex tent xe, 
and , if it d oes not vary rapidly on scales of x e , then one 
may ta ke v (x)/xe as a n a pproxima tio n to the size of 
v' (x) . This is a reasona ble assumption for theoretical 
a pproxim a tions to the functions tha t a ppear in Equation 
(6) in practi cal a ltimetry. Specifi call y, we ass ume for the 
fun ction 9 tha t 

g(R S~n q; (1 + .. . 0 (10-n ))) 

'" g( R S~n q; (1 + ... )) (1 + O(lo- n) ) (15) 

where we have used (R / h)sin q; as the ex tent ofg . 
In the case of the pulse [uncti on q, one may use for its 

ex tent the dura tion Tp . Our ass umption is tha t 

q(t - (2c
h

) (1 + .. . 0(10-n )) ) 

'" q (t - e~1) (1 + ... )) (1 + 0 (c~p lO-n) ) 

= q (t -(2:) (1 + . .. )) (1 + 0 (10- n+6
)) (16 ) 

where the second line uses Eq uation ( 14) . 
Fina lly, [or the exponential in Equa tion (6), we asume 

exp ( -k1h(1 + ... 0(10- "))) 

'" exp ( -klh (l + ... ))(1 + 0 (klh10-") ) 

= exp ( - klh ( l + ... ))(1 + 0 (10-n+5)) (17) 

where the second line uses Eq ua tion ( 12) . 
On comparing Equations (15), (16) a nd (17 ), one 

noti ces the fac t tha t the integrand of Equa tion (6) is very 
much more sensitive to sm a ll changes to the ranges in the 

arguments o[ q and the exponential th an it is to small 
changes in the angle in the a rgument o[ g. This is 
characteristic of pulse-limited a ltimetry. 

3.2. The Fresnel and related approxitnations 

In this section , we simplify the way the height of the 
surface enters the integral in Equation (6). 

Starting with the path leng th r (H, P), one has , on 
a pplying the cosine rule to the triangle OHP, 

r (H, P) = ( (R + h(N))2 + (R + f (M))2 
1 

-2(R + h(N))(R + f (M))cos(q;( ,M)) t (18) 

Expanding the square root in Equation (14), one has 

r (H, P) = 

h ( 
8h(N) f (M ) 2R2 sin2(q;(N , M)/2) 

a 1 + -- - -- + ----''''--;,-:..-...:.."---'... 
ha ha ha2 

( 1 + ~) + 0 (10- 8
) ) . (19) 

The fac tor I + ha/ R will a ppear repeatedly, and we 
introduce the no ta tion 

'r/ = 1 + hai R. (20) 

From Equ a tion ( 10) , it is a ppa rent that 'r/ is 0 (1) . 
For the terms in r 4 tha t occur in the denomina tor of 

Equation (6) , one has, simply 

(21 ) 

This, with Equa tion ( 19), constitutes the Fresnel approx
imati on, wid ely used in the a nalysis of surface sca tte ring 
(a good example is Berry ( 19 73)) , although not, to date, 
in altimetry th eory. 

We consid er now the a rgument of the a ntenna-gain 
pattern g. This is a fun ction only of sin B(H, P ) . L a ter, we 
deri ve, correct to the lowes t o rder, the approximation 
Eq ua tion (79 ) to sin B(H, P ) for a more genera l case 
which allows th e antenna boresight to lie away from the 
normal to the sphere. In th e case that the antenn a 
boresight is n ormal to the sphere, this a pproximation 
simplifies to give 

sin B(H, P ) = ~~ sin (q;(N~ M)) (1 + 0 (10- 4
)) . (22) 

T o deal with the area element 8A of the surface, let 05 
be an element of a rea of the sphere containing the point 
M . Let 85' be the spherical proj ec tion of 85 on to a second 
sphere with origin 0 that passes through the point P on 
the surface . L et 85" be the pla ne projec tion of 85' on to 

the tangent pla ne to the second sphere a t P ; t an V' is then 
the gradient of the surface with respect to this plane. Let 
8A be the pla ne projection of 85" on to the surface . Then, 
a. the area elem ent oA tends to zero, 
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8A --t \ h + t an2 \185" --t VI + tan2 \185' 

R 2Vl + tan2 \185 

(R + f (M ))2 

= 85 (1 + 0(10- 2
)). (23) 

The limi ts on the surface integral a re now the spherical 
projection of the ice surface on to the sphere. 

Turning no w to the volume integral on the RHS of 
Equa tion (6), let M" lie at the intersec tion of the line OQ 
with the sphere, and let M' lie a t the intersection of the line 
OP' with the sphere. This is shown in Figure 2. Let z( Q ) be 
the height of th e poin t Q above M". Since Q lies within the 
volume, z(Q) S; f (M" ). The volume integral is compli
ca ted by the fact tha t the location of the point P' is an 
implicit function of the position of the point Q and the 
shape of the surface. T o avoid this, we use below the gentle 
gradients of ice shee ts to show that we can replace the point 
P ' with the point P", lying a t the intersection of the line 
OQ and the surface. With this replacement, one then has 

r (P' , Q) = ho (f (M")h~ z(Q ) + 0 (10- 8) ) (25) 

a nd 

2R ( cjJ(N M")) sine(H, p' ) = ho sin ; (1 + 0 (10- 4
)). (26) 

H 

T 

o 

Fig. 2. T he approximation to the path lengths r(H , P') 
and r(P' , Q). The location oJ the point p ' is determined 
implicitly by the location oJ the point Q and the shape oJ 
the surface. T o avoid the difficulties this introduces, the 
path lengths r (H, P') and r(P' , Q) are replaced res
pectively with the path lengths r( H, P") and r(P", Q). 
T he Jigure is grossly distorted Jo r clarity . 
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T o sustain Equations (24), (25 ) and (26), one needs in 
addition to the approxima tions we have already made 

sin cjJ(N , M') = sin cjJ(N, M") + 0(10- 7
) (27) 

and 

f (M') = f (M") + 0 (10- 8 ) . (28) 
ho ho 

For, with the Fresnel a pproximation, one h as 

r(H, P') = ho (1 + 8h(N ) _ f (M' ) 
ho ho 

2R27] sin
2

(4)( N , M')/2) O ( 8)) + 2 + 10-
ho 

(29) 

and substituting Equa tions (27 ) and (28 ) into Equa tion 
(29) then gives Equa tion (24). Similarly, one has 

r(P' , Q ) = ha C (M' ) h~ z(Q ) + 2~:7] (sin2(cjJ(N, M" )/2 

- sin2(cjJ(N , M')/2)) + 0 (10- 8 ) ) (30) 

and Equa tion (25 ) then follows on substituting Equa tions 
(27 ) and (28) into Equa tion (30). Equa tion (26) com
bines the approxima tion of Equation (22 ) with Equ ation 
(27). 

Equa tion (27) need s the condition Eq uation (12) tha t 
has not been used thus fa r. T o obtain Equation (27 ), one 
has on a pplying the sine rule to the tri a ngle P'OQ 

sin (cjJ(N, M") - 4>(N , M' )) 

r(P', Q ) sin ( e(H, P ') + 4>(N , M' )) 

R + z(Q) 
(31 ) 

r(P' , Q ) is the path leng th in the ice whose length is of 
order l / kl . Using Equa tions (8) through (12), one finds 
the qua ntity on the RHS is zero to order 0(10- 7), which 
is a better approxima tion than is needed to sustain 
Equa tion (27). 

