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Abstract

As usual, P, (n > 1) denotes the path on n vertices. The gem is the graph consisting of a P4 together with
an additional vertex adjacent to each vertex of the P4. A graph is called (Ps, gem)-free if it has no induced
subgraph isomorphic to a Ps or to a gem. For a graph G, x(G) denotes its chromatic number and w(G)
denotes the maximum size of a clique in G. We show that y(G) < L%w(G)J for every (Ps, gem)-free graph
G.
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1. Introduction

In this paper, all graphs are finite, simple and undirected.

As usual, given a positive integer n, we denote the path on n vertices by P,. For an
integer n > 3, C, is the cycle on n vertices. The gem is the graph consisting of a P4
together with an additional vertex adjacent to each vertex of the Pj.

Given graphs G and H, we say that G is H-free if no induced subgraph of G is
isomorphic to H. Given a graph G and a family H of graphs, we say that G is H-free
if G is H-free for all H € H.

A clique in a graph G is a set of pairwise adjacent vertices of G; a stable set is a set
of pairwise nonadjacent vertices of G. The clique number of G, denoted by w(G), is the
maximum size of a clique in G. A g-colouring of G is afunctionc : V(G) — {1,...,q},
such that for each edge uv of G, c(u) # c(v). The chromatic number of a graph G,
denoted by y(G), is the minimum number g for which there exists a g-colouring of G.
A graph G is perfect if all its induced subgraphs H satisfy y(H) = w(H).
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A class of graphs is called hereditary if it is closed under isomorphism and taking
induced subgraphs. A hereditary class G of graphs is said to be y-bounded if there
exists a function f such that every graph G € G satisfies y(G) < f(w(G)); the function
f is called a y-bounding function. Gyarfas [6] introduced y-bounded graph classes as
a generalisation of perfect graphs.

Gyarfas [6] showed that for all positive integers n, the class of P,-free graphs
is y-bounded. It is well known that P4-free graphs are perfect [9], and thus are y-
bounded with identity y-bounding function. However, for n > 5, the best y-bounding
function known for the class of P,-free graphs is exponential: it was shown in [5] that
every P,-free graph G satisfies y(G) < (n — 2)“©~! If a second graph is forbidden in
addition to forbidding a path, much better bounds are possible. Choudum, Karthick
and Shalu [2] proved that every (Pg, gem)-free graph G satisfies y(G) < 8w(G) and
that every (Ps, C4)-free graph G satisfies y(G) < L%w(G)J. Gaspers and Huang [4]
showed that every (Pg, C4)-free graph G satisfies y(G) < I_%a)(G)J. This was recently
improved by Karthick and Maffray to y(G) < L%w(G)J [7]1, which is an optimal y-
bounding function for the class. Chudnovsky and Sivaraman [3] proved that every
(Ps, Cs)-free graph G satisfies y(G) < 22(©-1,

Choudum, Karthick and Shalu [2] proved that for any (Ps, gem)-free graph G,
X(G) < 4w(G). In this note, we give a better bound by showing that y(G) < I_%w(G)J.

2. Definitions

Let G = (V, E) be a graph. We use |G| to denote |V|. For U C V, let G[U] denote the
subgraph of G induced by U. For v € V, let N(v) denote the open neighbourhood of v.
The degree of v, denoted by d(v), is IN(v)|. The complement of G is denoted by G. Let
G and H be two vertex-disjoint graphs and let x be a vertex of G. By substituting H
for x we mean deleting x and joining every vertex of H to each of the vertices that was
adjacent to x in G.

A set M of vertices with 2 < |M| < |V(G)| — 1 is a homogeneous set in G if for each
vertex x € V(G) \ M, x is adjacent to all vertices of M or to no vertices of M. A graph
that contains no homogeneous set is called prime. A homogeneous set M of G is said to
be maximal if no other homogeneous set properly contains M. The graph G* obtained
from G by contracting every maximal homogeneous set of G to a single vertex is called
the characteristic graph of G. Note that if G is prime, then G* = G by the definition.

We say that a graph G’ is obtained from a graph G by blowing up vertices of G
into cliques if G’ consists of the disjoint union of cliques K, for every u € V(G), and
all edges between cliques K, and K, exactly when uv € E(G). This is the same as
substituting clique K, for vertex u (for all u).

