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FROBENIUS INDUCTION FOR HIGHER WHITEHEAD 
GROUPS 

ANDREW J. NICAS 

0. Introduction. The theory of induced representations has served as a 
powerful tool in the computations of algebraic ^-theory and L-theory 
( [2], [7], [4, 5], [9], [10, 11, 12, 13], [14], [17], [18] ). In this paper we show 
how to apply this theory to obtain induction theorems for the higher 
Whitehead groups of Waldhausen. The same technique applies to the 
analogs of Whitehead groups in unitary AT-theory and in L-theory. 

For any ring A with unit, let K(A) be the spectrum of the algebraic 
AT-theory of A ( [8, p. 343] ). Given a discrete group T and a subring R of 
the rational numbers, Loday defines a map of spectra: 

(*) (BT) AK(R)-> K(RT) 

where (BT) is the classifying space of T union with a disjoint base point 
and RT is the group-ring of T over R. The map of spectra (*) induces a 
homomorphism : 

hj(BT; K(R) ) - Kj(RT) 

where h-(BT; K(R) ) is the generalized homology theory corresponding to 
K(R). The fiber of the map of spectra (*) is a spectrum whose (j — l)st 
homotopy group is called the y'th Whitehead group of T over R and 
is denoted by Wh*(T). 

For a finite group ir define 77 to be the category whose objects are 
subgroups of 77 and whose morphisms are group homomorphisms given by 
conjugation by some element of ir. Let RINGS be the category of rings 
with unit. Recall that a Frobenius functor is a contravariant functor 
F.'TT —> RINGS together with a functorial induction, i.e., given a morph-
ismf:H —» K in 77 there is a homomorphism of abelian groups 

f*.F(H) -> F(K). 

Furthermore, Frobenius reciprocity is valid: 

Uf*a- b) = a-f*b 

f*(b • f*a) = f*b- a 
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for all f.H -> K, a e F(K), and b e F( / / ) (see [7] ). The ring 
homomorphism / * is called the restriction map. An example of a 
Frobenius functor, important in ^-theory, arises from the Swan ring, 
G0(7r), of a group 77 and a subring R of the rational numbers ( [18] ). As 
an abelian group GQ (77) has a presentation with generators (M) where M 
is a finitely generated right RTT module which is free as an jR-module, and 
relations (M) = {Mx) + (M2) whenever there is an exact sequence 

of RTT modules. Now assume 77 is finite. The tensor product over R gives 
GQ(77) the structure of a commutative ring. The association H —> GQ(H) 
where H is a subgroup of 77 defines a Frobenius functor where for a 
morphism/:// —> T̂ in 77 the restriction map is given by restriction of rings 
and the induction map is given by the tensor product with RK over RH. 

Let Ab be the category of abelian groups and F.ÎT —> RINGS a given 
Frobenius functor. A contravariant functor V\m —> Ab is said to be 
a Frobenius module over F if V has a functorial induction and for each 
subgroup H of 77 F( i / ) is a F( i / ) module. Furthermore for any morphism 

f*(x-z)=f*(x)-f*(z) 

Uf*(*)-y) = x-Uy) 
Uvf*(z)) = / * ( v ) - z 

for all v e ^(7/), x G F(AT), J G V(H), Z G F(^ ) . 
Now suppose T is a discrete group and^:T —> -n is a surjection to a finite 

group. If H is a subgroup of -n define TH = p~ (H). According to [5], the 
functor H —» Kj(RTH) is a Frobenius module over H -> Gj(/0. We 
prove the following: 

MAIN THEOREM. The functor H —> hABTH; K(R) ) is a Frobenius module 
over H —> G0 (H) and the Loday homomorphism 

Lf.hj(BYH; K(R) ) -> Kj(RTH) 

is a morphism of Frobenius modules (i.e., L- is a G0(H) module morphism 
and is natural with respect to restriction and induction). 

