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Abstract
Deep neural networks are said to be opaque, impeding the development of safe and trustworthy artificial
intelligence, but where this opacity stems from is less clear. What are the sufficient properties for neural
network opacity? Here, I discuss five common properties of deep neural networks and two different kinds of
opacity. Which of these properties are sufficient for what type of opacity? I show how each kind of opacity
stems from only one of these five properties, and then discuss to what extent the two kinds of opacity can be
mitigated by explainability methods.
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1. Two Kinds of Opacity
Deep neural networks (DNNs) are, by now, familiar tomost scientists. They are used across all fields
of science, for example, to screen for anthrax spores (Jo et al., 2017), to calculate phenotypic
distances from butterfly photographs (Cuthill et al., 2019), to improve breast cancer diagnostics
(Witowski et al., 2022), to monitor urban earthquakes (Yang et al., 2022), in materials science
(Zhong et al., 2022), and so on. DNNs come in many different flavors. Our discussion will not
depend on the specifics of the different architectures employed in the wild, but on five common,
almost-across-the-board properties of DNNs: DNNs are big (have overwhelmingly many param-
eters), continuous (propagate continuous values), nonlinear (have nonlinear decision boundaries),
instrumental (rely on parameters whose semantics is undefined), and trained in an incremental
fashion, that is, on ordered sequences of randomly sampled batches of data. Conventional machine
learning models—for example, customer risk estimation models or spam filters—had hundreds or
thousands of parameters. Today, neural language models or computer vision models have millions
or billions of parameters. Earlier generations of language models were symbolic, with manually
defined rules over discrete vocabularies, combining these in mostly linear ways, whereas modern
DNNs operate in continuous space and employ nonlinear activation functions. DNNs are instru-
mental in that they rely on the induction of latent variables that do not track input variables directly,
and they are incremental in that parameters are induced by updating the weights for small batches
of data at a time, presented in a particular order, and while often doingmultiple passes over the data
before arriving in a final model state, training is often extremely sensitive to the order in which data
happened to be presented.1
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1This, for example, is why some DNNs are trained with training curricula, arranging the training data from easy (on some
metrics) to harder.
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DNNs are also often said to be opaque.2 Opacity of DNNs causes moral problems, depriving
users of full agency (Vaassen, 2022) and obfuscating developer responsibility (Goetze, 2022), but
philosophers of science have also discussed the implications of opacity of DNNs. Here, the focus has
been whether opacity challenges the application of DNNs to science (Babic et al., 2021; Gunning et
al., 2019; Price, 2018; Rudin, 2019; Sullivan, 2022b).

Few have considered why DNNs are opaque, or where their opacity stems from. That is:

What properties of DNNs are sufficient conditions for opacity?

This is an incredibly important problem, however. If we want to find good trade-offs between
transparency and performance (Dziugaite et al., 2020; Johansson et al., 2011), or between trans-
parency and fairness or differential privacy (Rust & Søgaard, 2023), we need to know what causes
opacity inDNNs. If, for example, continuity is not a source of opacity, binarizingDNNs (Tang et al.,
2017) will not make them transparent.

In the literature, each of the five properties mentioned above has been accused of being the
source of opacity in DNNs—size, continuity, nonlinearity, instrumentality, or incrementality—but
are they really all sufficient conditions of opacity? This is the question addressed here, shedding new
light on the challenges presented by the opacity of DNNs, as well as on what can be done tomitigate
the opacity of DNNs.

For this, it is helpful to distinguish between two kinds of opacity:

Definition 1.1 (Inference-opacity). A DNN is said to be inference-opaque when expert humans
cannot, upon inspection, say why, in general, it predicts an output y as a result of an input x.

Definition 1.2 (Training-opacity). A DNN is said to be training-opaque when expert humans
cannot, upon inspection, say how, in general, the parameters of theDNNwere induced as a result
of its training data.

The two notions of opacity correspond to two ways in which the predictions of DNNs on a data
point x0 can be explained: either in terms of features of the input data x0 that the DNN is making
inferences about—or in termsof past trainingdata x1, x2, and x3 that influencedpredictions on x0. This
corresponds to how a doctor can provide two types of rationales for a cancer diagnosis: The first is of
the form: “Look! The patch in the upper corner of this x-ray scan looks like a tumor, doesn’t it?” The
second is of the form: “Your symptoms are identical to past patients who had cancer.” In the DNN
literature, explanations of the second form are often referred to as training data influence attributions.

Training data influence attributions seem to intuitively answer important questions about why
DNNs predict what they do, but they are generally unreliable and hard to evaluate (Karthikeyan &
Søgaard, 2021): If I train two randomly initialized networks on the same data (in the same order),
they will be influenced by different data points. Why? The answer is simple:What data points incur
loss, will depend on the network’s current state. Similarly, two exact copies of an initialized network
trained on the same data, but in different order, will also be influenced by different data points.

We will, in other words, be interested in the following question:

What properties of DNNs are sufficient conditions for inference-opacity, andwhat properties
of DNNs are sufficient for training-opacity?

2Opacity means different things across different scientific disciplines, for example, the term is used in linguistics to denote
coreferential senses licensing different inferences. Here, opacity refers to a lack of transparency, as in Burrell (2016): “[DNNs]
are opaque in the sense that if one is a recipient of the output of the algorithm (the classification decision), rarely does one have
any concrete sense of how or why a particular classification has been arrived at from inputs.” I will discuss how appropriate the
term is in §9; in a sense, DNNs are not opaque at all.
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1.a Scope

Creel (2020) introduced a distinction between three notions of opacity: functional (algorithmic),
structural (software), and run (hardware) opacity. Training-opacity and inference-opacity are both
forms of functional (algorithmic) opacity, and I will have nothing to say here about structural and
run opacity. Similarly, Sullivan (2022a) introduced a distinction between external and internal
opacity, where external opacity concerns howDNNsmodel the data, and internal opacity concerns
their internal dynamics. I will only consider internal opacity here.

