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Approximating Positive Polynomials
Using Sums of Squares

M. Marshall

Abstract. The paper considers the relationship between positive polynomials, sums of squares and

the multi-dimensional moment problem in the general context of basic closed semi-algebraic sets in

real n-space. The emphasis is on the non-compact case and on quadratic module representations as

opposed to quadratic preordering presentations. The paper clarifies the relationship between known

results on the algebraic side and on the functional-analytic side and extends these results in a variety

of ways.

1 Introduction

Denote the polynomial ring R[X1, . . . , Xn] by R[X] for short. For any (not necessar-
ily finite) subset S of R[X], let

XS = {t ∈ R
n | g(t) ≥ 0 for all g ∈ S}, T̃S = { f ∈ R[X] | f ≥ 0 on XS},

and let MS denote the quadratic module in R[X] generated by S, i.e., the set of finite
sums of the form t +

∑

tigi , gi ∈ S, t , ti sums of squares in R[X].

According to a result of Haviland [4] [5], a linear functional L : R[X] → R which
is non-negative on T̃S comes from a positive Borel measure µ on XS in the sense that
∀ f ∈ R[X], L( f ) =

∫

XS
f dµ. It is natural to ask if the same is true for any linear

functional L : R[X] → R which is non-negative on MS. This is the Moment Problem

for the quadratic module MS. The most interesting case seems to be when S is finite.
A sufficient condition for it to be true is that each f ∈ T̃S can be approximated by
elements of MS in the sense that there exists an element q ∈ R[X] such that, for all
rational ε > 0, f +εq ∈ MS (since then L( f )+εL(q) = L( f +εq) ≥ 0 for each rational

ε > 0 so L( f ) ≥ 0). In this paper we examine cases where such approximation is
possible.

Additional motivation for studying this sort of approximation comes from the
recent work of Parrilo and Sturmfels [13] which compares various methods for min-

imizing a given polynomial function. The results in [13] raise the possibility of ap-
plying approximation results of the type considered in the present paper to develop
efficient algorithms to compute such minimum values.

The present paper is a continuation of joint work of S. Kuhlmann and the author

in [9]. In [9] this same approximation question is considered (in the case where S

is finite) but mainly in the easier case where the quadratic module MS is replaced by
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TS, the quadratic preordering generated by S. In the present paper it is explained
how various results proved in [9] and [10] extend to the quadratic module case. This

involves using Jacobi’s extension of the Kadison-Dubois theorem given in [6] to prove
a variant of [10, Theorem 2.2], and also it involves generalizing the Jacobi-Prestel
criterion given in [7, Theorem 3.2]. Another major feature of the present work is
that it clarifies the relationship between the algebraic results in [9] and [10] and the

analytic results of Putinar and Vasilescu in [17] and also that it extends many of the
results in [17].

The author acknowledges the contribution of Salma Kuhlmann to the present
work.

2 Approximation Theorems for Quadratic Modules

Let A be a commutative ring with 1. For simplicity assume Q ⊆ A. By a quadratic

module in A we mean a subset M of A satisfying 1 ∈ M, M + M ⊆ M and a2M ⊆ M

for each a ∈ A. A quadratic preordering in A is a quadratic module in A which is also
closed under multiplication. A quadratic module M in A is said to be archimedean if

for each a ∈ A there exists an integer k such that k − a ∈ M.

We denote by
∑

A2 the set of all finite sums
∑

a2
i , ai ∈ A.

∑

A2 is the unique
smallest quadratic module in A.

∑

A2 is closed under multiplication, so
∑

A2 is also

the unique smallest quadratic preordering in A. The quadratic module in A generated
by a subset S of A consists of all finite sums of the form a = t +

∑

tigi , t, ti ∈
∑

A2,
gi ∈ S. We denote this quadratic module by MS. The quadratic preordering in A

generated by S coincides with the quadratic module in A generated by the set of all

finite products of elements of S. We denote this quadratic preordering by TS.

For any subset S of A, XS denotes the set of all ring homomorphisms α : A → R

such that α(s) ≥ 0 for all s ∈ S. For a ∈ A, â : XS → R is defined by â(α) = α(a).
XS is given the weakest topology such that the functions â, a ∈ A are continuous.
The mapping a 7→ â defines a ring homomorphism from A into C(XS), the ring of
all continuous functions f : XS → R. We denote by T̃S the set of all a ∈ A such that

â ≥ 0 on XS (i.e., α(a) ≥ 0 for all α ∈ XS). T̃S is a quadratic preordering in A

containing S so TS ⊆ T̃S.

Note: (1) If M = MS, T = TS and T̃ = T̃S then S ⊆ M ⊆ T ⊆ T̃ and XS = XM =

XT = XT̃ .

(2) If A is the polynomial ring R[X] := R[X1, . . . , Xn] then ring homomorphisms
from A to R correspond to point evaluations f 7→ f (t), t ∈ Rn, XS is identified (as

a topological space) with the set XS = {t ∈ Rn | g(t) ≥ 0 for all g ∈ S} defined
earlier and T̃S is equal to the quadratic preordering T̃S = { f ∈ R[X] | f ≥ 0 on XS}
defined earlier.

(3) If M is a quadratic module in A which is archimedean then, for each a ∈ A,
there exists an integer ka ≥ 1 such that ka − a, ka + a ∈ M (so |â| ≤ ka on XM). Thus
XM is identified with a (closed) subspace of the product space

∏

a∈A[−ka, ka], so XM

is compact. The converse is false in general.1

1The status of the converse in examined in detail in [7] in the important special case where A is a
finitely generated R-algebra and the quadratic module M is finitely generated.
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We record the following special case of the representation theorem of Jacobi [6].

Theorem 2.1 Suppose M is an archimedean quadratic module in A. Then, for a ∈ A,

the following are equivalent:

(1) â ≥ 0 on XM (i.e., α(a) ≥ 0 for all α ∈ XM).

(2) a + ε ∈ M holds for all rational ε > 0.

Note: For any element a ∈ A, (1) is a ‘geometric’ condition on a. (2) is an ‘arith-
metic’ condition on a. The implication (2) ⇒ (1) is trivial. The implication (1) ⇒ (2)
is non-trivial.

See [12] for an extension of Jacobi’s result in [6]. For readers unfamiliar with the

results in [6] and [12], an easy access to a proof of Theorem 2.1 can be found in [11,
pages 41–43]. The result in [11], although not the most general, covers as special
cases the case of archimedean quadratic modules and also the case of modules over
archimedean preprimes, the result in the latter case being what is commonly referred

to as the Kadison-Dubois Theorem.
We also use the following self-strengthening of Theorem 2.1:

Theorem 2.2 Suppose M is a quadratic module in A and p ∈ A is a unit such that

p − 1 ∈ M and, for all a ∈ A, there exist integers k, ` ≥ 0 such that kp` − a ∈ M.

Then, for any a ∈ A, the following are equivalent:

(1) â ≥ 0 on XM .

(2) There exists an integer k ≥ 0 such that, for all rational ε > 0, a + εpk ∈ M.