As the GQ (7/)-module action is constructed at the level of spectra we 
obtain an action of GQ(H) on Wh^T^) . The main theorem yields as a 
consequence the following induction theorem for higher Whitehead 
groups: 

PROPOSITION A. Let p:T —> 77 be as above, R a subring of the rational 
numbers, and B a commutative ring which is flat as a Z-module. Suppose C is 
a collection of subgroups of TT such that the sum of the induction maps 

0 GfcH) ®B-+ G£(TT) ® B 
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is surjective. Then 

1. The sum of the induction maps 

@ Whf (TH) ® B -* Whf (TT) 0 B 

is surjective j = 0. 
2. The product of the restriction maps 

Whf(r)®5-> I I Whf(TH)®B 

is injectivej ^ 0. 

In particular the hypothesis is satisfied in the cases 
1. R = B = Z and C is the class of hyperelementary subgroups of IT. 
2. R = Z, B = Q, and C is the class of cyclic subgroups of IT. 
Analogous results hold in Hermitian AT-theory and in L-theory if one 

replaces G0 ( ) with the equivariant Witt ring of [2] and the Whitehead 
groups by their unitary and L-theoretic analogs. 

1. Notation and conventions. For any associative ring A with unit, 
GL(n, A ) will be the general linear group of invertible n by n matrices over 
A. There is a natural inclusion GL(n, A) —> GL(n + I, A) and the direct 
limit lim GL(n, A) will be denoted by GL(A). Whenever C and D are 
groups C X D will be the product group of C and D and Hom(C, D) will 
be the set of group homomorphisms C —> D. If A and A' are algebras over 
a commutative ring R, typically in our application a subring of the 
rationals, then the tensor product of A and A' over R denoted by A ®R A' 
(and more briefly by A ® A' when R is understood from the context) is 
also an i?-algebra. 

The tensor product of matrices defines a group homomorphism: 

GL(n, A) X GL(m, A') -> GL(nm, A ®R A'). 

Explicitly let X = (xzy) G GL(n,A) and Y = (y^ G GL(m, A'). Order the 
set 

/ = {(j9j) \ ^ i ^ n,\ ^j ^ m) 

lexicographically so that it makes sense to speak of the "(k, /), (/, y')th" 
entry of a nm by nm matrix. The (k, 1), (/,y')th entry of the matrix X ® Y is 
xki ® Xy. In the special case A = R we identify R ®R A' with ^4' via the 
isomorphism r ® a —» ra and similarly when A' = R. 

The tensor product induces a continuous map (see [8] ) 

y:BGL(n, A)+ A BGL(m, A')+ -> BGL(nm, A ®R A') + 

where for any group G, JBG is the classifying space G and where 
BGL(n, A)^ is the plus construction relative to the perfect subgroup 
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E(n, A) = [GL(ny A), GL(n, A)] 

of GL(n, A). 
The cone on a ring A, denoted CA, is the ring of infinite matrices with 

entries in A such that each row and each column have only finitely many 
nonzero entries. Let A be the two-sided ideal of CA consisting of those 
matrices in CA with only finitely many nonzero entries. The suspension of 
A, denoted SA, is the ring SA = CA/A. If A is an i^-algebra then SA 
inherits an jR-algebra structure from the i^-algebra of infinite matrices 
over A and there is a natural isomorphism SA = SR ®R A. The infinite 
matrix (uij-)lj>x where 

f l if y = / - l and/ â 2 
v \ 0 otherwise 

represents an invertible element of SA which will be denoted by T. 

2. The action of the Swan ring on homology. Let A be a ring. According 
to [8, p. 343] A determines a spectrum, denoted K(A), which is defined by 
a sequence of spaces 

(2.1) K(A)k = K0(S
kA) X BGL(SkA) + 

where k ^ 0 and SkA is the /c-fold suspension of the ring A and where the 
suspension maps 

ek:K(A)kAS'^K(A)k + ] 

are given as follows: consider the group homomorphism 

j:Z -> GL{\, ST) 

which sends 1 G Z to T G GL(\, SZ). For n ^ 1 there is a sequence of 
group homomorphisms: 

1 X 7 
(2.2) GL(n, SkA) X Z *»GL(n, SkA) X GL(\, SZ) 

-» GL(n, Sk + lA). 

Note that SkA ® z SZ is identified with Sk+XA via a natural isomorphism. 
Explicitly, the composite (2.2) is given by 

(A, s)->A®z TS. 