Let A and B be two disjoint sets of vertices of G. We say that A is complete to B if
every vertex of A is adjacent to every vertex of B and we say that A is anticomplete to
B if no vertex of A is adjacent to any vertex of B.
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FiGure 1. A specific graph is a graph shown here or one of its prime induced subgraphs.

A graph is called co-connected if its complement is connected. A graph is called
chordal if it has no induced cycle on four or more vertices, and co-chordal if its
complement is chordal. A vertex v is simplical if the set of vertices adjacent to v
induces a clique. A vertex v is co-simplicial if the set of vertices not adjacent to v
induces a stable set. A graph is said to be matched co-bipartite if its vertex set can be
partitioned into two cliques C; and C;, with |C;| = |C;| or |C}| = |C,| — 1 such that the
edges joining C; and C, are a matching and at most one vertex in each of C; and C; is
not covered by the matching. Brandstiddt and Kratsch [1] called a graph specific if it is
one of the three graphs in Figure 1 or one of their prime induced subgraphs.

Consider the vertices of Cs to be ordered vy, v», v3, v4, Vs wWhere v; is adjacent to v;
(mod 5). For a graph G and a vertex v of G, let the extension operation ext(G, v) denote
replacing v with a Cs consisting of new vertices vy, v, v3, v4, V5 such that v, v4 and
vs have the same neighbourhood in G as v and the only neighbours of v; and v3 are
their neighbours in the cycle. For a set of vertices U C V of G, let ext(G, U) denote the
result of repeatedly applying the extension operation to all vertices of U. For k > 0, let
% be the class of prime graphs G’ = ext(G, Q) resulting from extending a co-chordal
gem-free graph G by a clique Q of exactly k co-simplicial vertices of G.

3. Previous results

We will use the following known results to prove our result.

TueoreMm 3.1 (Brandstiddt and Kratsch [1]). A connected and co-connected graph G is
(Ps, gem)-free if and only if the following conditions hold.

(1) The homogeneous sets of G are P4-free.
(2)  For the characteristic graph G* of G, one of the following conditions holds:

(@) G is a matched co-bipartite graph;
(b)  G* is a specific graph;
(¢c) thereis ak > 0 such that G* is in 6;.

LemMma 3.2 (Gaspers and Huang [4]). Let G be a graph such that each homogeneous
set of G is a clique. If the characteristic graph G* of G satisfies y(G*) < 3, then
X(G) < 30(G)].
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Lemma 3.3 (Lovasz [8]). The graph obtained by substituting perfect graphs for some
vertices of a perfect graph is also perfect.

4. Results
In this section, we prove our main result. First, we prove the following lemma.

Lemma 4.1. Let G be a connected (Ps, gem)-free graph and H a homogeneous set of
G that is not a clique. Then there exists a connected induced subgraph G’ of G with
|G’| < |G| such that x(G") = x(G) and w(G") = w(G).

Proor. Let N and M be disjoint subsets of V(G) \ H such that H is complete to N and
anticomplete to M. Note that N is nonempty since G is connected. Since G is gem-free,
it follows that G[H] is P4-free. It has been shown that the class of P4-free graphs is
perfect [9]. Construct G’ from G by contracting the vertices of H to a clique K of size
w(G[H]). Clearly G’ is a connected induced subgraph of G. Since H is not a clique, it
follows that |G’| < |G|. We now show that y(G) = x(G’) and w(G) = w(G’). Since G’
is an induced subgraph of G, w(G’) < w(G) and ¥(G’) < x(G). So we must prove the
reverse inequalities.

We first examine w(G) and w(G’). Suppose that a largest clique in G contains a
vertex of H. Then a largest clique in G would include a largest clique in H and some
vertices in N. This clique would also appear in G’, so w(G) < w(G"). Now suppose that
the largest clique in G contains no vertex of H. Then the largest clique is some subset of
N U M. Since N U M C V(G’) it follows that w(G) < w(G’). Therefore, w(G) = w(G’).