The distinction between inference-opacity and training-opacity is loosely related to the distinc-
tion in Boge (2022) between what-opacity and how-opacity. Consider first Boge’s (very informal)
definition of how-opacity:

H(ow)-opacity concerns the way in which a DNN automatically alters the instantiated
function in response to data. (p. 59)

DNNs are function estimators, so what Boge is saying here, is simply that h-opacity concerns how
DNNs are induced from data. What-opacity—or w-opacity—concerns “what was learned” (p. 61)
and is said to be non-reducible to how-opacity. Boge also claims thatwhat-opacity is unique toDNNs.
If this (empirical) statement is true, however, what-opacity must differ subtly from inference-opacity,
which is commonly attributed to other learning algorithms, such as kernel SVMs or stacked
ensembles. I will not try to characterize the difference between the two dichotomies any further.

In this work, I will instead explore the 5 × 2 grid of the above properties (size, continuity,
nonlinearity, instrumentality, incrementality) and the two definitions just cited (inference-opacity,
training-opacity) to see what properties are sufficient forwhat type of opacity. First, however, I will
discuss how, given a property ϕ and a definition of opacity, we can decide whether ϕ is a sufficient
condition for opacity.

1.b Testing for opacity

First, amethodological concern:What is a good test of opacity? Oneway to think about opacity goes
as follows: A source of opacity is a property ϕ of DNNs such that DNNs with property ϕ are opaque,
andDNNswithout property ϕ are not opaque, that is, transparent. Such thinking, however, assumes
that there is only one source of opacity in DNNs—but this is an empirical question to be settled
(below). If both ϕ andψ are properties of a DNN δ and sources of opacity, removing ϕ is insufficient
to make δ transparent. By analogy, if a book is hard to read because of its topic and its average
sentence length, reducing the average sentence length is insufficient to make it easy to read. So
instead, we need to consider the following: A source of opacity is a property ϕ of DNNs such that
otherwise transparent, noncomplex machine learning models become opaque by adding ϕ. I
therefore suggest the following practical test for sources of opacity:3

Test ofϕ as a source of opacity:Take a non-opaque (transparent)machine learningmodel, e.g.,
a small decision tree or a small Naive Bayes classifier, and add ϕ to test if it becomes opaque.

The test explores the space between DNNs and easy-to-understand machine learning models
such as small decision trees andNaive Bayes.We take these transparentmodels andmodify themby
adding ϕ in the most natural way. If the models turn opaque from adding ϕ, ϕ is a sufficient
condition for opacity, a source of opacity. Let us first remind ourselves what decision trees and
Naive Bayes models are:

Decision tree is a flowchart-like structure, that is, a nested if-else statement learned from data.
Simple decision trees can be very intuitive, for example, a product review is positive if it contains the

3As pointed out by one of the reviewers, this is an application of Mill’s method of difference.
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word “good,” or if it contains the word “bad” and “bad” is prefixed by the word “not.”Decision trees
are nonlinear and non-incremental, that is, they rely on global statistics rather than statistics of
small randombatches of data, but are generally considered fully transparent (Mittelstadt et al., 2018;
Pedapati et al., 2020).4 The following decision tree, for example, classifies all red cylinders and blue
boxes as “1,” and all red boxes and blue cylinders as “0”: if xcolor = “red” then (if xshape =
“cylindrical” then y = “1” else y = “0”) else (if xshape = “cylindrical” then y=“0” else y = “1”). Call
this model for Model 1. Model 1 is inherently inference-transparent. This should be easy to see.
Since the training is order-independent and, for most decision trees, computable by hand, decision
trees are also training-transparent.

Naive Bayes is a linear classifier (if the likelihood factors are from exponential families) in which
the individual weights are easy-to-grasp maximum likelihood estimates (Marques-Silva et al.,
2020). The dynamics of the final model is thus similar to other linear models, for example, linear
regression or perceptrons (see below), but learning is non-incremental and therefore insensitive to
the ordering of training data. Naive Bayes is often said to be inherently transparent (Askari et al.,
2020; Marques-Silva et al., 2020; Mittelstadt et al., 2018).5 Since Naive Bayes is linear, it cannot
express the logic expressed by the above decision tree, but a Naive Bayes model with a prior
probability of 0:5 for “1,” but likelihoods P xshape = 0box0j1� �

= 0:9, P xshape = 0cylindrical0j1� �
= 0:1,

P xshape = 0box0j0� �
= 0:5, P xshape = 0cylindrical0j5� �

= 0:1, would make cylinders “0” and boxes “1.”
Call this model 2. Model 2 is inherently inference-transparent. This should again be easy to see. It is
also training-transparent, because the maximum likelihood estimates can be computed by hand
from the training data, and the process is not sensitive to the order in which the training data are
seen.

Decision trees and Naive Bayes models are thus said to be inherently transparent. Both machine
learning algorithms are easy to apply by hand and easy to compute by hand, as long as themodel size
is sufficiently small. This means that they are neither inference-opaque nor training-opaque by
Definitions 1.1 and 1.2. The fact that binary decision trees can be transparent in spite of their
nonlinearity, and that Naive Bayes models can be transparent in spite of their continuity,6 already
suggest that continuity and nonlinearity are not sufficient sources of opacity.

I have introduced two notions of opacity, inference-opacity and training-opacity, as well as a
simple test for evaluating potential sources of opacity. Over the next five sections, I will consider
each possible source of opacity in more detail.