Stabilizing, taking classifying spaces, and performing the plus construc­
tion we obtain a map: 

e'k:BGL(SkA) + A Sl -* BGL(Sk + lA)+. 
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An element 

a e K0(S
kA) = 7715GL(SA + U ) + 

is represented by a continuous map 

Sl -> BGL(Sk + \A) + 

which will also be denoted by alpha. Define 

ek(a9x,t) = (0, e'k(x9 t) + a(t)). 

We need a more algebraic definition of ek. Define 

V(k, n,A) = Hom(Z, GL(n9 S* + U ) ), 

V(k9A) = Hom(Z, GL(Sk + xA)). 

Observe that V(k, A) bijects to the set of homotopy classes [BZ, 
BGL(Sk"rXA)l which surjects to 

<nxBGL(SkJtXA)+ = K0(S
kA). 

Hence elements of K0(S A) are represented by elements of V(k, p, A) for 
sufficiently large p. Define 

7k:V(k,p9A) X GL(n, SkA) X Z 

-> V(k,p, A) X GL(n + p, SA + U ) 

by 

€k(f,A,s) = (09A®zr
sef(s)) 

where © denotes the direct sum of matrices. Then after stabilization, 
passage to classifying spaces, and performing the plus construction, 7k 

induces ek. 
Let/?:T —* 77 be an epimorphism of a discrete group to a finite group. If 

H is a subgroup of 77 define TH = p~](H). Also let R be a subring of the 
rational numbers. Suppose 

4>:H -> GL(m9 R) 

is a homomorphism representing an element of G0(H). Composition 
with/? defines a homomorphism TH —» GL(m, R). All tensor products will 
be over R unless otherwise indicated. Note that the tensor product defines 
a map 

GL(n9 R) X V(k,p, R) -> V(k, pm, R) 

by (M 0 f)(s) = M ® / ( j ) where j G Z, M e GL(m, /?), and 
/ e K(/c, /?, /?). Define a map 

** : I7/ x V(H9p9 R) X GL(w, SA#) 

-> r7 / X F(£, /?m, /*) X GL0?m, £*#) 
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by 

^ ( g , / , A) = (g, <t>p(g) 0 / , <t>p(g)®A). 

After stabilization, passage to classifying spaces, and performing the 
plus construction <j>k induces a continuous map 

<j>k:(BTH) A K(*) , -» K(R)k. 

Observe that the following diagram is commutative: 

r „ X V(k,p, R) X GL(n, SkR) X Z ^ X 1 » TH X V(k,pm, R) X GL(wn, SkR) X Z 

THX V(k+ \,p,R) X GL(N + p, S^1 /?) ÎL±L^THX V(k + \,pm,R) X GL(nm +pm,Sk + lR) 

The vertical maps are 1 X 7k. This diagram induces a commutative 
diagram (actually homotopy commutative via a canonical homotopy) 

(BTH) A K(«)A A S1 ** ^(BTH) A K(*)* A S1 

(BTH) A K(/?)* + i ^ ^(BTH) A K(R)k + i 

Thus <f> induces a map of spectra: 

(2.3) *,:(2HV) A K ( « ) - » (2H>) A K(R). 
R 

In order to see that (2.3) induces an action of G0(H) on 
h*{BYH\ K(R)) making the functor H —> h*(BTH; K(R) ) a Frobenius 
module over the Frobenius functor H —» G0(H), we use the following 
equivalent description of the action defined by (2.3). 

Loday defines a homomorphism 
e°:G^TH)^h°(BTH;K(R)). 

(See Proposition 5.1.8 of [8] and the remark which follows it.) If 

i>:TH^> GL(n, R) 

is a representative of an element of G0(TH) then 0°(\p) is represented by 
the homotopy class of the composite: 

BTH -> BGL(R) -> BGL(R)+ -> K(i?)0. 

Composition withp:TH —* H defines a homomorphism 

/ > * : ( # ( / / ) - » ( # ( r H ) . 

Let 0° be the composite of 0° with /?*. The tensor product of matrices 
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makes K(R) a ring spectrum ([8, p. 346]) and thus there is a cap 
product: 

n :hP(X; K(R) ) X hq(X; K(R) ) -> ^ _ / X ; K(#) ). 

