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Abstract

We show that a finite loop, whose inner mapping group is the direct product of a dihedral 2-group and a
nonabelian group of order pg (p and ¢ are distinct odd prime numbers), is solvable.
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1. Introduction

If Qs aloop, then we have two permutations L, and R, on Q defined by L,(x) = ax and
R,(x) = xa for each a € Q. These permutations generate a permutation group M(Q)
which is said to be the multiplication group of Q. The stabiliser of the neutral element
of Q is denoted by /(Q) and we say that this subgroup of M(Q) is the inner mapping
group of Q. A loop Q is solvable if it has a series 1 = Qg C--- C O, = Q, where Q;_,
is a normal subloop of Q; and Q,;/Q;_ is an abelian group for each i.

It is well known that the structure of Q depends strongly on the structure of M(Q).
One of the most important results in this direction was proved by Vesanen [9] in 1996:
if Q is a finite loop and M(Q) is a solvable group, then Q is a solvable loop. In
light of this we are naturally interested in those properties of /(Q) which force M(Q)
to be a solvable group and Q to be a solvable loop. The result due to Mazur [6]
in 2007 indicates that if Q is a finite loop and I(Q) is a nilpotent group, then M(Q)
is solvable. (In fact, it was shown in [7] that Q is then a centrally nilpotent loop.)
In 2002, Drépal [1, Corollary 4.7] considered the situation that /(Q) is a nonabelian
group of order pg, where p and ¢ are distinct prime numbers. He showed that M(Q)
is a solvable group and Q a solvable loop. In [5] the authors showed that a finite loop,
whose inner mapping group is the direct product of a dihedral group and an abelian
group, is also solvable.

The purpose of this paper is to further investigate the situation where /(Q) is a
nonabelian group. Our main result is the following theorem.
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TueoreM 1.1. Let Q be a finite loop. If I(Q) = D X S, where D is a dihedral 2-group
and S is a nonabelian group of order pq, where p and q are distinct odd prime
numbers, then M(Q) is a solvable group and Q is a solvable loop.

The basic tool for our reasoning is the notion of connected transversals in group
theory. In Section 2 we introduce this notion and those results on connected
transversals which are later needed in the proof of our main theorem. We also explain
the connection between loops, their multiplication and inner mapping groups and
connected transversals. In Section 3 we give the proof of our main group-theoretical
result. Theorem 1.1 then follows as a loop-theoretical interpretation of this result.

2. Connected transversals

Let H be a subgroup of G and let A and B be two left transversals to H in G.
If [a,b]=a'b~'abe H for every ac A and b € B, then we say that A and B are
H-connected transversals in G. The core of H in G (the largest normal subgroup
of G contained in H) will be denoted by Hg. If Q is a loop, then the permutations of
O mentioned in the Introduction form two sets, A={L,:a€ Q} and B={R,:a€ 0},
which are I(Q)-connected transversals in M(Q). Furthermore, the core of I(Q) in
M(Q) is trivial. The link between loops and connected transversals is given by the
following theorem.

TueOREM 2.1. A group G is isomorphic to the multiplication group of a loop if and only
if there exist a subgroup H and H-connected transversals A and B such that Hg = 1
and G = (A, B).

For the proof, see [8, Theorem 4.1].
We start with a technical lemma from [8, Lemma 2.5].

Lemma 2.2. Assume that A and B are H-connected transversals in G. If C C A U B and
K =(H,C), then C C Kg.

THEOREM 2.3. Assume that A and B are H-connected transversals in G. If G is a finite
group and H < G is nilpotent, then G is solvable.

Mazur [6] proved this theorem by using the classification of finite simple groups.
A proof which does not use the classification can be found in [7].

By combining Theorem 2.1 and the result of Drépal [1, Corollary 4.7] mentioned
in the Introduction, we get the following lemma.

Lemma 2.4. Let G be a finite group, H < G nonabelian and |H| = pq, where p and q
are distinct prime numbers. If there exist H-connected transversals A and B in G, then
G is solvable.

A short proof of this lemma can be found in [5, Theorem 2.7].
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3. Main results

In the proof of our main results, we need the following two classical theorems. The
first one is by Wielandt (see [4, Satz 5.8, p. 285]) and the second one by Gorenstein
and Walter [3, Theorem 1].

TueoreM 3.1. Let G be a finite group and let G contain a nilpotent Hall n-subgroup H.
Then every m-subgroup of G is contained in a conjugate of H.

TueEOREM 3.2. Let G be a finite group with dihedral Sylow 2-subgroups. Let O(G)
denote the maximal normal subgroup of odd order. Then G satisfies one of the
following conditions.

(1)  G/O(G) is isomorphic to a subgroup of PI'L(2, q) containing PSL(2, q), q odd.
(2)  G/O(G) is isomorphic to the alternating group As.

(3) G/O(G) is isomorphic to a Sylow 2-subgroup of G.

We shall now prove the following lemma.

Lemma 3.3. Let G be a finite group, H <G and H=F X S, where F is abelian and
S is a nonabelian group of order pq, where p and q are distinct prime numbers. If
gcd(|F|,|S1) =1 and there exist H-connected transversals A and B in G, then G is
solvable.

Proor. Let G be a minimal counterexample. If Hg > 1, then we consider G/Hg and
its subgroup H/Hg and by using induction, Theorem 2.3 or Lemma 2.4, it follows that
G/Hg is solvable, and hence G is solvable.

Thus we may assume that Hz = 1. If H is not maximal in G, then there exists
a subgroup T such that H <7 <G. By Lemma 2.2, Tg > 1 and we may consider
G/T¢ and its subgroup HT/Tg = T/T¢. It follows that G/T¢ is solvable. Since T is
solvable by induction, we conclude that G is solvable.