T o obtain Equa tion (28 ), we suppose that P ' is close 
toP" , s in c e E q 1..1 a t i o n ( 2 7 ) t e ll s u s t h a t 
cjJ(N , M" ) - cjJ(N, M') is a very small a ngle, and we 
assume tha t the surface can be assumed locally plane 
between P' and P". Then , applying the sine rule to the 
triangle OP'P", one has 

R + f (P II
) R + f (P' ) 

cos( 4> (N , M") - cjJ( N , M') + \1 ) cos \1 
(32) 

Using Equations (13) a nd (27 ), one may obtain Equation 
(28). 

One has for the volume element 
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8V = (R + ~;Q))2 8S8z(Q) 

= 8S8z(Q)(1 + 0(10- 4
)) . (33) 

The volume integral is bounded a bove at z(Q) = f (M"). 
The exponentia l loss into the volume allows one to make 
the lower limit infinite. 

Making th e approximations, Equations ( 15 ), (16), 
( 17), (19), (21), (22 ), (23 ) , (24), (25), (26 ) a nd (33 ), 
together with the tidying substitution v = 2(f(M") 
-z(Q))/Cj, Equation (6) takes the form 

p(H,t) = (4~;~:0~ [ II dSl(~~Sin(q?(N~M))) 
Surface 

. { q (t -~ (ha + 8h(N) - f (M) 

+ 2R21Jsin
2
(q?(N, M) / 2))) 
ha 

Cj (1vkt2 1 °O + --0- dvexp[-cjkW] 
2(1 0 

. q(t - v - ~ (ha + 8h(N) - f(M) 

+2R21JSin2h~(N'M)/2 )) } ] (34) 

3.3. The tneasureInent interval 

The echo p(H , t) is a fun ction of time and space. The 
boundaries of this space are important theoreticall y; they 
impact direc tl y on the question of the uniqu eness of any 
deduction from the echo conce rning f. In practice, these 
boundaries are determined by a number of complex 
interactions between the altimeter-control system a nd the 
echoes. In this paper, we sha ll sim plify these boundaries 
with a view to ill umina ting the uniqueness issue. W e shall 
nonetheless find that the resu lts have importa nt practical 
im plications. 

The time orig in in Equation (34) is the instant of 
transmission of the pu lse. I t is conve nient to cha nge this 
origin by introducing the time-advanced echo 

This changes the time origin to the instant a n echo from 
th e point N on the reference sp here is rece ived at the 
a ltimeter. W c shall ass ume that the time-advanced echoes 
are known over an interva l of time t E [To, TIl, where To 
and Tl are fi xed consta nts. 

I t is apparen t from Eq ua tio ns (34) and (35 ) that the 
function p" (H , t) is a fun c tion tha t d epends on the 
location of H o nly through the loca tion o f the point N 
on the sph ere, a nd may be w ritten Pa(N , t) . W e shall 
now assu m e th a t Pa(N, t) is known over the entire 
. phere. 

4. THE INVERSE PROBLEM 

In this section, we a re concerned with determining th e 
average height of the surface 

1 = ~II dSf (M ) (36) 

Surface 

where "Surface" is the projection of the surface on to the 
sphere, and A is the a rea of the projection. \ Ve can , 
eq ua ll y, determine the quantity 

With get) determined , 1 can be calculated . This 
statement holds, because wc may assume without loss of 
ge nera lity (WLOG ) that the fun c tion q(t) has the 
properties 

1: dtq(t) = 1 (38) 

1: dttq(t) = o. (39) 

Equation (38 ) ho ld s because q(t) is non-negative a nd 
time-limited. The LHS of Equation (38) therefore eq ua l 
a positive consta nt. If this constant does not eq ual unity, 
one could replace q(t) with a norm a lized function such 
that it did. Onc may a. sume Equation (39) holds because, 
if it did not, one cou ld a lways rep lace q(t) with a shifted 
version of itself such th at the new function satisfi ed 
Equation (39). With Equations (38) a nd (39 ), one h as 

-~1: dttg(t) = -2~ 11 dS 1: dttq ( t+ 2f~M)) 
Surface 

~ II dSf(l\I) (40) 
Surface 

and 1 can be determined from Equation (36). 
The average height is to be d ete rmined from the 

measurements Pa(N, t) : t E [To, Td; NE Sphere. For this 
purpose, it is better to reformu la te th e expression for the 
echo in a way that treat. the function q(t - 2f(M)/c) as 
the unknown. This is straightforward . With Equations 
(34), (35 ) and the re lation 

( 41) 

one has 
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Equ ation (42 ) is a linea r, integral equation for 
q(t + 2f(M)/c). Clearly, one could deal with the problem 
by solving Equation (42) for q(t + 2f(M)/c), and using 
first Equation (37) and second Equation (40) to determine 
the average height. This method of solution is certainly of 
in terest ifo ne were concerned with the height of the surface 
f. However, our interest is onl y in the average height, and 
the central result of this paper is tha t a simpler solution is 
available for the average height. Some practical aspects of 
solving Equa tion (42) for the height have been given 
elsewhere (Wingham and others, 1993). 

In this section, we first derive a linear integral equation 
for q(t). The form of this equ a tion allows us to inves tigate 
simply sufIicient conditions for the uniq ue recovery of the 
average height from the altimeter echoes. In the r emainder 
of the section, we extend our results to determining the 
average height of a local region and finding the average 
height rela ti ve to a locally se lec ted d a tum. These 
extensions will later allow a relaxa tion in practice of the 
criteria for a n unique determina tion of the average height. 

4 .1. An integral equation for q(t}; its solution s pace 

T o obtain an in tegral equation for q(t), we integra te both 
sid es of Equ a tion (42 ) , ch a nge the ord er of the 
in tegra tions on the RHS, and o btain 

{ 

CjCJ "kt 2100 

. J(M,t - T) +- - dv 
20"0 0 

. J(M, t - T - v) exp [cikt V] } 1 t E [To, Td (43) 

where 

J(M,t ) = ff dSi (~~ sin(q)(N~M) ) ) 
Sphere 

(44) 
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T o determine th e fun ction J , choose a p ola r 
coordinate system with an origin a t the point 0 a nd a n 
axis of rota tion thro ugh the poin t M . Let cp and p be 
respec tively the pola r and azimuthal angles of the point 
N . One has that 

J(M , t ) = R2la7r d cp sin cpi (~~ sin (~) ) 

( 
4R2ry Sin2(cp/2)) 1 27T 

·8 t - dp 
cho 0 

= 27f R21a7r d cp sin cpi ( ~~ sin (~) ) 
. 8(t _ 4R

2
ry Sin

2(cp/2)) 
cha 

= 7fcha ( i.:" dui (2 J cu ) 8(t - u) 
T} l o 4ryho 

_ { 0 t tf. [0,4R2ry /(cho)] 

(7fcho/ry ) )g2( J et/ (T}ho) t E [0, 4R2ry / cha)] . 