The action of G0(H) is given by the composite: 

(2.4) Gg(H) X / ^ I ^ K W ) 

—^-Lh0(BTH; K(R)) X ^ ( 5 1 ^ ; K(tf)) 

^ A * ^ ; K(tf) ). 

A comparison of the definitions immediately shows that this action is 
induced by (2.3). It is also clear that 

0°:G«(H)^ho(BrH;K(R)) 

is natural with respect to restriction, i.e., given a homomorphism/:// —> K 
of subgroups of TT there is a commutative diagram 

G«(K) 1 ^h°(BTK; K(R) ) 

/ * 

r 
f* 

GfrH) 1 +»h\BTH; K(R) ) 

0 is a ring homomorphism by Proposition 4.1.4 of [8] where h°( ) is 
a ring via the cup product. Now for any ring spectrum E, in particular 
K(R), H -> h°(BTH; E) is a Frobenius functor and H -> h*(BTH; E) is a 
Frobenius module over H —» h°(BTH; E) via the cap product (compare 
[9] ). In the next section we will show that 6 is natural with respect to 
induction. Assuming this, 0° is thus a morphism of Frobenius functors and 
we have, as a consequence, 

PROPOSITION 2.5. H —» h*(BTH; K(R)) is a Frobenius module over 
H —» G0(H) where the action of G0(H) is defined by (2.3) or equiva-
lently by (2.4). 

3. The action of the Swan ring on K-theory. Let p:T —* 77, H ^ 77, 
FH = p~ (H) and <£://—> GL(m, R) be as in Section 2. In this section all 
tensor products will be taken over R. Give Rm the right # 1 ^ module 
structure defined by 

vh = <i>p(h~l)v h e Ttf, v G i T . 

Let A: è 0 and A - Sk(RTH). Recall that there is a natural ring 
isomorphism 
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i:SkR ® RTH -> A. 

Give A" ® Rm the diagonal right SkR ® i ^ - m o d u l e structure defined 
by 

(JC ®y){\ ® h) = xi(X ® h) ® yh 

where JC G A",j> <E i T , X e SkR, h G RTH. Then i"1 makes A" ® Rm into 
a free right A-module. A basis for An ® Rm is given by {et ®fj } where {ei} 
is the standard basis for A" and {/} is the standard basis for Rm. An 
element A = (a^) G GL(n, A) determines a A-linear map of right 
A-modules: 

LA:An^>An, LA(ej)= 2 eA>, 
i = i 

Tensoring with the identity map of Rm gives a A-linear map 

LA ® \\An®Rm-> An ®Rm 

where A" ® Rm has the right A-module described above. Let [LA ® 1] be 
the matrix of LA ® 1 with respect to the basis {et®fj}. There is a group 
homomorphism 

(3.1) $k:GL(n, A) -> GL(nm, A) 

defined by <$>k(A) = [LA ® 1]. An explicit formula for <f>k is given as 
follows. Write 

ati = 2 r(i,j, h)®h where r(i,j, h) G 5 ^ . 

Then the (/c, /), (/,y)th component of $k(A) is 

(3.2) 2 (r(/:,/,AX*p)//A))®A, 

where (<£p)// is the (/, j ) th component of the matrix <l>p(h). This can be 
expressed more succinctly. If B = (&••) is a matrix over SkR, and h G T^, 
we write B ® h for the matrix (Z>zy ® h) over the ring S î? ® RTH which is 
naturally identified with A. Writing 

A = 2 A(h)®h 

h^TH 

where all but finitely many of the matrices A (h ) are zero, we have 
(3.3) *k(A)= 2 (A(h)®Mh))®h, 

*er„ 

where yl (&) ® 4>/>(A) is a matrix over 5 ^ ® R, which we identify with SkR. 
Define a map 
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(3.4) <j>k:V(k,p, R) X GL(n, A) -> V(k,pm, R) X GL(«w, A) 

by 

where 

/ e K(A;,/>, # ) = Hom(Z, GL(/?, S* + 1JR)) 

and JC G GL(A, A). 
After stabilization, taking classifying spaces, and performing the plus 

construction, we have that (3.4) induces a continuous map 

<S>k:K(RTH)k -> K(* r„ ) , . 