Note: Theorem 2.2 includes Theorem 2.1 as a special case, taking p = 1.
In practice, we will be applying Theorem 2.2 (and also Corollary 3.4 below) in the

case where p ∈ A is not a unit. This will be accomplished by going to the ring

A[1/p] := {a/pk | a ∈ A, k ≥ 0},

the localization of A at the multiplicative set {pk | k ≥ 0}, and

M[1/p2] := {a/p2k | a ∈ M, k ≥ 0},

the quadratic module in A[1/p] generated by M.
We examine the condition p − 1 ∈ A a bit: If p − 1 ∈ M then it follows that

p2 − p = (p − 1)2 + (p − 1) ∈ M and, multiplying each of p − 1, p2 − p by
even powers of p, that pk − pk−1 ∈ M for all integers k ≥ 1. It follows that the set

{kp` | k, ` are integers ≥ 0} is cofinal in the subring Z[p] of A with respect to the
partial ordering associated to M. Thus, in the presence of the condition p − 1 ∈ M,
the remainder of the hypothesis of Theorem 2.2 (that for each a ∈ A, there exist
integers k, ` ≥ 0 such that kp` − a ∈ M) is equivalent to the hypothesis that Z[p] is

cofinal in A with respect to the partial ordering associated to M.
The proof of Theorem 2.2 follows exactly along the lines of the proof of a similar

result for preprimes in [10, Theorem 2.2]. For the convenience of the reader we give
a complete proof.
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Proof The implication (2) ⇒ (1) is trivial. Suppose there exists ` ≥ 0 such that for
all rational ε > 0, a + εp` ∈ M. Then, for any α ∈ XM , α(a) + εα(p)` ≥ 0, so

α(a) ≥ 0.

(1) ⇒ (2). Let

B = { f ∈ A | ∃ a positive integer k such that k + f , k − f ∈ M}.

B is a subring of A [11, Proposition 3.3.3 (2)] and the quadratic module M ′ in B

defined by M ′
= M ∩B is obviously archimedean. Also, 1− 1/p = (p2 − p)/p2 and

1 + 1/p = (p2 + p)/p2 both belong to M so 1/p ∈ B. If a ∈ A then kp j − a ∈ M

and kp j + a ∈ M for some integers j ≥ 0, k ≥ 1. Replacing j by j + 1 if necessary, we

can assume j is even, i.e., kp2` − a, kp2` + a ∈ M for some integer ` ≥ 0. It follows
that, for each a ∈ A, a/p2` ∈ B for some integer ` ≥ 0. This implies that A = B[p]
(the localization of B at the multiplicative set in B consisting of all 1/p i , i ≥ 0).
Thus a ring homomorphism α : B → R lifts to a ring homomorphism α : A → R

iff α(1/p) 6= 0 and, in this case, the extension is unique. Moreover, if α ∈ XM ′ .
Suppose now that α(a) ≥ 0 holds for all α ∈ XM . Then, for each α ∈ XM ′ , either
α(1/p) = 0, so α(a/p2`+2) = α(a/p2`)α(1/p)2

= 0, or α(1/p) > 0 and, extending
α, α(a/p2`+2)α(p)2`+2

= α(a) ≥ 0, so α(a/p2`+2) ≥ 0. Thus α(a/p2`+2) ≥ 0 holds

in all cases so, by Theorem 2.1, a/p2`+2 +ε ∈ M ′ holds for all rational ε > 0. Clearing
fractions, this yields a + εp2`+2 ∈ M.

Since Theorem 2.1 generalizes to the case where M is an archimedean module

with respect to weakly torsion preprime [12], it is natural to wonder if Theorem 2.2
generalizes in some similar fashion.

3 Representation of Positive Linear Functionals

The results of the previous section have application to the Moment Problem de-
scribed in the introduction. To see this application, we begin by giving a general
criterion for the representability of a positive linear functional as an integral.

Theorem 3.1 Suppose A is an R-algebra, X a Hausdorff space and ˆ: A → C(X) is an

R-algebra homomorphism. Suppose there exists p ∈ A such that p̂ ≥ 0 on X and, for

each integer n ≥ 1, the set Xn := {α ∈ X | p̂(α) ≤ n} is compact. Then, for any linear

function L : A → R satisfying ∀a ∈ A, â ≥ 0 on X ⇒ L(a) ≥ 0, there exists a positive

Borel measure2 µ on X such that, ∀a ∈ A,

L(a) =

∫

X

â dµ.

Theorem 3.1 applies in a variety of cases. It applies, for example, in the case where

X is a closed subset of Rn and A is a subalgebra of C(X) containing the projections
t 7→ ti , i = 1, . . . , n, taking p(t) = t2

1 + · · · + t2
n . In particular, Theorem 3.1 extends

the result of Haviland in [4] [5].

2By Borel measure, we always mean regular Borel measure.
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It is possible to deduce Theorem 3.1 from Choquet’s theorem [3, Theorem 34.6].
Rather than attempt to explain how this is done, we prefer to give a direct proof.

Proof For α ∈ X, Xn is a neighborhood of α for n sufficiently large, so X is locally
compact. Denote by C ′(X) the algebra of all continuous functions f : X → R which
are bounded by some â, a ∈ A in the sense that there exists a ∈ A such that | f | ≤ â

on X. We begin by proving the existence of a positive linear functional L̄ : C ′(X) → R

such that L̄(â) = L(a) for all a ∈ A. Let A0 = {â | a ∈ A}. If â = 0 on X then, by our
hypothesis, L(a) = 0. Thus we have a well-defined linear map L̄ : A0 → R given by
L̄(â) = L(a). Use Zorn’s lemma to pick a pair (V, L̄) where V is a subspace of C ′(X)

containing A0 and L̄ is an extension of L̄ to V maximal with the property that

∀ f ∈ V, f ≥ 0 on X ⇒ L̄( f ) ≥ 0.

We claim that V = C ′(X). Otherwise, we have some g ∈ C ′(X), g /∈ V . If f1, f2 ∈ V

are such that f1 ≤ g, g ≤ f2 on X so L̄( f1) ≤ L̄( f2). Such f1, f2 exist, e.g., pick
f1 = −â, f2 = â where a ∈ A is such that â ≥ |g|. Thus there exists a real number e

such that

sup{L̄( f1) | f1 ∈ V, f1 ≤ g} ≤ e ≤ inf{L̄( f2) | f2 ∈ V, f2 ≥ g}.

Then L̄ extends to V ′
= V + Rg via L̄( f + dg) = L̄( f ) + de, a contradiction.

C ′(X) contains all continuous functions with compact support so, by the Riesz

representation theorem [8, page 77], we have a unique positive Borel measure µ on
X such that L̄( f ) =

∫

X
f dµ holds for all continuous f with compact support. It

remains to show that this is true for any f in C ′(X). Suppose f ∈ C ′(X) is given.
Decomposing f as f = f+ − f−, f+ = (| f |+ f )/2, f− = (| f | − f )/2, we can assume

f ≥ 0. Take q = f + p̂ and, for each integer n ≥ 1, set X ′
n = {α ∈ X | q(α) ≤ n}.

X ′
n is closed and X ′

n ⊆ Xn so X ′
n is compact. Obviously X ′

i ⊆ X ′
i+1 and

⋃

i≥1 X ′
i = X.

Using Urysohn’s lemma, we have continuous functions fi with 0 ≤ fi ≤ f , fi = f

on X ′
i , fi = 0 off X ′

i+1. Since q > i off X ′
i we see that q2/i ≥ f − fi ≥ 0 on X, so

L̄(q2)/i ≥ L̄( f )− L̄( fi) ≥ 0. This proves L̄( f ) = limi→∞ L̄( fi) which in turn implies
that

∫

X

f dµ = lim
i→∞

∫

X

fi dµ = lim
i→∞

L̄( fi) = L̄( f ).