(45) 

Equation (45 ) gives two pieces of informa tion con
cerning J which a r e impor tant to us. First , J is 
ind ep endent of the location of the p oint M, which is 
essential to the a rg ument of this sec tion . Secondly, J is a 
ca usal, time-limited fun ction. Its causality simplifies the 
ques tions of uniquen ess we will con sid er in section 4. 

The time-limiting of J arises because, for a spherical 
surface, there is a minimum and a m aximum interval 
over which ech oes may arrive a t the altim e ter , 
corresponding to p oin ts on the sphere nearest to, a nd 
fa rthes t from the a ltimeter. The value of the upper limit 
is incorrec t, however , beca use in sec tion 3. 2 we 
a pproximated the a rg ument of th e 8 fun ction in 
E q ua tion (44) by assuming tha t the a ngle q)(N, M) was 
sm a ll , which is n ot the case for points farthes t from the 
altimeter. The b asis for assuming tha t q)(N, M) is sm a ll is 
th a t the antenna -gain pattern illuminates only a sm all 
region of the sphere. Thus, by ass umption, the gain 
func tion l in Equa tion (45) is negligible except for sm a ll 
values of its argum ent, and one need b e concerned only 
with values oft for which 

(46) 

a rela tion that will be useful later on . Equation (46 ) is 
simply a resta tem en t of Equation (9) . Equation (46) 
limits the times of interest to values very much sm a ller 
tha n the upper limit of the time interval in Equa tion (45), 
a nd we will treat the fun ction J as if it were one-sid ed , 
rath er than time-limited. 

The RHS of Equa tion (43 ) may now be simplified . 
One has 
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).,2~0 4100 

dT r r dSq (T + 2f (M) ) 
(471") ha - 00 JJ C 

Surface 

· {I(M , t - T) + Cj~:~t21°O dvI(M , t - T - v) eXP[-CjkW] } 

A).,2a
O 1 00 = 3 4 dTq(T) 

(4 71" ) ha -00 

{
ca k 2 (')() } 

· I (t - T) + '2:0t J
o 

dvI (t - T - v) exp [CjkW] 

A).,2a
O lt = 3 4 dTq(T) 

(471") ha -00 

{ 
c· a k 2 r-T 

} 
· I (t - T) + 12:ot J

o 
dvI(t - T - v) exp [Cj kW] (47) 

where the second line uses the independence of I on the 
position of M a nd Equation (37 ) , and the third line uses 
the causali ty of I. 

Substitution of Equation (47 ) into the RHS of 
Equa tion (43 ) gives the desired result. The introduction 
of some notation , however , allows a more compressed 
representa tion. Let us set 

ft(t) = JJ dSNPa(N, t) 
Sphere 

on the LHS of Equ ation (43 ) , a nd use 

).,2a O A 
k(t) - -;:-------:

- (471")3 h04 

(48) 

. {I(t) + Cj ~:~t2 1t dvexp[- cjkw]I (t - V)} (49) 

to compress the RHS of Equa tion (47). Then, combining 
Equations (43 ) , (47 ), (48) and (49) provides 

t E [To, Td (50) 

which is a linear integral equation for q(t ). 
To comple te the specification of the problem , we now 

constrain the interval of the solution of Equa tion (50). We 
ass ume tha t th ere are two numbers fa and h such that, 
for a ll points M E Surface, f(M) E rh, fa] . Since the 
pul e q(t ) has a duration Tp, th e fun c tion q(t+ 
2f(M) / c) is necessarily zero for times less tha n -2fo / c 
-Tp and grea ter than -2fdc + Tp. From Equation (37), 
this is true too for q(t) . Denoting these two times to and tl 
respectively, the solution interval of Equation (50) is res
tricted to t E [to, tl ]. 

4.2. The solution to Equation (50); its uniqueness 

In this sec tion , we consider solutions x(t) : t E [to, tl ] to 
the eq uation 

(51) 

From Equation (50) , this equ a tion admits at leas t the 
solution q(t), and we need not, therefore , consid er the 
question of existence. However, we need to be assured 
that q(t) is the only solution. In wha t follows, we shall 
assume we are working in an L2 space, which is suffi cient 
for our purposes. 

The uniqueness of a solution to Equa tion (51) 
dep ends, generall y, on the relation of the measurem ent 
interval [To, Tl ] to the solution interva l [to, tl] and on the 
properties of the function k(t). 

The simplest result one has is the following. UTI < t l , 
the solu tion to Equ a tion (51 ) is not uniqu e. To show this, 
le t Xl(t) : t E [to , tl ] be a non-trivial function such tha t 
Xl(t) = O,t E [to, Tl l· One has 

1t dTk(t - T)(q(t) + Xl(t)) = 1t dTk(t - T)q(t) 
~ ~ 

= ft(t) 
t E [To ,TIJ 

t E [To, TIJ (52) 

showing q(t) + Xl (t) : t E [to, tl l is a second solution of 
Equation (51), and the res ult follows. 

N ext, consider the case To = to , T, = tl so that the 
m easurement and so lution intervals a re coincident. In 
this case, the solution q(t) to Equatio n (51) is unique. T o 
show this, consider the equation 

ft'(t) = k(O)y(t) + 1t dTk'(t - T)y(T) 
to 

(53) 

Differentiating both sid es of Equa tio n (51) with respec t to 
(WR T )t , and setting To = to, Tl = t] on the RHS, shows 
tha t, in thi s case , any so lution x(t): t E [to , tll to 
Equation (51) is a lso a solution to Equation (53 ). Thus, 
to show that the solution q(t) to Equ a tion (51) is unique, 
it is sufficient to show that Equ a tio n (53 ) has a unique 
solution. But Equation (53 ) is a second-kind Volterra 
eq ua tion. The solu tion 

p' (t) 1 1t 
~(t ) = k(O) + k(O) to dTj(t - T)ft'(T ) 

(54) 

exists and is unique (Whittaker a nd Watson, 1927 , 
p . 221 - 22). Thus , Equation (51) h as the unique so lution 
q(t). Th e function j (t ) : t E [0, tl - to] in Equation (54) 
may be determined by successive ap proximation or other 
m ean. 

Consider now the possibili ty th a t the measured 
interval lies within the solution interval, that is To > to , 
Tl = tl, To = to, Tl < tl or To > to , Tl < tl. In this case, 
the solution is not unique. We ha ve a lready es tablished 
that when Tl < t l , the solu tion is not unique, so we need 
only consider the case To > to, Tl = tl to establish this 
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result. For this, we make use agam of the fact that 
Equation (53 ) is a second-kind Volterra equation. Let 
s(t) : t E [to , tll be a non-trivial function such s(to) = 0, 
s(t) = 0: t E [To , tll· The Volterra equation 

s'(t) = k(0)X3(t) + 1t dTk'(t - T)X3(T) 
to 

(55) 

has a solution X3(t) : t E [to , tl l that exists and is unique. 
Integrating both sides of Equation (55) over t E [to ,tl ], 
one obtains 

(56) 

on using the fact that s(to) = O. But when t E [To, t l ], 

Equation (56) becomes 

t E [To , td (57) 

because s(t) = 0 : t E [To , tll. Clearly, there are many 
functions we could choose for s(t). Thus, the homo
geneous Equation (57 ) has non-trivial solutions, and thus 
Eq uation (51) has more than one solution. 