It is easy to verify that the <^'s are compatible with the suspension maps ek 

of Section 2 and thus define a map of spectra: 

(3.5) <j>:K(RTH) -» K(RTH). 

At the level of homotopy groups, (3.5) gives an action of G0(H) on 
Kj(RTH) making H —» Kj(RTH) a Frobenius module over H —» GQ(H) 
(compare [5] and also see the remark preceding Proposition 5.1.6 of [8] for 
the Frobenius reciprocity formula in AT-theory). The fact that the action 
determined by (3.5) is compatible with the relations of GQ(H) is a 
consequence of Quillen's additivity theorem (see Theorem 2, chapter 3 of 
[15] ). 

Loday defines a map of spectra ( [8] ) 

(3.6) L:(BT„) A K(R) -> K(RTH) 

which arises as follows: 

Consider 

(3.7) Lk:TH X V(k, p, R) X GL(n, SkR) 

-> V(k, p, RTH) X GL(n, Sk(RTH) ) 

given by 

Lk(h,f,A) = (f®h,A®h). 

Note that f® h is defined by 

(f® h)(s) = /(<?) ® A f o r ^ G Z . 

After stabilization, passage to classifying spaces, and performing the plus 
construction, one has continuous maps 

Lk:(BTH) A K(R)k -> K(RTH)k 

for /c ^ 0 which together give the map of spectra (3.6). Using the explicitly 
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algebraic description of the Loday map (3.7) and of the action of <#>, it is 
then an easy exercise to verify that the following diagram is commuta­
tive: 

r „ X V(k,p, R) X GL(n, SkR) 

1 X*k 

TH X V(k,pm] R) X GL(nm, SkR)_ 

Lk ^ V(k p RTH) X GL(n, SkRTH) 

Vk 

J/(k, pm, RTH) X GL(nm, SkRTH). 

The above diagram induces a commutative diagram in the category of 
spectra: 

(BTH) A K(R) .K(RTH) 

(BTH) A K(R)-
L 

+ K(RTH) 

Hence the action of GQ(H) is compatible with the Loday homo-
morphism at the level of spectra. As a consequence there is a natural 
action of GQ(H) on Wh^(r^), the (j — l)st homotopy group of the fibre 
of the Loday map. 

In order to complete the proof of the main theorem we need to show 
that the Loday map is compatible with restriction and that the map 

eP:G^TH)^h°(BTH;¥(R)) 

discussed in Section 2 is compatible with induction. Note that in co-
homology theory the induction map is called the transfer and in homology 
theory the restriction map is called the transfer. First, we recall the 
construction of the transfer in generalized homology and cohomology 
theory. Let 2^ be the symmetric group of permutations of q symbols. If G 
is a group then the wreath product 2^ / G is the semidirect product 

1 -> G« - 2 J G 1, 

where 2 acts on Gq (the g-fold product group of G) by permuting the 
coordinates. Suppose F is a subgroup of finite index q in L. Let 

L = & glF 

be a decomposition of L into left cosets. There is a group mono-
morphism 

u:L -> 2 J F 
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(see [3] ) given as follows: For x Œ. L we have 

xSi = go(i)fi> ' = I , - - . , * 

for some unique permutation o e 2 andfj G i7. Then 

u(x) = ( ( / „ . . . , / , ) , a) e 2 , / F . 

Let Wbe a contractible CW complex on which 2 acts freely. The induced 
map of classifying spaces 

w.BL -» £ (2^ / i7) = (^i7)^ Xz W 

agrees with the map 

®:BL^(BFf X 2 W 

of [6] (0 is what is called the "pretransfer" in [6] ). 
For an unpointed space X, let 2°°X be the suspension spectrum 

associated to X union with a disjoint base point. There is a commutative 
triangle in the category of spectra: 

^™BL ^ ^ 2°°£(2^ / F) 

(3.8) A 

2°°BF 

The map of spectra u* is induced from the map 

w.BL -> B(^q / F). 