2. Size
One possible source of both inference-opacity and training-opacity is model size, that is, the number
of model parameters. DNNs have overwhelmingly many parameters, for example, modern large
language models have tens or hundreds of billions of parameters. Many researchers have highlighted

4Formally, a decision tree can be defined as a directed acyclic graph that consists of three types of nodes: A root node that
represents the entire dataset or the starting point of the decision tree. Several internal nodes that implement decision rules
based on thresholding an attribute value, thereby splitting the dataset into subsets. Finally, leaf nodes represent class labels or
prediction outcomes. Leaf nodes do not have outgoing branches. The decision tree learning algorithm recursively partitions the
dataset based on the selected features and decision rules until a stopping criterion is met. This process aims to maximize the
predictive accuracy or minimize the impurity of the resulting subsets at each internal node.

5Formally, Naive Bayes can be defined as follows: Let x1,…,xn be a set of n independent features or attributes, and let
y = 0,1f g be a class label. The goal is to predict the class label y given the feature values x1,…,xn. The Naive Bayes algorithm
calculates the conditional probability of the class label y given the feature values using Bayes’ theorem, but under the above
independence assumption and because the marginal likelihood of x1,…,xn does not affect the ranking of the labels by their
conditional probability, we can simply compute argmax yΠiP yjxið Þ to find y. The resulting classifier is a linear classifier of the
form b+wΤx with b= logP yð Þ and wΤx=Σixi � logp xijyð Þ.

6There is an ambiguity here. Naive Bayes come in two flavors: for continuous and discrete input. But both exhibit continuous
inference dynamics and reasoning with probabilities.
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this source of opacity (e.g., Shrestha et al., 2021, §5.2), who point out how DNNs use “millions of
neurons, whichmakes them opaque.”The intuition is this: Humans cannot be expected to familiarize
themselves with n parameters for sufficiently high n, and they obviously cannot hold this many
parameters in short-term memory in an attempt to reconstruct inference dynamics. Even deciding
whether twoDNNs have induced the same function can be hard. For a single layer with n parameters,
there is n! equivalent ways of permuting its weights—a number higher than 3.5 million for n= 10.
Humans cannot, upon inspection, say whymodels with overwhelmingly many parameters predict y
as a result of an input x. Large DNNs are therefore inference-opaque by Definition 1.1.

To see whether the number of parameters qualify as a source of inference-opacity, let us apply our
test from above. Is a decision tree or a Naive Bayes model with a million or a billion parameters
inference-opaque? The knee jerk response of many machine learning researchers will be to say “no.”
In Naive Bayes, for example, all conditional probabilities are statistically independent, so unlike in
DNNs, we can consider each input dimension in isolation. So, the argument would run, can we not
just iterate through the parameters, one by one, and identify the predictive variables this way? Clearly,
the interdependencies in dense DNNs add to the complexity of thesemodels, but Naive Bayesmodels
with millions or billions of parameters are also opaque. To see this, we need to remember how not all
problems have sparse solutions. If sparse solutions exist, they can be computed in polynomial time
(Marques-Silva et al., 2020), but often they simply do not exist. Consider, for example, a classifier used
to distinguish positive from negative movie reviews and let the input movie reviews be of increasing
length. A 50-word positive review may, for example, include 4 positive words and 2 negative ones. A
100-word positive reviewmay include 8 positive words and 4 negative ones. And so on.While we can
(very crudely) explain such decisions by saying “these eight words outweigh these four words,” this
becomes impossible in the limit (as the length grows to infinity), since the number of predictive
variables will quickly surpass the number of predictive variables that our short-termmemory capacity
admits. Imagine a decision tree with thousands, or even millions, of nested if-else statements. Such
nested statements would be lost onmost of us. This is in line withHumphreys, for whom “a process is
said to be epistemically opaque when it is impossible for a scientist to know all of the factors that are
epistemically relevant to licensing claims on the basis of that process” (Humphreys, 2009).

Size is, in other words, sufficient for inference-opacity, but how about training-opacity? Is a
decision tree or a Naive Bayes model with a million or a billion parameters also training-opaque?

This does not necessarily follow from its inference-opacity. By Definition 1.2, a model is opaque
if it is generally not feasible to explain the individual parameters as a result of the training data. Even
for large decision trees and Naive Bayes, this is fairly easy, since individual parameters reflect global
statistics that are easy to compute. It may not be easy to predict the entiremodel if sufficiently big, or
its posterior distribution, but the value of a single parameter, for example, a likelihood P xijyð Þ, is
easy to compute.

In sum, size is sufficient for inference-opacity, but not for training-opacity.

3. Continuity
Humans are arguably better at reasoning with discrete variables than with continuous ones. If this
is true, symbolic representations and logical reasoning are more intuitive to us than vector
representations and probabilities. Many philosophers and computer scientists have pointed to
the continuous nature of DNNs as a source of both inference-opacity and training-opacity, for
example, claiming how “discrete representations have the advantage of being readily interpretable”
(Cartuyvels et al., 2021, §2.1). Many approaches to “explaining” DNNs have discretized their
inference dynamics—by uptraining rule-based models to simulate DNNs or by jointly providing
discrete explanations, for example, by text generation or concept activation. Other approaches,
however, do not, including uptraining of linear models and saliency maps, suggesting that
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continuity itself is not a source of inference-opacity. Note also howmany scientific explanations in
the natural sciences are continuous.