Corollary 3.2 Assume the hypothesis of Theorem 3.1 holds and M is a quadratic mod-

ule in A such that, for each a ∈ A, â ≥ 0 on X ⇒ there exists an element q ∈ A

such that a + εq ∈ M for all rational ε > 0. Then, for any linear function L : A → R

satisfying L(M) ≥ 0, there exists a positive Borel measure µ on X such that ∀a ∈ A,

L(a) =
∫

X
â dµ.

Proof Suppose a ∈ A is such that â ≥ 0 on X. By hypothesis, there exists q ∈ A such
that, for all real ε > 0, a + εq ∈ M (so L(a) + εL(q) = L(a + εq) ≥ 0). It follows that
L(a) ≥ 0 for any such a, so the result follows from Theorem 3.1.
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Combining Theorem 3.1 with the results in Section 2 yields additional corollaries:

Corollary 3.3 Suppose A is an R-algebra and M is a quadratic module in A which is

archimedean. Then, for any linear function L : A → R satisfying L(M) ≥ 0, there exists

a positive Borel measure µ on XM such that ∀a ∈ A, L(a) =
∫

XM
â dµ.

Corollary 3.4 Suppose A is an R-algebra, M is a quadratic module in A and p ∈ A is

a unit such that p − 1 ∈ M and, for all a ∈ A, there exist integers k, ` ≥ 0 such that

kp` −a ∈ M. Then, for any linear function L : A → R satisfying L(M) ≥ 0, there exists

a positive Borel measure µ on XM such that ∀a ∈ A, L(a) =
∫

XM
â dµ.

Proof Corollary 3.3 follows from Corollary 3.4, taking p = 1, so it suffices to prove
Corollary 3.4. Let Xn = {α ∈ XM | p̂(α) ≤ n}. If a ∈ A there exist integers

ka ≥ 1, `a ≥ 0 such that ka p`a ± a ∈ M. Then |â| ≤ ka p̂`a , so |â| ≤ kan`a on Xn. It
follows that Xn is identified with a (closed) subspace of

∏

a∈A[−kan`a , kan`a ], so Xn

is compact. Thus Theorem 3.1 applies. Suppose a ∈ A is such that â ≥ 0 on XM . By
Theorem 2.2, there exists an integer k ≥ 0 such that, for all real ε > 0, a + εpk ∈ M

(so L(a) + εL(pk) = L(a + εpk) ≥ 0). It follows that L(a) ≥ 0 for all such a, so the
result follows from Theorem 3.1.

Remark 3.5 The positive Borel measures obtained in Corollary 3.3 and Corollary 3.4

are unique. It suffices to prove this in the case of Corollary 3.4. The corresponding
result for Corollary 3.3 then follows, taking p = 1. Let f ∈ C ′(XM), say | f | ≤ kp̂` on
XM . Define B and M ′ as in the proof of Theorem 2.2. Consider g : XM ′ → R defined
by

g(α) =

{

f (α)/ p̂(α)`+1 if α(1/p) 6= 0

0 if α(1/p) = 0.

It is clear that g is continuous so, by the Stone-Weierstrass theorem, there exists

a sequence {bi} in B with {b̂i} converging to g. Thus, for each rational ε > 0,
ε ± (g − b̂i) ≥ 0 on XM ′ for i sufficiently large, so ε p̂`+1 ± ( f − âi) ≥ 0 on XM

for i sufficiently large, where ai := p`+1bi . It follows that

L̄( f ) = lim
i→∞

L̄(âi) = lim
i→∞

L(ai).

Uniqueness follows using the version of the Riesz representation theorem [8, page 77]
quoted earlier.

We also note the following:

Corollary 3.6 Suppose A is an R-algebra, M is a quadratic module in A, p ∈ A is

a unit such that p − 1 ∈ M and, for all a ∈ A, there exist integers k, ` ≥ 0 such

that kp` − a ∈ M. Define B and M ′ as in the proof of Theorem 2.2. Then, for any

linear function L : B → R satisfying L(M ′) ≥ 0, there exists a positive Borel measure

η on XM ′ , a positive Borel measure µ on XM and a positive Borel measure ν on H =

{α ∈ XM ′ | α(1/p) = 0} such that ∀b ∈ B,

L(b) =

∫

XM ′

b̂ dη =

∫

XM

b̂ ◦ Φ dµ +

∫

H

b̂ dν,
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where Φ : XM → XM ′ is the natural map.

Proof The quadratic module M ′ in B is archimedean. We get η by applying Corol-
lary 3.3 to M ′. η induces positive Borel measures µ ′ and ν on Φ(XM) and H re-

spectively and the integral splits into two parts:
∫

XM ′

b̂ dη =
∫

Φ(XM )
b̂ dµ ′ +

∫

H
b̂ dν.

Taking µ to be the positive Borel measure on XM corresponding to µ ′ via the embed-
ding Φ, this yields L(b) =

∫

XM ′

b̂ dη =
∫

XM
b̂ ◦ Φ dµ +

∫

H
b̂ dν.

Later, in Example 8.1, we compute B and M ′ explicitly in the case where A =

R[X][1/p], p := 1 +
∑

X2
i . Once this is done it will be clear that Corollary 3.6

extends the result of Putinar and Vasilescu in [17, Theorem 3.2].

4 Application to Finitely Generated Algebras

We consider the application of the results in Sections 2 and 3 to finitely generated
algebras over R. We assume that A is such an algebra. Each presentation A =

R[x1, . . . , xn] of A determines a unique ideal a of the polynomial ring R[X] :=
R[X1, . . . , Xn] such that R[X]/a ∼= A via Xi + a 7→ xi , i = 1, . . . , n. Ring ho-
momorphisms from A to R are identified with real zeros of the ideal a. For any set S

in A, XS is identified with the set of real zeros t of a satisfying g(t) ≥ 0 for all g ∈ S.

For f ∈ A, we often abuse the notation, writing f ≥ 0 on XS instead of f̂ ≥ 0 on XS

and writing f (α) in place of f̂ (α) = α( f ), for α ∈ XS.

We recall the following result:

Proposition 4.1 Suppose A = R[x1, . . . , xn] and M is a quadratic module in A. Then

the following are equivalent:

(1) ∃ a positive integer k such that k −
∑n

i=1 x2
i ∈ M.

(2) M is archimedean.

Proof Assume (1) and consider the set

B = { f ∈ A | ∃k ∈ Z such that k − f , k + f ∈ M}.

By [11, Proposition 3.3.3], B is a subring of A containing x1, . . . , xn. Since B obviously
contains R, this implies B = A. This proves (1) ⇒ (2). The implication (2) ⇒ (1) is
trivial.

In [6], Theorem 2.1 is used in conjunction with Proposition 4.1 to give an alge-
braic proof of certain results of Putinar and Vasilescu [17, Theorem 4.2, Corollary 4.3,
Corollary 4.4, Theorem 4.5].3

3To be completely accurate, only the proof of [17, Theorem 4.2] is given in [6] but it is easy to see that
exactly the same method yields [17, Corollary 4.4] and [17, Theorem 4.5]. Of course, [17, Corollary 4.3]
is immediate from [17, Theorem 4.2]. The reader should also note that part of the required hypothesis of
[17, Corollary 4.4] has been omitted in the statement in [17]. The polynomials p1, . . . , pm are required to
have even degree.
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Proposition 4.1 extends as follows:

Proposition 4.2 Suppose A = R[x1, . . . , xn], M is a quadratic module in A, and p is

an element of A such that p − 1 ∈ M[1/p2]. Then the following are equivalent:

(1) ∃ integers k ≥ 1, ` ≥ 0 such that kp` −
∑n

i=1 x2
i ∈ M[1/p2].