The results we have obtained are sufficient to reach 
the main conclusion of this section, which is that the 
average height of a surface may be determined uniquely 
from observat ions of the advanced echo Pa(N , t) : 
NE Sphere, t E [To , TI], provided the limits of the 
observation interval satisfy To::; to ,TI::; tl' It is worth 
stressing here that this uniqueness proof arises from the 
general properties of linear equations; it does not carry 
over if the assumptions we have made to linearize the 
problem do not hold in any given situation. 

It is not generally possible , however, to state that these 
conditions on the measured interval are necessary. There 
exists the possibility that cases for which To > to , TI > tJ 
will provide unique solutions to Equation (51). When 
To > to, TI > t l , however, the equation analagous to 
Equation (47 ) is no longer of the Volterra type, and the 
situation is not straightforward . The uniqueness or 
otherwise of solutions to Equation (51) depend on the 
particular properties of the function k(t) (not on its 
causality), which in turn depend on the particular form of 
the antenna pattern, and these have to be investigated on 
a case-by-case basis. We would remark, however, that for 
the antenna pattern introduced by Brown (1977 ), and 
widely used since, as an approximation to practical 
altimeter patterns, it turns out that the kernel is 
separable, and in this case it is easy to demonstrate that 
the conditions above are sufficient and necessary. (By 
separable, we mean the kernel k(t - T) may be written as 
the product of a function of t and a function of T. ) 

4.3. Loca lly aver a ged topography 

In the previous two sections , we described how the 
average height of the surface may be determined. It may 
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well be useful, however, to determine the average height 
of a loca l region of the surface . This average will 
obviously depend on the size of the region. As the region 
becomes very small, the average height will tend to the 
height itself. In this section, we wish to determine how 
small the local region can be before the reduction of the 
problem by integration to a one-dimensiona l integral 
eq uation is no longer possible? 

L et S be a point on the sphere, and let ifJ(S, M) be the 
angle subtended at the point 0 by the lines OS and OM. 
Let Cexp(-(I-cos(ifJ(S,M)))/tan2(ifJw/ 2)) be a 
weighting function, where the constant C is chosen to 
satisfy 

~ 17 dS ( - 1 - cos rp(S , M)) = 
A exp 2( /) l. tan rpw 2 

(58) 
Surface 

When ifJw is small, the argument of the exponential is 
large and negative except when rp(S , M) is small. In this 
case, the weighting function behaves as exp(-2(rp(S,M)/ 
rpW)2) . As ifJw ----+ n, the weighting function tends to unity 
over the whole sph ere. We define the local average of the 
height to be 

1 (S) = ~ {{ dS (_ 1 - cos rp(S, M)) f(M) 
wAll exp tan2(rpw/2) 

(59) 

Surface 

a nd one may regard lw(S) as the height averaged over a 
region arou nd the point S, subtending the angle ifJw at the 
point O. Corresponding to the function q(t) of Equation 
(37 ) , we introduce the function 

- () =~17dS ( _I-COSrp(S,M)) ( _ 2f (M)) qw t A exp 2 ( /) q t tan rpw 2 C 
Surface 

(60) 

from which Jw(S) can be determined in the manner of 
Equation (40). We a lso introduce the function 

A {{ ( 1 - cos rp(S , N)) 
pw(S,t)=ll dSNexp - tan2 (rpw/2) Pa(N , t) 

Sphere 

(61) 

in place of Equation (48 ). 
We proceed a long the same lines as in section 4.1. 

Equation (43 ) is replaced by the equ ation 

,\20-
0 [100 17 ( 2f (M)) pw(S,t) = 3 4 dT dSq T+--

(471") ha -00 C 
Surface 

. {Iw(S, M, t - T) 

ciUvkt2 {CO }] + ~ la dv1w(S, M, t - T - v) exp[-cjkjVl 

t E [To, TI l (62) 
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where 

T o evalua te l w, choose as before a pola r coordina te 
sys tem with an axis of rota tion OM, and let 'P a nd P be 
res pectively the polar and azimutha l angles of the point 

J Let 'Ps a nd PS be the pola r a nd azimutha l coordina tes 
of the point S. In this sys tem , a stand a rd result from 
spherical geometry provides 

cos cp(S , N) = cos 'Ps cos 'P + sin 'PS sin 'P cos(p - PS) . 

(64) 

With the help of the integral in sec tion 8.43 1.3 of 
Gradsteyn a nd R yz hik (1980 ) , one has, on fo llowing the 
steps of Equa tion (45) and Equa tion (46), tha t II\' is a 
causal fun ction whose value a t non-nega tive times is 

(65) 

where 10 is a Bessel fun cti on of im agina ry a rg ument. 
Expanding in Eq ua tion (65 ) the Besscl fun c tion, using 
equ a tion (8.447.1 ) ofGradsteyn a nd R yz hik ( 1980) , and 
the exponen ti a l, in powers of their a rgum en t, one has 

Using Equ a tions ( 10) and (46 ), it is appa rent tha t 
provided th a t t an (cpw/ 2) is no t sma ller than 

tan ( CPw / 2) ~ 0(10- 1
) (67) 

the RHS of Equa tion (66) is 1 + 0 (10- 2), a nd therefore 
that Equ a tion (65) becomes 

( 
1 - cos 'Ps ) ( 2 ) I", (8, M , t) = exp - 2( / I (t ) 1 + 0 (10- ) . 
t an cpw 2 

(68) 

Thus, Iw is a causa l fun ction whose dependence on the 
position of the point M is, to an approximation consistent 
with those alread y made, onl y thro ug h the multiplicati ve 
weighting fun ction . 

Finally, following the remaining steps from Equ a tions 
(47) through (50) , one a rrives a t 

in place of Equ a tion (50) . But [o r the leading consta nt, 
Equa tion (69) is formall y identical to Equa tion (50) a nd 
has the same sol u ti on interval. Wh en To ::; to and T l 2: t ], 
i]w (S, t) is determined uniquel y b y Equati on (69) , a nd 
given by the form ula 

- (8 ) Cp~v(t ) C I t
.( ) - ' ( ) 

qw ,t = Ak(O) + Ak(O) todTJ t - T Pw S,T 

t E [to, t d . (70) 

Equation (67 ) gives an answer to the ques tion with 
whi ch we opened this section. I t shows that, if a loca l 
average is formed over an area tha t subtends a t the centre 
of the Earth a n a ngle ve ry much la rge r than the a ngle 
subtended by the a rea illumina ted b y the altimeter - two 
ord ers of magnitud e la rger - the m ethod carri es ove r to 

local ave rages. One can, however , a rgue tha t Equa tion 
(67 ) is too conserva tiye an estima te . Equation (67 ) ensures 
th at th e approxim ation of Equa tion (68) holds fo r all 
val ues of 'PS . H owever, the weighting fun ction in Eq ua tion 
(68) is negligible except for \'alues of 'PS less than or of the 
same order as 'Pw . Since we a re concerned with small 
values of 'Pw, one may use sin2'Pw~ 4 tan2(cpw / 2) Il1 

Equa tion (66), in which case Equa tion (67 ) becomes 

(71 ) 

Equ a tion (71) d e cribes an ave rage formed over a n 
a rea th a t subtends a t the centre oC th e Earth an a ngle a n 
ord er of magni tud e la rger th an th e a ngle subtended by 
the a rea illumin a ted by the altim etc r. 