Next we examine y(G) and x(G’). Colour G’ with g := x(G’) colours. Let Sy,...,S,
be the colour classes. Since K is a clique, we may assume that the ith vertex k;
of K is in §; for 1 <i < |K|. Since G[H] is perfect, y(G[H]) = w(G[H]) = |K|. Let

Dy, ..., D be a|K]-colouring of H. Since H contains K, we may assume that k; € D;.
Now S1 U Dy, ..., Sk U Dk, Ski+1, - - >S4 is a g-colouring of G. This shows that
X(G) < x(G"). So, x(G') = x(G). O

We are now ready to prove the main result of this paper.
TueoreM 4.2. Let G be a (Ps, gem)-free graph. Then y(G) < I_%w(G)J.

Proor. Recall that G* denotes the characteristic graph of G. We prove the theorem by
induction on |G|. If G is not connected, then we are done by applying the inductive
hypothesis to each component of G. So, we may assume G is connected. If G is not
co-connected, then V(G) can be partitioned into two nonempty subsets V| and V; such
that V| is complete to V,. Since G is gem-free, it follows that G[V;] is P4-free and so
G is also P4-free. Hence, y(G) = w(G) and so the theorem holds. So, we may assume
G is co-connected. If G contains a homogeneous set that is not a clique, then we are
done by Lemma 4.1 and by the inductive hypothesis. So, we can assume that each
homogeneous set of G is a clique. This implies that G is obtained from G* by blowing
up vertices of G* into cliques.

https://doi.org/10.1017/5S0004972719000352 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972719000352

186 K. Cameron, S. Huang and O. Merkel [5]

Since G is connected and co-connected, it follows from Theorem 3.1 that G* must
satisfy the following:

(1) G*is a matched co-bipartite graph;
(2) G*is a specific graph;
(3) there is a k > 0 such that G* is in .

We now consider each outcome of Theorem 3.1 and prove the claimed bound for
each case.

Case 1. Suppose that G* is a matched co-bipartite graph.

Proor. Let G* be a matched co-bipartite graph. Co-bipartite graphs are perfect. It
follows from Lemma 3.3 that G is also perfect. Thus, y(G) = w(G). O

Case 2. G* is a specific graph.

Proor. From Lemma 3.2 it is enough to show that G* is 3-colourable. It can be readily
checked that each of the graphs in Figure | can be partitioned into 3 cliques. So,
their complements are 3-colourable, as are all of their prime induced subgraphs. Thus,
X(G) < [3w(G)]. o

Case 3. There is a k > 0 such that G* is in €.

Proor. If k = 0, then G* € 6; and so G* is a prime co-chordal gem-free graph. Co-
chordal graphs are perfect. It follows from Lemma 3.3 that G is perfect. Now suppose
that kK > 1. Then G* is obtained from some prime co-chordal gem-free graph by
applying the extension operation at least once. Let G’ be the graph before applying
the last extension operation and G* = ext(G’, v) for some v € V(G’). Note that G* has
the structure illustrated in Figure 2. Then {v{, v5, v3, v4, v5} induces a Cs in G* and v,,
v4 and vs are adjacent to the neighbours of v, and the only neighbours of v; and vz are
their neighbours in the cycle. The degree of v, and of v3 in G* is 2. Recall that G can be
obtained from G* by blowing up vertices into cliques, and let V; be the clique that was
substituted for v; for i = 1, 2, 3,4, 5 when G was obtained from G*. Since V4, U Vs is a
clique in G, it follows that |V4| + |V5| < w(G). Thus at least one of V4 and Vs has size
at most %w(G), say Vs. (If it is V4, then apply the following argument with V; replaced
by V3.) Also, V| U V; has size at most w(G). Thus, any vertex u € V| has degree at
most %w(G) — 1 since it has at most %a)(G) neighbours in V5 and w(G) — 1 neighbours
in V| U V,. By the induction hypothesis, y(G — v) < %w(G -v) < %w(G). Colour all
vertices of G except v with L%w(G)J colours. Since d(v) < L%w(G)J — 1 there is some
colour among the L%w(G)J colours which was not used to colour any neighbour of v.
Colour v with this colour. This gives a colouring of G with I_%cu(G)J colours, and thus
shows that y(G) < I_%w(G)J. O

Therefore, any (Ps, gem)-free graph G satisfies y(G) < I_%w(G)J. O
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FiGure 2. The structure of G* € € (k > 1) for some extended vertex v.

Note that this bound is tight for general (Ps, gem)-free graphs since the bound is

attained by Cs and the Petersen graph.
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