(2) ∀ f ∈ A[1/p], ∃ integers k ≥ 1, ` ≥ 0 such that kp` − f ∈ M[1/p2].

Proof Assume (1) and consider

C = { f ∈ A[1/p] | ∃q ∈ Z[p] such that q − f , q + f ∈ M[1/p2]}.

Exactly as in the proof of [11, Proposition 3.3.3] C is a subring of A[1/p] and

x1, . . . , xn ∈ C . Since

1 ± 1/p = (p ± 1)/p = (p2 ± p)/p2 ∈ M[1/p2],

we also have 1/p ∈ C . Since x1, . . . , xn, 1/p generate A[1/p] as an algebra over R

and R ⊆ C , this implies C = A[1/p]. Combining this with the fact that the elements
kp`, k ≥ 1, ` ≥ 0 are cofinal in Z[p] with respect to the partial ordering associated to
M[1/p2] proves (2). This proves (1) ⇒ (2). The implication (2) ⇒ (1) is trivial.

An important point to keep in mind is that the geometric condition

∃ integers k ≥ 1, ` ≥ 0 such that kp` −
n

∑

i=1

x2
i ≥ 0 on XM

does not necessarily imply the arithmetic condition (1) of Proposition 4.2.4 For ex-

ample, if XM is compact, one would like to be able to choose p = 1, but [7, Ex-
ample 4.8] shows that this is not always possible. Similarly, if xi ≥ 0 on XM for
i = 1, . . . , n, one would like to be able to choose p = 1 +

∑n
i=1 xi but, again, this

may not be possible.

At the same time, it is equally important to realize that it is always possible to
arrange things so that condition (1) of Proposition 4.2 holds. For example, take
p = 1 +

∑n
i=1 x2

i , k = ` = 1 or p =
∏n

i=1(1 + x2
i ), k = ` = 1. In special cases, better

choices for p may be available.

Corollary 4.3 Suppose A = R[x1, . . . , xn], M is a quadratic module in A, and p is an

element of A such that p−1 ∈ M[1/p2]. Suppose condition (1) of Proposition 4.2 holds

(e.g., take p = 1 +
∑n

i=1 x2
i ). Then, for any f ∈ A[1/p], the following are equivalent:

(1) f ≥ 0 on XM[1/p2].

(2) There exists an integer k ≥ 0 such that, for all rational ε > 0, f + εpk ∈ M[1/p2].

4In the case where the quadratic module M is a finitely generated preordering, the geometric condition
and the arithmetic condition are in fact equivalent [10, Corollary 1.4]. Later, in Section 7, we prove a
stronger version of [10, Corollary 1.4] as an application of the general criterion we develop in Section 6.
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Proof Combine Proposition 4.2 and Theorem 2.2.

In [17, Theorem 2.5] Putinar and Vasilescu explain how the Moment Problem can
be solved ‘by dimension extension’. Our next result extends [17, Theorem 2.5] in a
variety of ways.

Corollary 4.4 Suppose A = R[x1, . . . , xn], M is a quadratic module in A, and p is

an element of A such that p − 1 ∈ M[1/p2]. Suppose condition (1) of Proposition 4.2

holds, and p 6= 0 at each point of XM (e.g., take p = 1 +
∑n

i=1 x2
i ). Then for each

linear function L : A[1/p] → R satisfying L(M[1/p2]) ≥ 0, there exists a unique

positive Borel measure µ on XM such that for all f ∈ A and for all integers k ≥ 0,

L( f /pk) =
∫

XM
f /pk dµ.

Proof By Proposition 4.2 and Corollary 3.4 we have a positive Borel measure µ ′ on

XM[1/p2] satisfying L( f /pk) =
∫

XM[1/p2]
f /pk dµ ′. Take µ to be the positive Borel mea-

sure on XM corresponding to µ ′ via the natural homeomorphism XM
∼= XM[1/p2].

Uniqueness is immediate from Remark 3.5.

As pointed out already in [9, Corollary 4.4] and [11, Corollary 4.3.7] in the pre-
ordering case, it is possible to avoid ‘dimension extension’ altogether, provided one

is willing to compensate by enlarging M a bit. Namely, we define

Mp = { f ∈ A | ∃ an integer k ≥ 0 such that p2k f ∈ M}.

Corollary 4.5 Suppose A = R[x1, . . . , xn], M is a quadratic module in A, and p is

an element of A such that p − 1 ∈ M[1/p2]. Suppose condition (1) of Proposition 4.2

holds (e.g., take p = 1 +
∑n

i=1 x2
i ). Then for each linear function L : A → R satisfying

L(Mp) ≥ 0, there exists a positive Borel measure µ on XM such that ∀ f ∈ A, L( f ) =
∫

XM
f dµ.

Proof Suppose f ≥ 0 on XM . By Corollary 4.3 there exists ` ≥ 0 such that, for all
rational ε > 0, f + εp` ∈ M[1/p2] (so f + εp` ∈ Mp). Now apply Corollary 3.2 to

the quadratic module Mp.

5 Cylinders

Although Theorem 2.2 is a nice general result, there are cases where it can be im-
proved. Denote by A[Y ], polynomial ring in a single variable Y with coefficients in
the ring A. The result in [9, Theorem 5.1] on cylinders with compact cross-section
extends to the module case as follows:5

Theorem 5.1 Suppose M is a quadratic module in A which is archimedean. Then, for

any f ∈ A[Y ], the following are equivalent:

(1) f ≥ 0 on XM × R.

5The reader may check that the corollary [9, Corollary 5.4] in [9] extends in a similar way.
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(2) ∃ an integer ` ≥ 0 such that ∀ rational ε > 0, f +ε(1+Y 2)` belongs to the quadratic

module in A[Y ] generated by M.

Proof Denote by M̃ the quadratic module in A[Y ] generated by M. Suppose f satis-
fies (1). Take ` to be any integer such that 2` ≥ deg( f ). Following exactly the proof
in the preordering case given in [9], we see that f + εq ∈ M̃ holds for any rational

ε > 0 where q = 3 + Y + 3Y 2 + Y 3 + · · · + 3Y 2`. Observing that

q +
1

2

(

`−1
∑

i=0

(1 − Y )2Y 2i + 1 + Y 2`
)

= 4(1 + Y 2 + · · · + Y 2`),

it is clear that f + 4ε(1 + Y 2)` ∈ M̃ also holds.

Theorem 5.2 Suppose M is a quadratic module in A and p ∈ A is a unit such that

p − 1 ∈ M and, for all a ∈ A, there exist integers k, ` ≥ 0 such that kp` − a ∈ M.

Then, for any f ∈ A[Y ], the following are equivalent:

(1) f̂ ≥ 0 on XM × R.

(2) ∃ integers k, ` ≥ 0 such that ∀ rational ε > 0, f + εpk(1 + Y 2)` belongs to the

quadratic module in A[Y ] generated by M.