I will apply our opacity test, but obviously, we cannot add continuity to Naive Bayes, since the
inference dynamics of Naive Bayes classifiers are inherently continuous. Naive Bayes classifiers are,
in their own right, an argument for why continuity is not sufficient for inference-opacity or
training-opacity. That we consider small Naive Bayes models inference-transparent and train-
ing-transparent, is proof that continuity is insufficient for both types of opacity.

That said, maybe probabilities are an exception to this rule? If the weights did not have a
probabilistic interpretation, wouldNaive Bayes still be transparent (on a small scale)? Our reply is as
follows: Our interpretation of Naive Bayes models may built on our every-day intuitions about
probabilities, but so may our interpretation of other discriminative, linear models. Perceptrons are
single-layered neural networks and discriminative Naive Bayes models, for example, but if we add
sigmoids, we obtain logistic regression models, which admit for probabilistic interpretations
Rosenblatt (1958). So even if ϕ is said tomean “being continuous and non-probabilistic,” continuity
still seems insufficient to generate opacity. Our final example would be a simple decision tree over
continuous input features, for example, “if you are taller than 6 five feet and older than 15 years, then
y1, otherwise y2.” Such a tree seems very easy to understand, and if so, this is further evidence that
continuity is insufficient for inference-opacity and training-opacity. One way to add continuity to
decision trees will give you decision tree regressors. Such regression models are also widely
considered inference-transparent and training-transparent.

In sum, continuity is neither sufficient for inference-opacity nor for training-opacity.

4. Nonlinearity
Many authors have seen the reliance on nonlinear activation functions as a source of both of
inference-opacity and training-opacity, referencing DNN’s “nonlinear structure whichmakes them
opaque” (Joneidy &Ayadurai, 2021; Sachan et al., 2020).Why are nonlinearities supposedly hard to
grasp? Clearly, nonlinear functions are generally harder to grasp than linear functions, as evidenced
by mathematics textbooks and online lectures saying things such as “in order to understand what a
nonlinear function is, it is essential to understand what a linear function is.”7 But are nonlinearities
sufficient for opacity? I do not think so. Themost common nonlinear functions in DNNs seem easy
to understand: ReLU functions, for example, are thresholded, linear activation functions, for
example, “f xð Þ= ax + b unless x < c.” We are familiar with such functions in our daily lives. This
is how simple taxation systemswork, for example. Sigmoid functions are arguably somewhat harder
to compute with by hand, but they express natural relationships, for example, that between crop
yield and soil salinity, or those between titrant volume and pH. A second reason to question that
nonlinearity is the source of opacity in DNNs, is that DNNs often induce near-linear functions in
practice and can be approximated very closely by shallow, linear networks (Ba & Caruana, 2014).
They nevertheless come across as both inference-opaque and training-opaque.

Let us apply our test from Section 1. We cannot add nonlinearities to decision trees, for decision
trees are already nonlinear. They are as such an argument for why nonlinearity is insufficient for
(both types of) opacity. Small nonlinear small decision trees are considered transparent; see Section
1 for details. But they cannot be nonlinear and transparent, if nonlinearity is a source of (both types
of) opacity.

If we instead add ϕ (nonlinearity) to a Naive Bayes classifier, we may, for example, get classifiers
that associate low- and high-probability instances to the same class. Consider a model trained to

7https://study.com/academy/lesson/nonlinear-function-definition-examples.html.
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predict positive product reviews, but used to detect opinionated reviews. Opinionated reviews will
tend to be the ones for which P(positive∣x) is either very high or very low. Such a compoundmodel,
albeit nonlinear, seems perfectly intelligible (fathomable) to humans, even if the nonlinearity adds a
bit an extra step to the inference procedure. It is likely that the cognitive load of nonlinear
activations is higher than for linear activations, but what our test shows is that nonlinearity alone
is insufficient for inference-opacity or training-opacity.

Onemay of course reply that just because I can understand a single ReLUactivation does notmean
I can understand a sequence of them, especially with high-dimensional inputs. I would reply that high
dimensionality is a reference to size and itself a source of opacity. If a sequence of ReLUs with low-
dimensional input would lead to inference-opacity, this would show that nonlinearity is a sufficient
source of inference-opacity, but I would argue that this is only the case for sufficiently long sequences
of ReLUs—a recourse, again, to model size. To see this, consider the following sequence of ReLUs:

if x > 30 then f xð Þ= 3x + 4 else f xð Þ= x; if f xð Þ > 15 then g xð Þ= 4f xð Þ+ 3 else g xð Þ= x.
It is fairly easy to see that this function for small enough values of x (x≤ 15) will return x, and that

for large enough values of x will return 12x + 19. For mid-range values of x, it will return 4x + 3. A
sequence of three or more ReLUs will of course bemore complex to trace by hand, but note how the
complexity is comparable to that seen in decision trees, typically considered transparent machine
learning models.

4.a Zerilli’s fathomability/intelligibility distinction

Zerilli (2022) distinguishes between two kinds of inference-opacity, fathomability and intelligibility:

Linearity and low dimensionality together can be said to make a system and/or its operations
fathomable, in the sense that “a person can contemplate the entire model at once” […] But
when dimensionality increases considerably, even a linear model will cease to be fathomable.
Dense linear models, extensive rule lists and large ensemble methods are really of interme-
diate complexity, and in many cases too cumbersome for a person to work through step-wise
in real time without losing their footing. Nonetheless, so long as linearity is a feature of the
model, it will still be intelligible—i.e., inspectable—without necessarily being fathomable—i.
e., inspectable all at once.