We thus assume that H is a maximal subgroup of G. Let R be a Sylow r-subgroup
of F for a prime number r. As Hg = 1, we conclude that R is a Sylow r-subgroup of G.
From this it follows that F is a Hall subgroup of G. Clearly, Ng(R) = H = C5(R)
and, by using the Burnside normal complement theorem, there exists a normal 7-
complement in G for each r that divides |F|. Clearly, this means that G = FK, where
K is normal in G and ged(|F|, |K|) = 1.

If 1 #a €A, then a = yx, where y€ F and x € K. Then aK = yK and (aK)? = K,
where d divides |F|. Thus a“ € K, hence (a?) = 1, where ¢ divides |K]|. It follows that
(a")? = 1, hence |@'| divides d. Since F is an abelian Hall subgroup of G, we may apply
Theorem 3.1 and it follows that a’ € F¢ for some g € G. As F is abelian, {a') is normal
in{a, H®) = G. As Hg = 1, we conclude that a’ = 1. Now there exist integers m and n
such that md + nt = 1. Thus a = ™" = (a?)"(a")" € K.

We may conclude that AU BC K. Clearly, S <K and thus K =AS =BS. By
Lemma 2.4, K is a solvable group. As G = FK, it follows that G is solvable, too. O

We are now ready to prove our group-theoretical result.
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TueoreM 3.4. Let G be a finite group, H <G and H= D X S, where D is a dihedral
group of order 2' (t >2) and S is a nonabelian group of order pq, where p and q are
distinct odd prime numbers with p > q. If there exist H-connected transversals in G,
then G is solvable.

Proor. Assume that G is a minimal counterexample. If 1 = 2, then D is abelian and we
can use Lemma 3.3. We thus assume that 7 > 3. By induction or by using Theorem 2.3
or Lemmas 2.4 and 3.3, we may conclude that H; = 1 and H is maximal in G (see the
first part of the proof of Lemma 3.3). It follows that D is a Sylow 2-subgroup of G.
If O(G) > 1 is the maximal normal subgroup of odd order, then G = O(G)H and G is
solvable by the Feit-Thompson theorem [2]. Thus we may assume that O(G) = 1.

Now G is a finite group with a dihedral Sylow 2-subgroup and we may use
Theorem 3.2. Since pq divides |G, it follows that G cannot be isomorphic to a Sylow
2-subgroup of G. If G = A7, we have a contradiction, as then G > H =D X S is not
possible. Thus we are left with the case where G is isomorphic to a subgroup of
PI'L(2, r) containing PS L(2, r) (here r = s for an odd prime s). Since PI'L(2,r) =
PGL(2, r) = C,, it follows that G = NH, where N is normal in G, N = PS L(2, r) and
G /N is abelian.

Now NN D is normal in D, and as N N D is a Sylow 2-subgroup of N, we may
conclude that N N D is dihedral of order 2! or of order 2'. Furthermore, NN S is
normalin S, andif NNS > 1,then N NS > P, where P is the Sylow p-subgroup of S.
Butthen N > (N N D) X P, which is not possible as N = PSL(2,r). Tus NN H=NnN
Dand G/IN=HN/N=H/NNH=S orGIN=HN/N=H/NNH=C,xS§. Since S
is not abelian, we have reached our final contradiction and the proof is complete. O

The preceding theorem combined with Theorem 2.1 and the theorem by Vesanen [9]
implies the loop-theoretical result in Theorem 1.1.

RemArk 3.5. It would be interesting to know if the results of Theorems 3.4 and 1.1 also
hold in the case where D is a dihedral group without restrictions on the order of D.

References

[1] A. Drépal, ‘Orbits of inner mapping groups’, Monatsh. Math. 134 (2002), 191-206.

[2] W. Feit and J. G. Thompson, ‘Solvability of groups of odd order’, Pacific J. Math. 13 (1963),
775-1029.

[3] D. Gorenstein and J. H. Walter, ‘The characterization of finite groups with dihedral Sylow
2-subgroups’, J. Algebra 2 (1965), 85-151; 218-270; 354-393.

[4] B. Huppert, Endliche Gruppen I (Springer, Berlin—-Heidelberg, 1967).
E. Leppild and M. Niemenmaa, ‘On finite loops whose inner mapping groups are direct products
of dihedral groups and abelian groups’, Quasigroups Related Systems 20(2) (2012), 257-260.

[6] M. Mazur, ‘Connected transversals to nilpotent groups’, J. Group Theory 10 (2007), 195-203.

[71 M. Niemenmaa, ‘Finite loops with nilpotent inner mapping groups are centrally nilpotent’,
Bull. Aust. Math. Soc. 79(1) (2009), 114.

[8] M. Niemenmaa and T. Kepka, ‘On multiplication groups of loops’, J. Algebra 135 (1990), 112-122.

[9] A. Vesanen, ‘Solvable loops and groups’, J. Algebra 180 (1996), 862-876.

https://doi.org/10.1017/5S0004972713000269 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972713000269

96 E. Leppild and M. Niemenmaa

EMMA LEPPALA, Department of Mathematical Sciences,
University of Oulu, PL 3000, 90014 Oulu, Finland
e-mail: emma.leppala@oulu.fi

MARKKU NIEMENMAA, Department of Mathematical Sciences,
University of Oulu, PL 3000, 90014 Oulu, Finland
e-mail: markku.niemenmaa@oulu.fi

https://doi.org/10.1017/5S0004972713000269 Published online by Cambridge University Press

(5]


https://doi.org/10.1017/S0004972713000269