Proof Define B, M ′ as in the proof of Theorem 2.2 and denote by M̃ ′ the quadratic
module in B[Y ] generated by M ′. Suppose f ∈ A[Y ], f ≥ 0 on XM × R. Say

f = a0 + · · · + a2dY 2d, ai ∈ A. Choose ` so large that ai/p2` ∈ B for each i. Then
f /p2` ∈ B[Y ] and one checks, as in the proof of Theorem 2.2, that f /p2`+2 ≥ 0 on
XM × R. By Theorem 5.1, f /p2`+2 + ε(1 + Y 2)d ∈ M̃ ′ holds for all rational ε > 0.
The result follows now, multiplying by p2`+2.

In both Theorem 5.1 and Theorem 5.2, the improvement over Theorem 2.2 comes
from the fact that it is unnecessary to invert 1 + Y 2. Thus, for example, working with
the quadratic module

∑

R[X,Y ]2 in the polynomial ring in two variables X,Y over

R, one only needs to invert 1 + X2. This fact was overlooked in [9].

Corollary 5.3 Suppose A = R[x1, . . . , xn], M is a quadratic module in A, and p is

an element of A such that p − 1 ∈ M[1/p2]. Suppose condition (1) of Proposition 4.2

holds (e.g., take p = 1 +
∑n

i=1 x2
i ). Then, for any f ∈ A[1/p][Y ], the following are

equivalent:

(1) f ≥ 0 on XM[1/p2] × R.

(2) ∃ integers k, ` ≥ 0 such that ∀ rational ε > 0, f + εpk(1 + Y 2)` belongs to the

quadratic module in A[1/p][Y ] generated by M.

Proof Combine Proposition 4.2 and Theorem 5.2.
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6 The Jacobi-Prestel Criterion Generalized

To be able to apply Corollary 4.3 and Corollary 5.3 properly we need to analyze the
arithmetic condition

∃ integers k ≥ 1, ` ≥ 0 such that kp` −

n
∑

i=1

x2
i ∈ M[1/p2]

in more detail. In case the quadratic module M is finitely generated, it is possible to
carry out such an analysis using tools from real algebra, generalizing what is done in
[7]. ([7] deals with the case where XM compact and p = 1.)

We use the following notation: We assume A = R[x1, . . . , xn]. We fix a finite set

S = {g1, . . . , gs} in A and set M = MS, the quadratic module in A generated by S.
Thus M = T + Tg1 + · · · + Tgs where T :=

∑

A2.
We fix p ∈ A and work with the multiplicative set P = {`pm | `, m positive

integers} in A. We set x0 = 1, so
∑n

i=0 x2
i = 1 + x2

1 + · · · + x2
n.

For each prime ideal p in A, Fp denotes the residue field of A at p, i.e., the field
of fractions of the integral domain A/p. Recall: p 7→ p[1/p] defines a one-to-one
correspondence between prime ideals of A with p /∈ p and prime ideals of A[1/p].
The residue field of A[1/p] at p[1/p] is the same as the residue field of A at p.

We use notation and terminology from quadratic form theory: A quadratic form

over a field F of characteristic 6= 2 is an n-tuple φ = 〈a1, . . . , an〉 with a1, . . . , an ∈ F.
φ is regular if each ai is non-zero. For any quadratic form φ, φ∗ denotes the regular
quadratic form obtained from φ by deleting the entries of φ which are zero. A regular

quadratic form φ = 〈a1, . . . , an〉 over F is said to be weakly isotropic over F if there
exists k ≥ 1 and elements xi j ∈ F, i = 1, . . . , n, j = 1, . . . , k, not all zero, such that
∑

i, j aix
2
i j = 0.

We aim to prove the following generalization of the result in [7].

Theorem 6.1 There exists k ∈ P such that k −
∑n

i=0 x2
i ∈ M[1/p2] iff

(1) There exists k ∈ P such that k −
∑n

i=0 x2
i ≥ 0 on XM[1/p2] and

(2) There exists a positive integer ` such that, for all pairs (p, v) where p is a prime

ideal of A with p /∈ p and Fp formally real and v is a real valuation on Fp with

min{v(x2
i + p) | i = 0, . . . , n} < v(p` + p), the quadratic form τ = 〈1 + p,

g1 + p, . . . , gs + p〉∗ is weakly isotropic over the henselization of Fp at v.

Thus, in order for our arithmetic condition to hold it is necessary and sufficient
that conditions (1) and (2) both hold. Condition (1) is a purely geometric condition
which is quite pleasant and natural. Condition (2) is purely valuation-theoretic and
is in some sense much less pleasant. In the general both conditions are necessary. In

the next section we will consider special cases where the geometric condition by itself
suffices (in the sense that it implies the valuation-theoretic condition).

It is important to note that we do not assume p − 1 ∈ M[1/p2]. On the other
hand, if the arithmetic condition k −

∑n
i=0 x2

i ∈ M[1/p2] does hold then k − 1 ∈
M[1/p2] so we can apply Corollary 4.3, working with k instead of p.

Note: Since k ∈ P, A[1/k] = A[1/p] and M[1/k2] = M[1/p2].
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Proof To simplify notation we work in the ring A[1/p], replacing A by A[1/p] and
M by M[1/p2] (so now A is generated by x1, . . . , xn and 1/p).

One implication is elementary. Assume k ∈ P is such that k−
∑n

i=0 x2
i ∈ M. Then

(1) obviously holds. Let k ′
= 2k2, f = k ′ −

∑n
i=0 x2

i . Since k − 1 = (k −
∑n

i=0 x2
i ) +

∑n
i=1 x2

i , we see that k − 1 ∈ M and 2k2 − (k + 1) = 2(k − 1)2 + 3(k − 1) + 1 ∈ M.
Thus −1 = 2k2 − (k + 1) + (k −

∑n
i=0 x2

i ) − (2k2 −
∑n

i=0 x2
i ) ∈ M − f T. Thus

−1 = t0 +
∑

giti − f t , i.e., (12 + t0) +
∑

giti − f t = 0 for some t, t0, . . . , ts ∈
T so, for each formally real residue field Fp of A, the regular quadratic form φ =

〈1 + p, g1 + p, . . . , gs + p,− f + p〉∗ is weakly isotropic over Fp. Suppose v is a real
valuation on Fp satisfying min{v(x2

i + p) | i = 0, . . . , n} < v(k ′ + p), and H is the

henselization of Fp at v. Since

v(k ′ + p) > min{v(x2
i + p) | i = 0, . . . , n} = v

(

n
∑

i=0

x2
i + p

)

,

1 − (k ′ + p)/
(

∑n
i=0 x2

i + p
)

is a square in H so

− f + p =

(

n
∑

i=0

x2
i + p

)(

1 − (k ′ + p)
/(

n
∑

i=0

x2
i + p

))

is a non-zero sum of squares in H. Since φ is weakly isotropic over H (since it is even
weakly isotropic over Fp) this implies that τ is also weakly isotropic over H. Thus
condition (2) holds, taking ` to be the exponent of p in k ′.