The map of spectra /:2°°#L —> 2°°Z?i7 induces the transfer 

t:h*(BL) -> /z*(£F) 

in any generalized homology theory h* and the transfer 

t:h*(BF) -> A*(£L) 

in any generalized cohomology theory h* (see [6] ). By viewing 2^ as the 
group of q by # permutation matrices, we have for any group E a natural 
inclusion homomorphism 

(3 9)
 2 J E "* GL<* Z^) 

( ( e , , . . . , ^ ) , a) -» (ô /a(7)^) 

where 8- = 1 if / = y and 0 otherwise. 
Consider the following generalization of the Loday homomorphism. Let 

£ b e a group and fix a positive integer q. As in (3.7) define for k ^ 0 
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(3.10) Lk:GL(q9 ZE) X V(k9p9 R) X GL(n9 SkR) 

-> V(k, pq9 RE) X GL(nq9 Sk(RE) ) 

by the formula 

Lk(h9f9A) = (f0h9A0h) 

where ® denotes the tensor product of matrices. 
Then (3.10) gives a map of spectra: 

(3.11) L:BGL(q9 ZE) A K(R) -» K(RE)9 

which yields the map of homotopy groups 

Lj:hj(BGL(q9 ZE); K(R) ) -> Kj(RE). 

We now recall the construction of the restriction map in i^-theory. Let 
L —» GL(q9 ZE) be the composite of u:L —> 2 / F with the homomor-
phism of (3.9). This homomorphism determines a ring homomorphism 

RL -> Mat(?, # F ) 

where Mat(#, i^i7) is the ^-algebra of q by g matrices over RE. Hence we 
obtain a group homomorphism 

GL(n9 RL) -> GL(n9 Mzt(q9 RE) ) = G L ( ^ , i?F)-

Stabilizing, taking classifying spaces, and performing the plus construc­
tion yields a map 

BGL(RL)+ -> BGL(RF) + 

and it is clear how to extend this to a map of spectra 

i*:K(RL)-+K(RF) 

which in homotopy gives the restriction map 

i*:Kj(RL) -> Kj(RF). 

Using (3.7) and (3.10) it is easy to verify that the following diagram of 
maps of spectra is commutative: 

(BL) A K(R) ^—•KCRL) 

\ u A 1 

(B(2q J E) ) A K(R) ^K(RE) 

where L is the composite of B(2q j F) —» BGL(q9 ZE) smashed with 
identity and the generalized Loday map (3.11). Combining this square 
with (3.8) and taking homotopy groups we have a commutative diagram 
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L, 
• Kj(RL) •hABL; K(R)) 

I hj{B{^ I F\ K ^ ) ^ ^KARF^ 

• / z / (5F ;K( i? ) ) 

It follows that the Loday map commutes with the restriction map. 
The transfer in the cohomology theory associated with the spectrum 

K(R) can also be described by specifying "structure maps" as defined in 
chapter 4 of [1]. Let A be any ring with unit. Viewing 2 as the group of 
q by q permutation matrices, we have an embedding of groups 

2 ^ / GL(n, A)-> GL(nq, A). 

After stabilization, taking classifying spaces, and performing the plus 
construction, this induces a map 

j>:(BGL(A)+)q X 2 WLq -» BGL(A) +. 

By letting A = SkR we obtain structure maps for K(JR), 

sk:K(R)t X^WZq-^K(R)k. 

The transfer in the cohomology theory with coefficients in K(R) is given as 
follows. Let f.BF^ K(R)k represent an element of hk(BF; K(R) ). Then 
the transfer off is represented by the composite: 

BL-^B(2 / F) = (BFf X 2 W2 

iff X2 1 

K(R)l Xv W^Q 

Using this description of the transfer it is readily verified that the map 

0°:G$(E) -> h°(BE; K(R)) 

discussed in the previous section commutes with the induction map. 

Remarks. The following statements are easy consequences of the main 
theorem. 
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1. The functors 

H -> Gg(H), H -> hj(TH, K(R) ), and H -> Kj(RTH) 

all satisfy double coset formulas, so in the terminology of [2] the 
Loday map Lj is a morphism of Green modules over the Green functor 
H -» G«(H). 

2. For j in the range 0 ^ j' ^ 3 the Whitehead groups are a quotient of 
K-theory, i.e., 

Wh/IV) = c o k e r ^ ) . 