Finall y, we rem a rk th at we havc chosen a pa rti cula r 
weig hting fun ction so tha t approxima tions can be m ad e 
with a degree of d efinit eness . "Ve suppose, however , th at 
the res ult does no t d epend strongly on this choice, a nd 
a ny smoothl y varying fun cti on wo uld probably suffi ce. 

4.4. A locally s elected datuIIl 

Thus far, we ha ve res tri cted our trea tment to on e in 
which a single reference sphere is used. We now te rm this 
sphere the geocentri c sphere. Th ere may be circum
sta nces, however, w hen it is useful to consider using a 
spherical da tum surface whose o rigin vari es with th e 
region of the local a verage. \V e te rm such a sphe re th e 
local sphere. Th e use of a reference sphere chosen locally 
complica tes ma tters, because the a n tenna boresigh twill 
not generall y pass th rough the orig in of the loca l sphere. 
In thi s section, we extend the method to includ e this case, 
ass uming tha t th e a ntenna boresight is held to p ass 
throuo'h the ori g in of the geocentric sphere. 
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To form a local sphere, let O g lie at the centre of the 
geocentric sphere, and let 8G be a line making an angle L'l 
with the tangent plane to the geocentric sphere at 8. The 
arrangement is shown in Figure 3. We shall assume that 

(72) 

Fig. 3. The jonnation oj a local datum sphere. The sphere 
is jormed by rotating the line SOg through an angle L'l 
about the point 8. The point G, which lies in the tangent 
plane at the point 8 to the local sphere, defines the plane oj 
rotation . In section 5, we will find there are practical 
advantages in bringing the tangent plane oj the local sphere 
into coincidence with atry regional trend in the ice-sheet 
sUlface containing the point P. This is illustrated in the 
jigure. The choice oj a local datum complicates the 
problem, because the antenna boresight lies along the line 
HOg and not, as previously, along the line HO . Note that 
while the points 0 , Og, 8 and G are co-planar by 
definition, the points Hand P generally are not. 

The points Og, Sand G define a plane. Rotate within this 
plane through an angle L'l the line Og 8 about S in such a 
way that a new line 08 is formed normal to the direction 
of 8G. The local sphere is the sphere with centre 0 and 
radius 08; its tangent plane at 8 contains SG. All our 
previous geometric descriptions now apply to the local 
sphere, so that the point 0 now lies at the centre of the 
local sphere, the points M, Nand 8 now refer to points on 
the local sphere, and the satellite altitude is assumed 
equal to the constant ha measured from the local sphere. 

We now seek to find the local average height relative 
to the local sphere. We proceed along the same lines as in 
the preceding section. The change one needs to make is to 
replace the function Iw in Equation (63 ) with the 
function 

136 

IwdS , M, t) = ff dSN exp ( 1 ~~~~:~~~~)) 
Sphere 

. g2(sinB(H, P))8(t _ 4R217sin2~~;N, M) / 2)). (73) 

In the present case, the angle B(H , P) , on whieh 
g(sin(H , P)) depends, is the angle subtended at H by 
the points P and O g, and not, as previously, the angle 
subtended at H by the points P and O. 

We shall assume, for simplicity, that the radii of 
the local sphere and geocentric sphere are equal. 
The function sin(H, P) can be determined by 
solving for the triangle O gPH. For this purpose, 
set up a Cartesian coordinate system {x, y, z} with 
an origin at the point O. Let the z axis coincide 
with the line OS. Let the half-plane x > 0 , y = 0 
contain the point Og. Then, the coordinates of the 
point O g are 

{R sin L'l , 0, 2R sin2 (L1/2)}, 

the coordinates of the point Pare 

{(R + f(M)) sin </>( 8 , M) cos p(S , M), 

(R + f(M)) sin </>( 8 , M) sin p(S, M), 

(R + f(M)) eos </>(S, M)} 

and the coordinates of the point Hare 

{ (R + ha) sin </>( 8 , N) cos peS, N), 

(R + ha) sin </>(8 , N) sin peS , N) , 

(R + ha) cos </>( 8, N) }. 

In these expressions, p(S, M) and peS, N) are respectively 
the angles between the positive x axis and the projection 
of the lines OM and ON on to the plane z = O. With these 
determinations, the lengths and angles of the triangle may 
be found with some lengthy, but entirely straightforward , 
algebra. The result is 

sinB(H,P)= \/l-eos2 B(H, P) ; (74) 

eosB(H,P) = [1- (,..(M)/17)COS(</>(N,M)) 

where 

- (l/T)){G(S,N) - (/'i:(M) / T))G(S,M)}] 

. (1+ (/'i:(M)/T))2- 2(/'i:(M) / T)) eos(</>(N, M))) -~ 

. (1 - (2/T))G(S, N) + 4/T))2 sin2(L'l/2)))-~ 
(75) 

(76) 
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with 

8 (S, N) = sin L1 sin cp(S, N) cos p(S , N) 

+ 2 sin2 (Ll / 2) cos cp(S , N) (77) 

and 8 (S, M) is the function obtained b y replacing N in 
Equ ation (77 ) with M. 

As previously, one looks for approxima tions to these 
fun ctions tha t will a llow one to arrive at a separable form 
for 1wL , simi lar to Equ a tion (68 ). However , the smallness 
of the a ngles cp(N, M) a nd Ll are not sufficient for this. 
One needs in addition to suppose tha t 

cp(S , N) cv 10- 1
. (78) 

Then, with Equations (9), ( 10), (72 ) and (78), one has 

2R [ 2 cp(N, M) h0
2 

2 (Ll) 
sin B(H, P) = ha sin 2 + R2rp sin "2 

ha sin L1 ( + 2RTJ sin cp( S, N) cos p(S, N) 

1 

- sin cp(S , M ) cos p(S, M)) r (79) 

to 0(10- 2 ) . Consid eri~g the integral of Equ ation (73) for 
1wL, one sees th a t thi s may be justifi ed provid ed 
t an ( CP w / 2) is not of a la rge r ord er tha n 

tan ( cp", / 2) cv 10- 1 (80) 

for then the weighting function will ensure that only 
va lues of cp(S, N) of this order will contri bute to the 
integral. This constraint on tan (cp\\' / 2) is consistent with 
Equa tions (67 ) and (71 ). 

Before proceeding, no te tha t if one se ts Ll = 0 in 
Equ a tion (73), so tha t the geocentric a nd loca l spheres 
a re coincid ent and the a ntenna boresight is normal to 

th eir surface, one obta ins the res ult in Equa tion (22) we 
have used previously for the argumen t of the antenna 
pa ttern. 