The other implication is more subtle. Suppose k ∈ P satisfies the hypothesis of (1)
and ` satisfies the hypothesis of (2). k ≥ 1 on XM so, replacing k by some multiple of
some power of k, we may assume that f := k2−

∑n
i=0 x2

i is strictly positive on XM and
that the exponent of p in k is ≥ `. The proof breaks into two parts. First we show that

−1 ∈ M − f T. Next we show that this implies the arithmetic condition. For the first
step, by Bröcker’s local global principle for quadratic modules [11, Theorem 7.1.1],
it suffices to show that for each formally real residue field Fp of A, the quadratic form
φ = 〈1 + p, g1 + p, . . . , gs + p,− f + p〉∗ is weakly isotropic over Fp. For this, by

the local-global principle for weak isotropy [11, 6.2.2], it suffices to show that φ is
indefinite with respect to every ordering of Fp and that φ is weakly isotropic over the
henselization of Fp at v for each real valuation v of Fp such that φ has at least two

residue forms with respect to v. The fact that φ is indefinite at every ordering of Fp

comes from f > 0 on XM in conjunction with Tarski’s transfer principle: If ≤ is an
ordering of Fp satisfying gi + p ≥ 0 for each i = 1, . . . , s, then f + p > 0. Suppose
v is a real valuation of Fp such that φ has at least two residue forms with respect to v.

There are three cases to consider:

Case 1. min{v(x2
i + p) | i = 0, . . . , n} < v(p` + p). Then τ is weakly isotropic over

the henselization of Fp with respect to v. Since τ is a subform of φ, φ is also weakly

isotropic over the henselization.

Case 2. 0 > min{v(x2
i + p) | i = 0, . . . , n} ≥ v(p` + p). Then min{v(x2

i + p) | i =

0, . . . , n} = v(
∑n

i=0 x2
i + p) > v(k2 + p) so f = (k2 + p)

(

1− (
∑n

i=0 X2
i + p)/(k2 + p)

)
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is a square in the henselization. φ is weakly isotropic over the henselization in this
case.

Case 3. 0 = min{v(x2
i + p) | i = 0, . . . , n} = v(p` + p). Since A is generated over

R by x1, . . . , xn, 1/p it follows that in this case the image of A under the g 7→ g + p

is contained in the valuation ring Bv of v. Denote by p
′ the kernel of the composite

map A → Bv → F ′, where F ′ is the residue field of the valuation v and consider the
quadratic form φ ′

= 〈1 + p
′, g1 + p

′, . . . , gs + p
′,− f + p

′〉∗ defined over Fp ′ ↪→ F ′.
Since φ has at least two residue forms with respect to v, one of the elements c + p

in the set g1 + p, . . . , g2 + p,− f + p is non-zero and also has positive value. Thus
c ∈ p

′ \ p. Thus p $ p
′ so the transcendence degree of Fp ′ over R is strictly less than

the transcendence degree of Fp over R. By induction on transcendence degree, φ ′ is

weakly isotropic over Fp ′ . Since φ ′ is identified with a subform of one of the residue
forms of φ, φ is weakly isotropic over the henselization [11, Proposition 6.2.4].

This completes the first part of the proof. We know now that −1 ∈ M− f T where
f := k2 −

∑n
i=0 x2

i . Thus t f = 1 + m for some t ∈ T, m ∈ M. Decompose f as

f = t1 − t2, t1, t2 ∈ T and let t ′ ∈ T be defined by t ′ = t + tt2. Then (1 + t ′) f =

(1+t +tt2) f = f +1+m+t2(1+m) = 1+m+t1 +t2m ∈ M. Thus, if P := T + f T, then
(1 + t ′)P ⊆ M. By definition of P, f = k2 −

∑n
i=0 x2

i ∈ P. In particular, k2 − 1 ∈ P,
so k2 − 1/k2 ∈ P. Thus 2k2 − (

∑n
i=0 x2

i + 1/k2) ∈ P. Since x1, . . . , xn, 1/k generate

A, Proposition 4.2 applies to P: There exists k1 ∈ P (some multiple of some power of
2k2) such that k1 − (t ′ + 2)/2 ∈ P. Thus k2

1 − (1 + t ′) = 2(1 + t ′)(k1 − (t ′ + 2)/2) +
(k1−(1+t ′))2 ∈ M so k2k2

1−
∑n

i=0 x2
i = (1+t ′) f +t ′

∑n
i=0 x2

i +k2(k2
1−(1+t ′)) ∈ M.

Since k2k2
1 ∈ P, this completes the proof.

7 Applications

We continue to assume that A is a finitely generated algebra over R, say A =

R[x1, . . . , xn] and that S = {g1, . . . , gs}, a finite subset of A. Denote by S ′ the com-
plete set of (2s − 1) products

g1, . . . , gs, g1g2, . . . , gs−1gs, . . . , g1 . . . g2.

Also, denote by S̃ the set consisting of the first 2s−1 products in this list. (Convention:
if S = ∅, then S̃ = S.) Thus MS ⊆ MS̃ ⊆ MS ′ and XS = XS̃ = XS ′ . MS ′ is equal to
TS, the quadratic preordering in A generated by S.

Note: If s ≤ 2 then S̃ = S.
For p a prime ideal of A with p /∈ p and Fp formally real, denote by τ ′ and τ̃ the

quadratic forms over Fp determined by S ′ and S̃ respectively. τ ′ is a Pfister form of
dimension 2t for some t ≤ s (t is the number of indices i with gi /∈ p) and, as pointed
out in [7] [11], τ̃ is a subform of τ ′ of dimension ≥ 2t−1 + 1 if t ≥ 1. If t = 0, then
τ̃ = τ ′

= τ = 〈1 + p〉.
Fix integers k, ` ≥ 1 such that the geometric condition holds, i.e., f := kp` −

∑n
i=0 x2

i ≥ 0 on {α ∈ XS | p(α) 6= 0}. By the Tarski’s transfer principle, for any
ordering ≤ on Fp, (g1 + p ≥ 0 and · · · and gs + p ≥ 0) ⇒ f + p ≥ 0. Let v be a real
valuation of Fp such that v(

∑n
i=0 x2

i + p) < v(p` + p) and let H be the henselization
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of Fp at v. Then, for every ordering ≤ of H, f + p < 0, so gi + p < 0 for some i.
Consequently, the Pfister form τ ′ is indefinite at every ordering of H, so τ ′ is weakly

isotropic over H. (This follows from the signature criterion for weak isotropy [11,
6.3.2] since τ ′ ∼ 0 over H.) By [11, Corollary 6.4.3], the quadratic form τ̃ is also
weakly isotropic over H.

This proves that, for the derived set S̃, the valuation-theoretic condition (2) of

Theorem 6.1 is implied automatically by the geometric condition (1). In particular,
we obtain the following:

Corollary 7.1 Suppose there exist positive integers k, ` such that kp` −
∑n

i=0 x2
i ≥ 0

holds on the set {α ∈ XS | p(α) 6= 0}. Then, for f ∈ A[1/p], the following are

equivalent:

(1) f ≥ 0 on {α ∈ XS | p(α) 6= 0}.

(2) ∃ an integer ` ≥ 0 such that ∀ rational ε > 0, f + εp` ∈ MS̃[1/p2].

Proof Immediate from the above analysis, using Corollary 4.3 and Theorem 6.1.

Note: This extends the result in [10, Corollary 3.1]. It also extends the correspond-
ing result of Jacobi and Prestel for p = 1 in [7, Theorem 4.4]. Both of these latter

results, in turn, extend the basic result of Schmüdgen [19] [21].
Using Corollary 5.3 instead of Corollary 4.3, we also have a corresponding result

for cylinders:

Corollary 7.2 Suppose there exist positive integers k, ` such that kp` −
∑n

i=0 x2
i ≥ 0

holds on the set {α ∈ XS | p(α) 6= 0}. Then, for f ∈ A[1/p][Y ], the following are

equivalent:

(1) f ≥ 0 on {α ∈ XS | p(α) 6= 0} × R.