Note that fathomability implies intelligibility. The distinction between intelligibility and fathom-
ability based on linearity seems inconsistent with our basic intuitions, though. To see this, consider a
modelwhich is both fathomable and intelligible, say, a smallNaive Bayesmodel (e.g.,model 2 in Section
1), producing a posterior probability P yjxð Þ for any input data point x. The following decision tree is
nonlinear: if P yjxð Þ > 0:8∨P yjxð Þ < 0:2 return “confident” else “not confident.” The decision tree
basically just tells uswhenModel 2 is confident or not, but themodel is nonlinear, so the decision tree—
in spite of its intuitive simplicity—is not intelligible—and hence, also not fathomable.

Nonlinearity is simply not a source of inference-opacity. Decision tree rules, even those that are
easy for a person to contemplate or fathom, can be nonlinear. Think of the colored cylinder-box rule
in the above (model 1), for example. Zerilli (2022) runs into a second problem, also, when declaring
that DNNs are neither intelligible nor fathomable. Intelligible models, to Zerilli, are inspectable, but it
is simply not clear in what sense DNNs are less inspectable than decision trees. Their internal
computations are certainly no more complicated; in fact, DNNs can generally be translated into
decision trees (Aytekin, 2022). Hence, if DNNs are always unintelligible and unfathomable, as Zerilli
would have it, the same should hold for decision trees. (Note how only size will resolve this paradox.)

In sum, non-linearity is neither sufficient for inference-opacity nor for training-opacity.
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5. Instrumentality
The fourth contender for a sufficient condition for inference-opacity or training-opacity is
instrumentality: DNNs are opaque because they are instrumental and their elements are
ungrounded. This implication has been floated by several philosophers, complaining, for example,
that DNNs “are opaque because there is no inherent meaning to the hidden nodes,” or that they do
not “work in accordance with the ways humans themselves assign meaning to the reality that
surrounds them” (Landgrebe & Smith, 2021, p. 2070). This is also the intuition behind Boge’s what-
opacity, it seems.

The argument here is not just that DNNs have derived intentionality in Searle’s sense (Searle,
1983). Decision trees, Naive Bayes models, and ball frames all have derived intentionality. The
argument is that the hidden layers of DNNs have less than that. In a decision tree, a node is said to
correspond to an input feature, which in turn corresponds to a property of an object or an event that
the input example represents. In Naive Bayes, the conditional probabilities represent relations
between such properties. The balls on a ball frame correspond to numbers, which may in turn
represent objects or events. What about the parameters in the hidden layers of DNNs?

One way to think about hidden nodes is as if they were latent variables or weighted mixtures of
other input variables.8 Latent variables are common in science. Scientists use latent variables to
prove the existence of—or determine the causal effects of—everything from black holes in the
universe to bias in clinical diagnosis. And lumping several variables together as one is something we
do all the time. When computing momentum, for example, we multiply mass and velocity. Mass,
however, is itself the product of two input variables, namely volume and density. In a DNN with a
hidden layer and two input variables, the hidden nodes are no more complex than usingmass as a
shorthand for the product of volume and density.

Let us apply our test. Is a small, binary decision tree still transparent if one or more of its nodes
correspond to a compound input variable? Does a transparent Naive Bayes model remain
transparent after adding a small set of latent variables? I think the answer is “yes” in both cases.
A decision tree, in which a node corresponds to the compound input variable “mass,” does not in
itself seem opaque. Sufficiently small Bayesian models with latent variables, for example, Gaussian
mixtures or topic models, also seem transparent. Note also that clustering methods, such as k-
means or agglomerative clustering, induce categories that do not have direct real-world correspon-
dences. These are also traditionally classified as transparent machine learning methods.

A possible reply, again, is that just because we can describe some compound variables as the
product of two simple ones, does not mean I can understand more complex combinations of more
input variables. However, this is a reference to model size, not to instrumentality itself. Instrumen-
tality in itself is not a problem, but if a variable x is a (sufficiently complex) function of a sufficiently
large number of input variables, themeaning of x can be hard to understand. True, but this is exactly
the argument made here: We can only wrap our heads around sufficiently small variable combi-
nations.9

Some methods for inducing the values of latent variables, for example, Monte Carlo or Gibbs
procedures,10 may not be training-opaque, but instrumentality is not on its own a sufficient source

8Some researchers have argued that these latent variables encode concepts through superpositioning (Elhage et al., 2022).
9Obviously, not all parameters are alike. It is easy to design decision problems that would require an exponential number of

parameters, for example, 2N�1 + 1, in a single hidden layer, but which would require only a linear set of parameters in a network
of 2log2 Nð Þ layers. So depth adds to complexity, but because you have more interactions in such networks. Generally,
parameters can play more or less complex roles. A product of phase-shifted sine waves is arguably harder to wrap your head
around than the summation of integers. Still, only the number of waves and integers are sufficient sources of opacity. So, we can
say without asking the question of model opacity: Some architectures may take 1,000,000 parameters to express what other
architectures express in 1,000 parameters, but across such architectures, opacity results from size.

10Monte Carlo andGibbs sampling are techniques used in statistics and computational statistics for generating samples from
a probability distribution.
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of training-opacity. Clustering methods that are both instrumental and incremental, for example,
incremental k-means (Halkidi et al., 2012), are also training-opaque.11 See the next section for a
discussion of incrementality.

In sum, instrumentality is neither sufficient for inference-opacity nor for training-opacity.

6. Incrementality
Seeing incrementality as a source of opacity generally seems to have gone somewhat under the
radar. Some authors have alluded to training history as a general source of opacity, for example,
“learning algorithms are even more opaque because they do not rely on pre-specified instructions,
but on evolving weights and networks of connections that get refined with each additional data
point” (Faraj et al., 2018, §2.1), but such examples are rare.