It follows that i / —» Wh-(r^) is a Frobenius module (a Green module by 
the above remark) over the Swan ring for 0 = j ^ 3. 

4. Proof of proposition A and concluding remarks. We now prove 
Proposition A of the introduction. Let/?:T —» m be an epimorphism to a 
finite group, i£ a subring of the rational numbers, and B a commutative 
ring which is flat as a Z-module. Suppose C is a collection of subgroups of 
77 such that the sum of the induction maps: 

H@C G«(H) 0 5 - * G«(ir) ® B, 

is surjective. For a subgroup H of IT there is a long exact sequence: 

-» A,-(5rw; KCR) ) ^ tf/fllV) 

-> whf <r„) - » . . . - wh*(r„) -» o. 
This sequence remains exact when tensored with B. Write 

Wj(H) = image(L7) ® 5, 

J*(i/) - kerCL^O 0 j? (set F 0(#) - 0). 

By the main theorem the Loday map is a morphism of Frobenius modules 
over the Frobenius functor H —> GQ(H). Consequently, H —> Wj(H) 
and i / —> Jy(#) are Frobenius modules over 

H -» Go (//) ® 5 

(compare chapter 6 of [10] ). For any subgroup H of IT there is an exact 
sequence: 

(4.1) 0 -> Wj{H) -» Whf(r^) ® 5 -> J*(#) -> 0. 

Since the sum of the induction maps 

^ f c G*(H) ®B-+ G*(TT) ® B 

is surjective it follows by Proposition 1.2 of [2] that the product of the 
restriction maps 
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Wji-n] Wj{H) 

VM) -> n Vj{H) 

are injective ; and the sum of the induction maps 

e 
/ / eC 

Wj(H)- tWji-n) 

e Vj(H)^> Vj(ir) 

are surjective. It follows from (4.1) and a simple diagram chase that the 
product of the restriction maps 

Whf(r)®5-> I I Whf(rH)®J? 
/ / e C 

is injective and the sum of the induction maps 

0 Whf (IV) ® B -» Whf (D ® 5 

is surjective. 
In particular the hypothesis is satisfied in the following two cases. 
1. R = B = Z and C is the class of hyperelementary subgroups of TT. 
2. R = Z, B = Q, and C is the class of cyclic subgroups of IT. (See [18].) 

Proposition A generalizes a result of T.-Y. Lam to higher Whitehead 
groups (compare Proposition 1.1, chapter 4 of [7] ). 

In L-theory, Ranicki has defined for a ring with involution A the 
spectrum of the L- theory of A, denoted L(A), and for a discrete group Y a 
map of spectra: 

(4.2) (BT) A L(Z) -> L(Zr) 

in analogy with the Loday map (BT) A K(Z) -> K(Zr) (see [16] ). The 
groups 

vjUZT) = Lj(Zr) 

are the L-groups of Wall. The (j — l)st homotopy group of the fibre of 
(4.2) is the L-theoretic analog of they'th Whitehead group and we will use 
the notation UWhj(T) for it. 

Remark. In the special case M = K(T, 1) is a closed orientable 
aspherical manifold 

UWhj(T) = STOP(M X /-/+3, 3) 

where STOp is the structure set of topological surgery. 
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If the Swan ring GQ( ) is replaced with the equivariant Witt ring GW0( ) 
of [2], then the same type of argument used to prove the main theorem 
shows that Ranicki's map 

Aj:hj{BTH;UZ))-+mXH) 

is a morphism of Frobenius modules over the Frobenius functor 
H —> GW0(H) where as beforep:T —> 77 is an epimorphism to a finite group 
and T^ = p~l(H). Thus as a consequence, if C is the collection of 
2-hyperelementary subgroups and /^-elementary subgroups for odd primes 
p of the group TT then we have that the product of the restriction maps 

UWh(T) -> I I UWh.(TH) 

is injective and the sum of the restriction maps 

0 UWhATrr) -> UWhAT) 

is surjective (compare with Theorems 6.2.11-13 of [10] ). These arguments 
also apply to Hermitian ^-theory of type discussed in [8] where the 
equivariant Witt ring is used in place of the Swan ring. 
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