(2) ∃ integers k, ` ≥ 0 such that ∀ rational ε > 0, f + εpk(1 + Y 2)` belongs to the

quadratic module in A[1/p][Y ] generated by MS̃.

Of course, it is important to keep in mind that S̃ = S if s ≤ 2.

Remark 7.3 (Compare to [7, Remark 4.7]) If A[1/p] has real dimension ≤ 1 (i.e.,
Fp has transcendence degree ≤ 1 over R for each prime p of A with p /∈ p, Fp

formally real) then the valuation-theoretic condition (2) of Theorem 6.1 is automat-

ically implied by the geometric condition (1). The geometric condition (1) and the
hypothesis of the valuation-theoretic condition (2) force the quadratic form τ =

〈1 + p, g1 + p, . . . , gs + p〉∗ to be indefinite over H. Since H has transcendence degree
1 over R, H is SAP by [15, Theorem 9.4], so τ is weakly isotropic over H. Thus in the

case where A[1/p] had real dimension ≤ 1, one can improve on Corollary 7.1 and
Corollary 7.2, replacing S̃ by S in the statements of these results.

It is not clear how to generalize [7, Theorem 4.1] to the non-compact case.

8 Two Examples

In the case where the ring A is a finitely generated R-algebra, one would like to under-
stand the geometric meaning of the ring B and the quadratic module M ′ in B defined
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in the proof of Theorem 2.2. We work out two examples in detail. In both of these
examples the quadratic module M we consider is in fact a preordering.

We introduce some convenient notation: We define R-subalgebras Bi of A[1/p]
inductively by B0 = A[1/p] and Bi+1 = the ring of elements of Bi which are geo-
metrically bounded on XMi

where Mi := M[1/p2] ∩ Bi . The Bi are a certain ‘poor
man’s version’ of the iterated holomorphy rings defined in [1] and [20].6 Also, as in

the proof of Theorem 2.2,

B := { f ∈ A[1/p] | ∃ an integer k such that k − f , k + f ∈ M[1/p2]},

the ring of arithmetically bounded elements, and M ′ := M[1/p2] ∩ B. Thus

A[1/p] = B0 ⊇ B1 ⊇ · · · ⊇ B

and there are canonical restriction maps

XM = XM[1/p2] = XM0
→ XM1

→ · · · → XM ′ .

Since B[p] = A[1/p], these various R-algebras all have the same transcendence de-
gree over R.

Example 8.1 (Compare to [17, Theorem 3.2]) Take A = R[X] := R[X1, . . . , Xn],
the polynomial ring in n variables, M =

∑

A2, and p = 1 +
∑n

i=1 X2
i . Thus

M[1/p2] =
∑

A[1/p]2 and XM and XM[1/p2] are naturally identified with Rn (as-
sociating to each t ∈ Rn the ring homomorphism f 7→ f (t)). Clearly

p ± 1 ∈ M, p ± X2
i ∈ M, and p ± 2XiX j ∈ M for i 6= j

(since X2
i ± 2XiX j + X2

j = (Xi ± X j)
2 ∈ M). Multiplying by 1/p = (1/p)2 p ∈

∑

A[1/p]2, this yields 1 ± 1/p, 1 ± X2
i /p, 1/2 ± XiX j/p ∈

∑

A[1/p]2, i 6= j.
As well, 1 − (Xi/p)2

= (1 − 1/p) + (1 − X2
i /p)/p ∈

∑

A[1/p]2, so 1 ± Xi/p =
(

(1±Xi/p)2 +(1−X2
i /p2)

)

/2 ∈
∑

A[1/p]2. In particular, the elements 1/p, X2
i /p,

Xi/p and XiX j/p, i 6= j belong to the subring B of A[1/p] defined in the proof of
Theorem 2.2.

We introduce some notation: Let Y i j = XiX j/p, i, j = 0, . . . , n where X0 := 1.

Thus R[Yi j | i, j = 0, . . . , n] ⊆ B, Yi j = Y ji , Yi jYi ′ j ′ = Yii ′Y j j ′ , and
∑n

i=0 Yii = 1.

Claim: For f ∈ A of degree d ∈ {2k, 2k − 1}, f /pi ∈ R[Yi j | i, j = 0, . . . , n] if

i ≥ k. If i < k then f /pi /∈ B1. For let i1, . . . , id be in the set {0, . . . , n} with

d = 2k or d = 2k − 1, k ≥ 1. Then it is clear that Xi1
· · ·Xid

/pk is expressible as a
product of elements Y i j . It follows that if f ∈ A has degree d ∈ {2k, 2k − 1} then
f /pk lies in the R[Yi j | i, j = 0, . . . , n]. Since 1/p = Y00, the same is true for f /pi ,
i > k. It remains to show f /pi /∈ B1 if i < k. Decompose f as f = f0 + · · ·+ fd where

6As long as the R-algebras Bi and the quadratic modules Mi remain finitely generated, the two defini-
tions will coincide, by the Tarski transfer principle.
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fi is homogeneous of degree i. Since fd 6= 0, there exists x ∈ Rn such that fd(x) 6= 0.
Then, for any integer ` and any real λ > 0, one of

` ±
f (λx)

p(λx)i
= ` ±

f0 + λ f1(x) + · · · + λd fd(x)
(

1 + λ2(x2
1 + · · · + x2

n)
) i

approaches −∞ as λ → ∞ if i < k. Since this holds for any integer `, this proves

that f /pi is not bounded on Rn, i.e., f /pi /∈ B1 if i < k.

It follows from the claim that B1 = B = R[Yi j | i, j = 0, . . . , n]. It also follows
from the claim that M ′

= B ∩ M[1/p2] = B ∩
∑

A[1/p]2 is equal to
∑

B2. For
suppose f /p2k

=
∑

( fi/pk)2 ∈ M ′. Since f /p2k ∈ B our claim implies that 4k ≥
deg( f ). Since f =

∑

f 2
i , this implies 2k ≥ deg( fi) for each i so, again by the claim,

fi/pk ∈ B. This proves M ′
=

∑

B2.

Since B[p] = A[1/p], B has Krull dimension n. On the other hand it is known
from the theory of Veronese varieties that the polynomial ring R[Zi j | i, j = 0, . . . , n]

factored by the ideal generated by Zi j −Z ji , Zi jZi ′ j ′ −Zii ′Z j j ′ , and
∑n

i=0 Zii −1 is an
integral domain of Krull dimension n. It follows that the only relations relating the
Yi j are the Veronese relations Y i j = Y ji , Yi jYi ′ j ′ = Yii ′Y j j ′ and

∑n
i=0 Yii = 1. Thus

XM ′ is identified with the Veronese variety

V :=
{

y = (yi j) ∈ R
(n+1)2

∣

∣

∣
yi j = y ji , yi j yi ′ j ′ = yii ′ y j j ′ ,

n
∑

i=0

yii = 1
}

.

The map from XM to XM ′ is identified with the map x 7→ y = (yi j ) from Rn to V

where

y00 = 1
/(

1 +
∑

x2
i

)

, y0i = yi0 = xi

/(

1 +
∑

x2
i

)

,

yi j = xix j

/(

1 +
∑

x2
i

)

i, j ≥ 1.

The image of XM in XM ′ is identified with the set of y ∈ V with y00 6= 0.