T o evaluate 1\\,L , choose as before a polar coordina te 
sys tem with an ax is of rota tion OM, and let <P and P be 
re pec ti vely the polar and azimuthal angles of the point N . 
Let <Ps and Ps be the polar and az imuthal coordinates of th e 
point S. Let PS~ I be the angle p(S, M). In this coord inate 
sys tem, one has with Equ a tions (9), (10) a nd (78 ) 

sin cp( S, N) cos p(S, N ) - sin cp(S, M) cos p(S, M) 

= sin <pcos(p - PSl\ l ) + 0(10- 2
) . (81) 

Th en, with Equations (73), (79) and (SI ), one has 

1wd S, M , t ) = R21 2"clp 1" d <p sin <p 

( 
1 - cos <PS cos <p - sin 'Ps sin <p cos(p - ps) ) . exp - -------;;-:----:-,....-----'----'--'-

t an 2 (cpw/2) 

. o(t _ 4R2TJ Sin
2

(<p/ 2)) l (2R 
cho ha 

. 2<P h0
2

. ?(Ll) ha. . ) . sm"2 + R2TJ2 sur "2 + 2RTJ sm Ll sm 'P cos(p - PS~ I ) 

cho 12
" =- dp 

2'T} 0 

(
chat ) /Chot 

.exp _ TJ TJ 
( 

1 - cos <Ps 1 - 2R2 - sin <Ps R2 cos(p - PS) ) 

tan 2 (CPw / 2) 

ct 4 2 (Ll) 2R ~hot ) - + - sin - + -sinLl - cos(p - ps~Il 
hoTJ TJ2 2 hoTJ R2TJ 

t E [0,4R2TJ /chO)] (82) 

to 0 (10- 2
). F or t (j. [0,4R 21]/(chO)], h\"L is zero . One 

now proceed s, as previo usly , by regarding 1WL as a 
one-sided fun c tion, and u sing Equation (71 ) to ignore 
the time-d e pendent terms in the expon entia l. The 
result is 

1wdS , M, t) 

cho (1 -cos 'PS ) 1 271" - exp - dp 
2'T} tan2 (cpw/ 2) 0 

~ + ~sin2 (Ll) + 2R sin Ll JChot cos(p - PSl\ l)) 
hoTJ TJ2 2 hoTJ R2TJ 

t ~ 0 (83) 

to 0(10- 2 ). The integra nd in Equ a tio n (S3) is 
periodi c a nd th e integra ti o n is over one p eriod. The 
integra l is therefore ind ep e nd ent of PSl\ j . One is now 
free to exte nd the method . F ollowing the steps of 
Equa tions (4 7) through (50 ), one a rri ves at the 
equa tion 

wh ere 

k\\'d t ) = 

a nd h (t ) is a causal fun ction given by 

t E [To, T1] 

(84) 
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eho 1 271" h (t ) = - dp 
2TJ 0 

et 4 (.,1) 2R ~hot ) - +?"sin2 
- + -h sinLl - 2- cos P t:S o. 

hoTJ TJ- 2 oTJ R TJ 

(86) 

Equa tion (84) has the solu tion 

- ( ) p~v (t) 1 it . ( ) AI (8 ) 
qw 8 , t = kwdO) + kwdO) to dTJwL t - T Pw ,T 

t E [to, tl l (87) 

that is uniq ue under the conditions previously discussed. 

5. DISCUSSION 

In thi section, we consider the implications of the results 
of section 4 for the design of experimen ts to determine the 
average height. These rela te to the collection and to the 
reduction of obse rvati ons. At the end of the sec tion , we 
consider the extent to which present p rac tice is in keeping 
with the results. 

5.1. Separable es titnation of the average height 

Thi s p a per disting ui hes between the problems of 
d e termining the height a nd the average height of a 
top ogra phic surface from observa tio ns of the rad a r 
echo . Comparing Equ a tion (42) with Equa tion (50 ), 
th c distinction between these two pro blems is clear. The 
form er requi res the solution of a three-dimension a l 
integral equa tion but the la tter is a o ne-dimension a l 
integra l equa tion. The distinction d oes not a rise fro m 
the general properties o f linea r eq ua tio ns. The average 
h eight can be regard ed as a projec ti on of the height 
th e o p e rato r in E q ua tion (36 ) is a proj ec ti o n 
op erator - and it is normally no easier to determine 
the projection of a so lution of a linear equa tion tha n the 
solutio n itself. The distinc tion is a sp ecial property of 
the pro blem, and it a rises in p a rt fro m the Fresn el 
approxima tion, but a lso because th e d a tum surface is 
spherical. Th eoretically, the distinctio n a llows one to 
d eal m o re simpl y with th e uniqu en ess q ues tio n 
concernin g the aver age height. In prac ti ce, the 
distinction is importan t because it permits th e average 
h eight to be determined by separable opera tions. By 
sep a ra ble, we mean they proceed wi th a n opera tion o n 
the echoes tha t is ind ependent of the coordina te t , 
followed by an opera tion that is independent of the 
coordina te N . Separa bility is a useful property if a 
procedure is to be a pplied to a multi-dimensional se t o f 
o bserva tions. 

T o ob tain a compact form for these opera tions, the 
kernel 

J (t ) = 8'(t ) + j (0)8(t ) - j' (t ) (88) 

is introduced. For a fun ction u(t ) E [to , td, integra tion b y 
pa rts provides 
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provided u(to) = O. Since Equation (54) de termincs q(t ) 
uniquely, one has on comparing Eq ua tion (89) and 
Equa tion (54) 

1 t l 
q(t) = k(O) Jlo dTJ(t - T)P(T) (90) 

provided p(to) = 0, which m ay be assumed WLOG. In 
the case tha t a loca l d a tum is used , the kernel J (t ) is 
repl aced with the kernel h lL(t ) by replacing j (t ) in 
Equa tio n (80) with jwd t ). Equa tion (90) is the first
kind form of the solution to the first-kind Eq ua tion 
(50). Using Equa tions (40) and (36 ) on th e LHS of 
Equa tion (90), and Equ a tion (48) on the RHS, one has 
fin ally 

J = - 2k~0) 111

dtt i otldTJ (t - T) {II dSPa(N, t)} . 
Sphere 

(91 ) 

Eq ua tion (9 1) describes separable opera tions on the echo. 

5.2. Continuity of spatial and teIIlporal cover age 

The qu es tion of uniq uen ess is important in p rac ti ce. If 
the average height is no t uniquely d e termined by the 
obse rva tion s, a situa tion exists where the mea ured 
echoes a r e consistent with more tha n one average 
heig h t. The importa n ce of section 4 .2 is tha t it 
provid es, for the first time, a clear d escription of tha t 
interval o f tim e ove r w hi ch the ec h o from a 
topogr a phic surface uniquely de termines the average 
heigh t. R e turning to the d efinition of the times to and 
t l in the p a ragra ph following Eq ua tion (50), this 
descriptio n is 

2fo 
To < - - Tp; 

c 

2h 
Tl > - - + T, - e p (92) 

where the LH hard inequality ensures th a t p(to) = 0 
which we required to satisfy Equation (90). The des
cription can be put in simple physical terms if we ignore 
the contribution of the pulse duration: the average height 
may be de termined uniq L1ely if the echo is measured over 
a time interval tha t brackets the vertical ex tent of the 
to pogra phy. 