Why is training history important? Clearly, how amodel ended up in its final state is orthogonal
to its inference-opacity in that state. Some neural network learning algorithms only update
parameters when networksmake incorrect classifications, but are randomly initialized. If a network
ends up in state A after seeingN training data points, it is possible to arrive at an identical network B
without seeing any data at all, simply by drawing B from the process of random initialization. The
probability of this happening is low, but nonzero. Since A and B must be equally inference-opaque,
inference-opacity is independent of the training history of A and B. However, how a model ended
up in its final state is crucial to training-opacity. Since DNNs converge to local (not global) optima
during training, training histories are important for understanding how the DNN came about. This
includes what training data were influential in this process. Two identically initialized DNNs
trained on different sequences of training data will have very different (and often uncorrelated)
influence functions.

The non-incrementality of (standard) decision trees andNaive Bayesmodelsmeans that they are
training-transparent, that is, not training-opaque. Conversely, consider negligible DNNs with two
parameters. Suchmodels remain training-opaque because they are trained on random sequences of
training data, the order of which is not stored—or deleted once training is complete. Even if we only
have two parameters, say, to keep track of, each parameter is affected by hundreds, thousands, or
millions of training instances, some of which may be seen multiple times during training, and the
final value of each parameter is potentially sensitive to the order in which training data are seen.

Consider what Naive Bayes would look like if it were sensitive to its training history. Or simply
think of Perceptrons, a linear model that is sensitive to the ordering of training data. On non-
separable problems,12 the final model can be very sensitive to training history, but even on separable
problems, margins can be quite different across models trained on different sequences of randomly
sampled batches of data. Perceptrons (and by extension, DNNs) are therefore training-opaque;
Naive Bayes models are not. Decision tree algorithms, for example, C4.5, are mostly non-incre-
mental. Some incremental algorithms do exist, however, and some of these, such as ID4 and ID5,
lead to training-opacity. However, the family of decision tree induction algorithms also reminds us
of the subtle difference between incrementality and training-opacity: Some algorithms are incre-
mental, but guaranteed to produce the same decision tree regardless of how the training instances are

11The training-opacity of k-means follows from how the final model state is, in general, sensitive to the random initialization.
We need to know how the centroids are initialized to predict the final model state—in the absence of strong convexity.
Incremental k-means learns from small batches of data at a time andmay be sensitive to the order in which the training data are
seen.

12In machine learning, a separable problem refers to a type of problem in which the data points from different classes or
categories can be perfectly separated by a decision boundary or hyperplane. In other words, it is a problemwhere you can draw a
clear and distinct line, curve, or boundary that completely separates one class of data from another without any overlap.
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ordered. ID5R is an example of such an algorithm (Utgoff, 1989). Here, incrementality does not lead
to relevant epistemic opacity with respect to how the model was induced as a result of the training
data.

In sum, incrementality is sufficient for training-opacity (in the absence of convergence
guarantees), but not for inference-opacity.

7. Interactions
A general objection to the discussion above would be that I have treated each potential opacity
inducer in isolation. This is arguably far too generous. The problem with DNNs, some might say, is
not that they are large, continuous, nonlinear, and so on, but that they are all of these things at once.
My reply to this objection is twofold:

First of all, it is simply not true that all DNNs satisfy the conjunction of the five properties above.
ManyDNNs omit nonlinear activation functions; others rely on binary-valued parameters (Hubara
et al., 2016). It is true that all (relevant) DNNs are large, instrumental, and incremental, but the same
holds true for many other learning algorithms, some of which are usually considered inference-
transparent, for example, online random forests (Lakshminarayanan et al., 2014). Here is a sample
list of learning algorithms satisfying all three of the above properties, size, instrumentality (Inst),
and incrementality (Incr):

These algorithms not only present a challenge to philosophers who claim that DNNs present us
with unique kinds of opacity, for example, Boge (2022), but they also show that the conjunction of
instrumentality and incrementality does not cause inference-opacity. Small online random forests
are clearly inference-transparent, and random forests are often said to be inherently inference-
transparent.

Generally—and this is my second reply to the objection above—I have not found any examples
in the literature of small and inference-opaquemodels, regardless of how instrumental they were, or
how incrementally they were trained. A bold empirical hypothesis seems to emerge: No small
models are inference-opaque.The discussion above, inmy view, presents strong evidence thatmodel
size, in general, is sufficient for opacity. I have also presented arguments against seeing continuity,
nonlinearity, instrumentality, or incrementality as sufficient for opacity. But I have no proof for size
being the only sufficient source of opacity, of course. Such a proof would rely on an iteration over all
possible sources of opacity, showing that none of them, except for size, are sufficient.

8. Mitigation
My main observation is that the number of parameters in a model is a sufficient source of its
inference-opacity, whereas incrementality—training on small batches in ways that are sensitive to

Algorithm Reference Size Inst Incr

Online random forests Lakshminarayanan et al. (2014) + + +

FOGD Lu et al. (2016) + + +

NOGD Lu et al. (2016) + + +

Online multiple kernels Sahoo et al. (2016) + + +

PIKLM Manica et al. (2018) + + +
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the order in which the batches are presented—is a sufficient source of training-opacity (in the
absence of convergence guarantees). Other candidates, such as continuity, nonlinearity, and
instrumentality, are insufficient to establish opacity.

This observation comes with the promise of making research on DNN transparency more
focused, highlighting the need for knowledge distillation or summarization in terms of models with
fewer parameters. It also indicates that the opacity of DNNs is related to the opacity of many other
learning algorithms. Nothing about the DNN model opacity is unique to DNNs. I will use this
section to show that it also follows from this observation that inference-opacity mitigation amounts
to computing something akin to an abstractiveness–faithfulness trade-off, known from traditional
summarization problems, and that training-opacity amounts to finding a similar trade-off—but on
a different scale.