The reader will note that the Veronese variety V is just an affine version of real
projective n-space. V and P(Rn) are identified via (u0, . . . , un) 7→ y = (yi j) where

yi j = uiu j/(
∑

u2
i ). The composite map from Rn to P(Rn) is just the standard em-

bedding x 7→ (1, x1, . . . , xn).

The fact that the presentation of B given in Example 8.1 coincides (essentially)
with the presentation of the algebra Qθ considered in [17, Theorem 3.2] shows the
promised connection between Corollary 3.6 and [17, Theorem 3.2].

Unfortunately, the assumption that the R-algebra A is a finitely generated does not
necessarily imply that the R-algebra B is finitely generated. Also, even if the quadratic
module M in A is finitely generated, the quadratic module M ′ in B may not be finitely
generated. Our next example illustrates this.
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Example 8.2 Consider the polynomial

q(X,Y, Z) = X2(1 − Z2) − (X4 + Y 4);

see [2, page 54]. Let A = R[X,Y, Z][1/q], let M be the quadratic module (equiva-
lently, the quadratic preordering) in A generated by 1/q − 1. Since 1 − q = 3/4 +

(1/2 − X2)2 + X2Z2 + Y 4 ∈
∑

R[X,Y, Z]2, XM is identified with the set

W := {(x, y, z) ∈ R
3 | q(x, y, z) > 0}.

Take p = 1/q (so A[1/p] = A). We compute the subring B of A and the quadratic

module M ′
= M ∩ B defined in the proof of Theorem 2.2.

Claim 1. B1 = R[X,Y, Z]. Since the set XM = W is bounded, one inclusion

is clear. For the other, suppose g ∈ B1. Write g = f /qk with f ∈ R[X,Y, Z],
k ≥ 0 minimal. If k ≥ 1 then, choosing a sequence of points (xn, yn, zn) ∈ W

approaching a boundary point of W , and using the fact that g is bounded on W , we
see that f vanishes on the boundary of W . Since the boundary of W is Zariski dense

in the set V = {(x, y, z) ∈ R3 | q(x, y, z) = 0} and the prime ideal (q) is real [2,
Theorem 4.5.1], this implies that q| f . This proves k = 0 so g = f ∈ R[X,Y, Z].

Claim 2. M1 is the quadratic module in B1 generated by q. Since q = 1/p ∈
M ∩ R[X,Y, Z], one inclusion is clear. For the other, suppose g = s + t(1/p − 1) =

s + tq(1 − q) with g ∈ R[X,Y, Z], s, t ∈
∑

A2. Write s = s ′/q2k, t = t ′/q2k with
s ′, t ′ ∈

∑

R[X,Y, Z]2, k ≥ 0 minimal. Then q2kg = s ′ + t ′q(1 − q) so, if k ≥ 1, then

q divides s ′. Since q is irreducible in R[X,Y, Z] and the prime ideal (q) in R[X,Y, Z]
is real, we see that s ′ = q2s ′ ′, s ′ ′ ∈

∑

R[X,Y, Z]2. Substituting and dividing by q, we
see that q also divides t ′ and that t ′ = q2t ′ ′, t ′ ′ ∈

∑

R[X,Y, Z]2. This contradicts
the minimal choice of k. Thus k = 0. Since 1 − q ∈

∑

R[X,Y, Z]2, the proof is

complete.

It follows from Claims 1 and 2 that

XM1
= W ∪V = {(x, y, z) ∈ R

3 | q(x, y, z) ≥ 0}.

Since V contains the Z-axis, this set is unbounded.

Claim 3. The elements XZ i , Y Zi , i ≥ 0 belong to B. We know that q ∈ M. Adding

(1−X2)2 + X2Z2 +Y 4 to q, we see that 1−X2 ∈ M. We claim that 1−X2Z2i ∈ M for
all i ≥ 0. Adding X4 + Y 4 to q, we see that X2 − X2Z2 ∈ M. Multiplying by Z2i this
yields X2Z2i − X2Z2(i+1) ∈ M. Thus, if we assume inductively that 1 − X2Z2i ∈ M,
then, adding, we see that 1−X2Z2(i+1) ∈ M. This proves the claim. Adding X2Z2 +X4

to q, we see that X2 −Y 4 ∈ M. Multiplying by Z4i and adding 1−X2Z4i , this implies
that 1 − Y 4Z4i ∈ M. Adding (1 − Y 2Z2i)2, this implies 1 − Y 2Z2i ∈ M. Adding
(1±XZi)2 to 1−X2Z2i and (1±Y Zi)2 to 1−Y 2Z2i , we see, finally, that 1±XZ i ∈ M

and 1 ± Y Zi ∈ M, so XZi ,Y Zi ∈ B for all integers i ≥ 0.
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Claim 4. B2 = B = R[XZi ,Y Zi | i ≥ 0]. For suppose g ∈ B2. Using the fact that
V contains the Z-axis, we see that g is bounded on the Z-axis, i.e., the polynomial

g(0, 0, Z) is constant. This proves g ∈ R[XZ i ,Y Zi | i ≥ 0]. This completes the
proof.

XM ′ is obtained from XM = W in two steps: First adjoin the points in V to W to

obtain XM1
= W ∪ V . Then collapse the points in V lying on the Z-axis to a single

point to obtain XM2
= XM ′ . If α ∈ XM ′ is not in XM = W then α(q) = 0. If

α(X) = 0, this forces α(XZ i) = 0 (using X2Z2i − X2Z2(i+1) ∈ M and induction) and
α(Y Zi) = 0 (using X2Z4i − Y 4Z4i ∈ M) for each i ≥ 0. There is a unique such α. If

α(X) 6= 0, then α extends to R[X,Y, Z] via α(Z) = α(XZ)/α(X) and α corresponds
to a point of V which is not on the Z-axis.

It is clear from Claim 4 that B is not finitely generated. If B is finitely gener-
ated then finitely many of the XZ i , Y Zi would generate B, say XZ i , Y Zi , 0 ≤ i ≤
k. In particular, XZk+1 would be expressible as a polynomial in X, XZ, . . . , XZk,
Y,Y Z, . . . ,Y Zk. But this is impossible.

Claim 5. M2 = M ′
=

∑

B2 +
∑

B2
1q. If g ∈ M ′ then, by Claim 2, g = s + tq

with s, t ∈
∑

B2
1. From the definition of q and Claim 4, we see that tq ∈ B so s ∈ B,

i.e., s(0, 0, Z) is constant. Say s =
∑

f 2
i . Thus

∑

fi(0, 0, Z)2 is constant. This implies
each fi(0, 0, Z) is constant, i.e., fi ∈ B.

It follows that the quadratic module M ′ in B is not finitely generated. Other-
wise, M ′ would be generated by finitely many elements f 2

i q, fi ∈ B1, 1 ≤ i ≤ t .
Choose f ∈ B1 so that f (0, 0, Z) has degree greater than the maximum of the de-
grees of the fi(0, 0, Z). Then f 2q =

∑

g2
j +

∑

g2
i j f 2

i q with g j , gi j ∈ B. Thus

g j = h jq, h j ∈ B1, and f 2
=

∑

h2
i q +

∑

g2
i j f 2

i . Evaluating at X = 0, Y = 0

yields f (0, 0, Z)2
=

∑

gi j(0, 0, Z)2 fi(0, 0, Z)2. Since the gi j(0, 0, Z) are constant,
this contradicts our assumption.

Example 8.2 also settles a question of E. Becker. Becker asked if B1 = B. Exam-
ple 8.2 shows that this is not always the case.
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