The ex trema of the surface, over the area under 
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considera tion , defin es a volume, and the d esign of an 
experim ent to determine the average height must aim to 
provide continuous coverage of the volume. The vertical 
dim ension of the volum e maps to a time interval. 
Continuity of coverage is required in the spa tial and 
temporal senses . Therefore, if one is to use time-gated 
echoes , it is necessary to h ave some a prio ri knowledge of 
the surface in determining the gating. Th e more closely 
the surface can be a priori constrained rela tive to the 
da tum surface, the shorter the duration of the time gate 
need be. 

5.3. The s ize of the local r egion 

The sepa ra ble quality of Equa tion (9 1) is gained by 
restri cting the problem to that of determining only the 
average height of the surface. Section 4.3 was concerned 
with d etermining the minimum a rea ove r which an 
average height can be d ete rmin ed by a sepa ra ble 
opera tion. It was es ta blished there th at the method 
cou ld be ex tend ed to local averages, provided the 
ave raging is done over a region large eno ug h . Equa tion 
(71) tells us tha t a region a n order of magni tud e grea ter in 
radius tha n the area illumina ted by the a ltimeter is 
sufficient. This is why the qualification " la rge" is included 
in the title of this paper. 

The limita tion on the size of the local region arose 
from our need to use the approxima te E q ua tion (68 ) for 
th e func tion Iw (S, M , t ). Two arguments we re used to do 
this: tha t the weighting fun ction effectively res tricts the 
angula r ex tent of" the fun c tion Iw to those points M near 
the cen tre S of the local region, and that the a ntenna-gain 
fun ction limits the tempor a l ex tent of Iw to those times t 
sa tisfying Equ a tion (46) . From Eq ua tion (49 ), one also 
sees tha t Equa tion (46) limi ts the effec tive extent of the 
fun ction k(t). H owever , th ere is also a constraint on the 
time inte rval over which the average echo pw(t) need be 
known : th e uniqueness constraint Equ a tion (92 ), which 
limits o ur interes t to times of order 

t ~ 2(fo - h )/c . (93) 

W e ther efore need to consid er whi ch of the two 
limita tions, Equa tion (46) or Equa ti on (93 ), is approp
ri a te to d etermine the minimum size of the local region. 

There a re three possibilities one need consider. The 
first is tha t v2(fo - !I )/(rJho) « 10- 2 In this case, the 
time in terva l needed to bracket the vertical ex tent of the 
topogra phy is very much small er than the ex tent of the 
fun c ti on k(t ). From Equ a tion (69) , o n e sees tha t 
Equa tion (93 ) is the a ppropriate limit to use. In this 
case, the minimum size of the local region is d etermined 
by the ex tent of the topog ra ph y. This is the situa tion tha t 
a ri ses in ocean a ltim etry . The second case is tha t 
J 2(fo - f l)/( f/ho) rv 10- 2 , in which case Equ a tions 
(46 ) a nd (93) result in the same time interval. The fina l 
case is v 2(fo - h )/(rJho) » 10- 2 H ere, Equ a tion (46) is 
the a ppropria te choice, since, to the ord er of a pproxima
tion we are using, th e contribution of th e fun ction k(t ) to 
the integra l on the RHS of Equa tion (69) is negligible for 
times la rger than tha t given by Equ a tion (46 ). In this 
case, it is th e width of the a ntenn a pa ttern tha t limits the 
minimum size of the local region. 

5.4. The practical u s efulness of the local average 
and local datuIn 

Local averages a llow one to resolve Quctua tions in the 
surface height on scales much larger than the a rea 
illumina ted b y the antenna beam. However , they have 
other practical uses . First, they permit a relaxing in 
practice of the uniq ueness constrain ts. The vertical exten t 
of a local region of an ice shee t is typicall y ve ry much 
smaller than the ve rtical ex tent of the ice sheet as a whole. 
It is apparent from Equa tion (59 ) tha t the weighting 
fun ction can be chosen in such a way tha t the height of 
the surface a long way dista nt from the centre of the local 
region makes a negligible contribution to the local 
average heigh t . 0 ne could ta ke these distant heigh ts to 
have any valu e one wishes without significantly a ltering 
the problem and , in pa rticula r , one could ta ke them to 
have the sam e vertical ex tent as the local region . One 
may, therefore, with sufficient a priori knowled ge, reduce 
the interval of time over which the echoes are recorded to 
encompass th e ra nge of heigh ts in the locality r a ther than 
the range of heights of the ice sheet as a whole. 

Secondly, in scc tion 3 .3 we ass umed th a t the 
measurement interval includ es th e entire sphere. In 
p rac ti ce, the sp a tial-measurem ent interva l will be trun
ca ted, for a va ri ety of prac tical reasons. However , the 
local average height is determined from the local ave rage 
of the echoes in Equa tion (6 1). The choice of the 
weighting function allows one to deal with ed ge effec ts, 
a ri sing from the spatial trunca tion of the m easurement 
interval. Provided one does no t seek an average height too 
close to the ed ge of the survey region, the weighting func
tion can be used to weight out smoothly the trunca tion 
effects. 

The use of a loca l d a tum may permit a further 
prac tical relaxing of the uniq ueness constrain t. If, within 
the local region, the vertical ex tent is domina ted by a 
slowly varying trend , then aligning the tangent plane of 
the local sphere with the trend may reduce the verti cal 
ex tent of the surface rela ti ve to the da tum . "Vi th sufficient 
a priori knowled ge of the region a l trend , this m ay furth er 
reduce the time interval over which the echo need be 
measured . 

The use of a loca l da tum d oes have a disad vantage, if 
local averages a re to be furth er ave raged to de termine the 
ave rage height of the ice shee t as a whole. If the local 
ave rages a re referenced to a common datum, this furth er 
averaging is stra ightforward . If the local ave rages a re 
referenced to different da ta (d atums!), then this furth er 
averaging need s to be done with some care. 

5.5. COInparis on with present methods of echo 
reduction 

At present, a ltimeter echoes from ice shee ts a re reduced in 
two stages. The purpose of th e first stage is to red Li ce the 
echo to a number that estima tes the distance from the 
a ltimeter to a point on the surface nea res t to the 
a ltimeter. The purpose of the second stage is to d educe 
the shape of the surface from the shape of the surface of 
neares t ra nge. The first of these stages was performed with 
a fun ctiona l termed the " retracker" by Ma rtin a nd others 
(1983); the second stage was d ealt with by an a lgorithm 
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tha t calcula ted a height shift termed the " slope-induced 
error" by Brenner and others (1983) . Other authors have 
proceed ed along similar lines since (e.g. Partingto n a nd 
others, 1989; R em y and others, 1989) . 

There is, in the theo ry, a superficia l analogy with the 
re tracking procedure. Changing the order of integra tion 
in Equa tion (9 1), and writing 

where the fun ction Is(N) is 

47rcR 2 f tl 1t1 
f , (N) = - --y;--() dtt dTJ(t - T)Pa(N, t ) 

2 0 to to 

(94) 

(95) 

one finds tha t Equa tion (95 ) is a fun ctional tha t red uces 
the echo to a number. H owever, the qu antity Is bears no 
simple relation to the first a rrival time. Generally, it h as 
no simple rela ti on to the surface height at all. Its use lies 
solely in the fac t tha t, when averaged over space via 
Equa tion (94), the res ult is equal to the ave rage height, 
rel a tive to the d a tum used to determine the kernel J (t) . 