8.a Abstractiveness–faithfulness

Many strategies for mitigating inference-opacity focus on linearizing or discretizing DNNs.
Linearization and discretization may contribute to our understanding of DNNs, but as I have
shown, these methods will, on their own, be insufficient for inference-transparency. Manymethods
exist for approximating DNNs with smaller DNNs. The so-called lottery ticket extraction methods,
for example, have shown to lead to only small performance drops, even after pruning away 19/20
parameters. However, for modern DNNs with millions or billions of parameters, this is clearly
insufficient for inference-transparency, since 1/20 of amillion parameters is still 50,000 parameters.
Saliencymaps approximate DNNswith very small linearmodels, with just a single feature per input
unit. These are much easier to wrap your head around, but research suggests that the approxima-
tions produced by existing methods are unreliable (Arun et al., 2021; Kindermans et al., 2019).

There is, in other words, a trade-off between how faithful these interpretations are, and how
much inference-opacity they remove. This trade-off is familiar from the summarization literature
and is often referred to as the abstractiveness–faithfulness trade-off:13 “the number of unfaithful
sentences […] increases as the summary becomes more abstractive […]” (Durmus et al., 2020). A
sentence in a summary is unfaithful if it has no support in the original document, and an abstractive
sentence is one that abstracts away from the details of the original document to deliver the message
more succinctly. This trade-off is, thus, a trade-off between precision and how easy it is to quickly
understand the document by reading the summary. If, for example, you write a one-page summary
of Lord of the Rings, you have to toss out information and abstract away from details. If you only
have half a page for your summary, you need to toss out some more.

An approximation of a DNN in the same way needs to balance the same two objectives:
faithfulness to the original DNN and abstractiveness, that is, generalization over its dynamics to
present amore succinct and easy-to-understand alternative. Our objective thus becomes a weighted
minimization problem, minimizing a weighted sum of the discrepancy between our approximation
and the original model, and the size of our approximation. Both terms are analogous to terms of
learning theory, since the former is a loss, and the latter is a regularization term.14

13It is of course also related to similar trade-offs in learning theory, including the bias–variance trade-off.
14This amounts to the following kind of objective:

arg min
θa

X

i≤ n

ℓ yai ,y
o
i

� �
+ λ θak k0,,

where λ is a parameter that controls how important model size is to us, balancing the two objectives, faithfulness and
abstractiveness. Over n many data points, we minimize the discrepancy between the output of our original model yoi and
the output of our approximation of it yai . ℓ �, �ð Þ is a loss function quantifying this distance. The weighted regularization term
controls abstractiveness by penalizing the size of the approximation, its L0-norm.
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This observation sets the direction for future work onmaking DNNs transparent because we can
now apply standard learning theory to the inference-opacity problem. Scientists have recently
argued how work on making DNNs transparent “both overstates the benefits and undercounts the
drawbacks of requiring black-box algorithms to be explainable” (Babic et al., 2021) but with the
application of learning theory, we can now quantify these benefits and drawbacks, as well as provide
provable guarantees for transparency. We know from scaling laws for various tasks, for example,
Kaplan et al. (2020), that high performance often requires large models, but uptraining—that is,
transferring the knowledge of a complex DNN with desired performance to a smaller, more
compact model (Ba & Caruana, 2014; Bucila et al., 2006)—provides proof-of-concept that even
the behavior of very large models can often be summarized by much smaller ones.

8.b Incrementality

Can we apply learning theory to the problem of training-opacity in the same way? While we can
mitigate inference-opacity by balancing abstractiveness and faithfulness, training-opacity seems to
be more of an uphill battle. Asking how an incremental learning algorithm arrived at a model after
training on random batches of data is like asking how someone came to be the person they are now.
This would require a complete recording of past events in the person’s life. Similarly, mitigating the
training-opacity of a DNN requires its complete training history. The number of parameters you
need to summarize in order to mitigate training-opacity is also much larger than the number of
parameters you need to summarize tomake amodel w-transparent. If a DNNhas n parameters and
saw m batches of data, you need to summarize at least m× n2 interactions to summarize the
network’s training history, that is, the number of updates to n parameters. One obvious strategy for
doing so is learning to predict themodel from a small set of d dataset characteristics, reducing the set
of parameters from m× n2 to d × n, and predicting the final state rather than tracking all the
intermediary state transitions. Since, in practice,m and n tend to be six to eight digits and d to be two
digits, this reduces the complexity a lot. This glosses over the stepwise training history and may be
insufficient for transparency, since the model itself (n) may be too large. If, instead, you try to
predict properties of the output fromproperties of the input, for example, performance fromdataset
characteristics, or class distribution from dataset characteristics, the number of parameters can be
reduced even further, but possibly at a severe information loss.

9. Human Baselines
DNNs are said to be opaquemachines, and I have discussed the sources of their alleged opacity, and
how to mitigate it. Here, in the final section, I ask: Opaque compared to what? Opacity is only of
practical importance, if there is a transparent alternative. Where DNNs replace manual processes,
the alternative is often a human being. Clearly, humans are not exactly see-through.

9.a Bushy eyebrows bias

Consider the following situation: Mary is a doctor. Throughout her career, she has seen many
patients with sleep apnea. In an unlikely series of events, all the patients she saw with this diagnosis,
however, also had bushy eyebrows. Today, she is seeing a patient called Eric, who is complaining
about shallow and infrequent breathing during sleep, and Mary has to decide whether she thinks
Eric suffers from sleep apnea. Eric also has bushy eyebrows. Mary diagnoses Eric with sleep apnea,
but Eric has a hunch that it is not really about his sleep symptoms. Why was Mary looking at his
eyebrows all the time? Eric decides to complain to the National Board of Health, but how will they
decide whether Mary was biased by Eric’s eyebrows when arriving at her diagnosis?

When it comes to the question of what moves us to do one thing or the other, we cannot trust
ourselves or others. While philosophers from Descartes to Chalmers have often granted
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introspection a privileged epistemic status, there is ample evidence that introspective reports can be
unreliable (Pronin, 2009; Schwitzgebel, 2006). Mary, in other words, may not be aware of her bias
and thus unable to confirm or deny it. And while you can learn a lot about a person by observing
their behavior, when a doctor weighs evidence for and against a diagnosis and decides whether to
operate or not, there is typically little behavioral evidence for why the doctor chose this or that. In
our case, Mary’s gaze led Eric to speculate something was wrong. But clearly such accidental
giveaways cannot be relied on. It seems we would need a mind reader in order to truly open up
human black boxes.

This is in sharp contrast with DNNs. During inference (a forward pass in the DNN), input is
multiplied with DNN model parameters, transformed, and squashed through nonlinearities. The
processmay be over-whelming, typically involving thousands ormillions of computations, but all is
explicit and could, in theory, be printed out. The only reason what happens inside DNNs at
inference time is not directly interpretable is complexity. The number of computations is much
more than we can grasp. The same is true, of course, of computations inside humans.

I said we would need a mind reader in order to truly open up human black boxes. The idea of
mind readers has fascinated us for millennia. Philip Breslaw, the first magician to perform “mind
reading” on stage, played in 1781 at the Haymarket Theatre in London; later, Harry Houdini would
do the same. Ancient mythology is filled withmind reading, magical creatures. In Japanese folklore,
satori are mind reading monkey-like monsters said to live in the mountains of the Gifu prefecture.
In the Book of Job, it is said that only God has private thoughts. God, in other words, is a mind
reader. Mind reading and telepathy also figure prominently in modern myths, such as those of the
superheroes in the DC universe. In Harry Potter, Voldemort reads minds, and memories can be
extracted from our brains and stored in a so-called perceive, a form of memory basin. In the words
of Albus Dumbledore, “one simply siphons the excess thoughts from one’s mind, pours them into
the basin, and examines them at one’s leisure.”

While brain image decoding is still in its infancy, it is clear that some of our thoughts can be
observed by bystanders, if equipped with appropriate technology to measure the oxygenation or
electricity in our brains. SSVEP-based spelling systems enable spelling from EEG scans with better
than 90% accuracy, surpassing our accuracy when typing text messages on our smartphones.
Neurotechnologies can, to a large extent, decode our mental states by analyzing neural activity
patterns, and have led to the development of a wide range of educational, entertainment-related,
and even military applications.

However, none of these mythical or technical mind readers tell us the exact computations
happening inside human brains. Why not? Presumably, Albus Dumbledore or God would know.
The exact computations are not practically important. Explanations in terms of billions of neurons
are explanations but not useful explanations. Humans are inference-opaque and training-opaque,
and if the best brain scanners opened up the lids of our black boxes, it would provide us with
valuable information, but not make us completely transparent (to resource-bound humans).

Forgetfulness also contributes to the opacity of doctors. Consider the bushy eyebrow bias
example. Doctor Mary may or may not be aware of how she has learned to associate bushy
eyebrows with sleep apnea. She may not even be able to recall the faces of past patients any longer.
Human doctors may also be sensitive to their initialization and the order in which they had their
experiences, including possibly their education, but these data are, likely, forever lost.

Mary is principally opaque in the moment, but we also do not have access to the events that
shaped her convictions over time. And here it seems our doctor will never become fully transparent,
even if we had almost unlimited resources. For this would require not only perfect brain image
decoding, but lifelong, continuous brain image decoding and, possibly, also monitoring of the
surroundings. As well as maybe working out the dynamics between these two systems. That seems
like an uphill battle.

The picture that emerges is: What happens inside DNNs at inference time is not inaccessible or
black-boxed, but simply “too complex.”Or, in the words of Beisbart, something that a human being
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cannot wrap their heads around “in a reasonable amount of time”Beisbart (2021). This is what their
inference-opacity amounts to. What happens inside humans at inference time is inaccessible—in
the absence of on-the-fly brain image decoding technologies, that is—and too complex. What led
the DNNs to induce the functions they represent from their training data is inaccessible in the
absence of the training history, but not in its presence.While DNNs and humans form a continuum
here, providing the training history of humans is considerably more difficult than providing the
training history of DNNs. So again, DNNs seem less opaque than humans in practice. Humansmay
be preferable over DNNs for other reasons: a) they may exhibit superior and more robust
performance, or b) they may satisfy auxiliary criteria, for example, have a different legal status
than computer software, or be consideredmore dignifying in, say, some patient–doctor settings. But
when it comes to opacity or transparency, DNNs have obvious advantages over humans.

10. Concluding Remarks
I have presented five common properties of DNNs and two different kinds of (internal, algorithmic)
opacity. I have explored how these five properties and two kinds of opacity interact, to decide which
of these properties are sufficient for what type of opacity. Both kinds of opacity stem from the
individual properties of learning algorithms: Inference-opacity stems from size; training-opacity
stems from incrementality. This has serious consequences for transparency techniques, such as
discretization and linearization, which will be insufficient to obtain transparency. I discussed how
the two kinds of opacity can be mitigated, and showed how optimal transparency is a trade-off
between abstractiveness and faithfulness. Identifying opacity sources and presenting a framework
for formalizing transparency, push the horizon for the research program of explainable artificial
intelligence.
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