Because the theory here is a linear one, whereas the 
re tracking procedure is not, a usefull y general theoretical 
comparison of the methods is not possible simply. There 
a re, in additi on , th eo r eti ca l diffi culti es with th e 
" re tracking" and " slope-induced error" procedures . As 
is well known (see e.g . R obin and others, 1983), there is a 
uniqueness problem in working with first-a rrival times 
a nd it is not at a ll obvious how it is to be closed . 
l\II oreover, there a re implicit assumptions in the re track
ing p rocedure concerning the scales of topography tha t 
have not been imposed here, and which have never been 
dem onstra ted to be self-consistent . G enerally, the solution 
determined by the algori thms summarized by the terms 
" retracking" and " slope-induced error" will not be a 
solution to the p roblem. It is therefore unlikely that 
pursuing such a comparison wo uld be a profita ble 
endeavour. One might also add tha t, when these proc
edures are used in an experiment, one is faced with the 
diffic ul ty of showing in a general way tha t errors tha t 
a rise from the uniq ueness problem , or because the 
determined solution is not in fact a solution of the 
problem , are negligible. 

5.6. LiIIlitations 

T his paper dea ls with the problem of altimetry of ice 
sheets in a linear framework by exploiting the smallness of 
a num ber of dimensionless parameters associated with the 
geometry of sa tellite altimetry and ice sheets. These 
p arameters and our ass umptions concerning their m ag
ni tude are laid ou t in section 3. 1 and Eq ua tions (8)-( I 7) . 
W e have used the sm a llness of these pa rameters to neglect 
contributions tha t a re 0 (10- 2) in the d efining expression 
Equa tion (6) for the echo. In the practi cal situa tion , of 
course, this may not be sufficien t and one may need to 
check the magnitude of some of the terms we have 
neglected . 

Small surface g radients characteri ze much of the la rge 
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ice shee ts, but large gradients do occur, pa rticularly a t the 
continenta l margins, in r egions of substa ntial crevassing 
and near nunataks. Equa tion (13) restricts the method to 
ice sheets with small gr adients. We used Equa tion (13) to 
reach the approxima tions of Equations (23) and (28) . 
Other problems will a lso em erge if one tries to extend the 
method to larger gradients. Our scattering model is omni
directiona l within the range of angles illumina ted by the 
altime ter , and this will not be the case if high surface 
gradients a re present. Sma ll gradients are also implicit in 
our neglecting the refraction a t the a ir- ice interface. 
R egions of high gradients should be excluded from the 
average b y use of a weighting fun ction. 

The model of penetra tion we have adopted is a simple 
one. It is central to the m ethod tha t the surface- and 
volume-scattering is laterally constant (vertical varia tions 
in volume-scattering m ay be dealt with by a n extension of 
the d escription here ) . Without la teral constancy, the 
reduction of Equa tion (45 ) allowing a separable form is 
not possible. It should be kept in mind that, since an 
altimeter averages the power scattered from a region some 
kilom etres in latera l extent, it is the volume-scattering 
averaged on this scale that matters in this context . 
Varia tions on scales much la rger than this can be dealt 
with by a n appropria te normaliza tion ; varia tions on 
scales much shorter tha n this will be invisible to the 
altimeter. In my experi ence, this is a good model for the 
altimeter echoes from the dry cold surface experienced , 
for example, over much of the Antarctic continent. O ver 
the warmer areas of the Greenland ice shee t, however, th e 
situa tion m ay be considera bly more complex. Theoret
ically, the introduction of a n unknown lateral varia ti on in 
scattering coeffi cients m akes the problem non-linear and 
difficult. 

Section 4.4 dealt with a case in which the antenn a 
boresight was not a lign ed with the normal to the 
reference sphere. I t is important to stress , however, tha t 
sec tion 4 .4 does not p rovid e an argument tha t deals with 
the most general case of a small " mispointing" angle 
between the antenna boresight and the surface normal to 
the sphere, which may a rise as a res ult of pi tch or roll of 
the antenna. M oreover , I suspect tha t generall y such an 
ex tension is not possible. This is because the echo over a 
topographic surface is sensitive to the yaw angle of the 
antenna. In the case d ealt with here, this angle is 
constrained such tha t the boresight is sighted a t a fixed 
point in space - the centre of the geocentric sphere 
and this constraint was not added for convenience. It 
ensures a very particula r beh aviour of the yaw angle. It is 
only in this circumstance, combined with a limited local 
region , tha t our results hold. 

6. CONCLUSIONS 

This pap er is concerned with the altime try of surfaces 
with gentle undula tions h aving a wide range of spa tia l 
scales tha t includes the dia meter of the a rea illumina ted 
by the a ltimeter beam . Th e aim of the work is to deal with 
the four ques tions raised in the introduction: Wha t is the 
rela tion between the a ltimeter echo and the height of a 
topographic surface? Ca n a method be found for the 
inversion of this rela tionship for the average height? In 
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what circumstances is the result of this inversion unique? 
What do the answers to these ques tions imply for the 
design of a n experiment to determine the average height 
of ice sheets? 

The general relationship between the surface height 
a nd the echo is complicated and n on-linear. Th e 
geometry of satellite-altimetry opera tion and the small
ness of ice-sheet gradients can be used to give a n 
approximate form for the echo in which the surface 
height appears only as a linea r combination in the 
argument of the pulse function. With this form, the 
problem of determining the average height of the surface 
from observations of the echo can be placed within the 
li-amework of a linear inverse problem. M ethods for the 
solution of such problems are well known. The average 
height d e termined from the solution of th e inverse 
problem is unique, provided the echo is observed over a 
sufficient interval of time. The area over which the 
average is formed may vary but it must be large in 
comparison with the area illuminated by the altimeter. 

These results have implications for the co ll ection and 
reduction of the echoes in an experiment to determine the 
average height of a surface. The problem of determining 
the average height is practically simpler than the problem 
of determining the height. The average height can be 
determined by operating on the echo with the kernel 
resulting from the solution of a one-dimensional integral 
equa tion. Continuity of spatial and temporal coverage is 
needed to ensure a unique determination of the average 
heigh t and this req uires a priori knowledge of the extrema 
of the surface. This interval may be reduced with greater 
a priori knowledge of the surface by minimizing the area 
of the average or by selecting a datum surface aligned 
with a regional trend in the surface. 

This paper does not give a discrete representation that 
wou ld be needed for an experimental implementation of 
the theory. There are substantial issues associa ted with 
the transfer to a discrete representation. While the inverse 
prob lem d escribed here is well posed , it does not follow 
that it is well conditioned. Numerical stability may need 
attention . The spatial sampling of the echoes is irregular 
and errors will arise in the quadrarure of a spatial 
average. This raises the question of what is a sufficient 

density of spatial sampling? I shall deal with these matters 
in a separate paper. 
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