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FUNCTION SPACES AND THE MOSCO TOPOLOGY

GERALD BEER AND ROBERT TAMAKI

Let X and Y be Banach spaces and let C(X, Y) be the functions from X to Y
continuous with respect to the weak topology on X and the strong topology on
Y. By the Mosco topology T « on C[X, Y) we mean the supremum of the Fell
topologies determined by the weak and strong topologies on X X Y, where functions
are identified with their graphs. The function space is Hausdorff if and only if both
X and Y are reflexive. Moreover, T « coincides with the stronger compact-open
topology on C(X, Y) provided X is reflexive and Y is finite dimensional. We also
show convergence in either sense is properly weaker than continuous convergence,
even for continuous linear functional, whenever X is infinite dimensional. For
real-valued weakly continuous functions, TM is the supremum of the Mosco epi-
topology and the Mosco hypo-topology if and only if X is reflexive.

1. INTRODUCTION

Over the -past twenty years, numerous articles have been written on Mosco conver-
gence and the associated Mosco topology TM for closed convex sets and lower semicon-
tinuous convex functions (as identified with their epigraphs) in the context of reflexive
Banach spaces [1, 12, 18, 3, 4, 6, 9, 25]. Two recent articles by Beer and Pai [7, 8]
show that these notions are also fruitful more generally, that is, for weakly closed sets
and weakly lower semicontinuous functions. In this article, we consider Mosco conver-
gence in the context of function spaces. Specifically, we look at the space of functions
from X to Y continuous with respect to the weak topology on X and the strong topol-
ogy on Y, as identified with their (weakly closed) graphs in X x Y. How is Mosco
convergence of graphs related to classical convergence notions in the theory of func-
tion spaces? The main result of this paper shows that TM coincides with the usually
stronger compact-open topology provided X is reflexive and Y is finite dimensional.

2. NOTATION AND TERMINOLOGY

If X is a Banach space, we denote its origin by 6, and its closed unit ball by B,
subscripting these by X when necessary. The continuous dual of X will be denoted
by X*. The sphere {x 6 X : \\x — p\\ — e} of radius e around a point p G X will
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8 G. Beer and R. Tamaki [2]

be denoted by S(p,e). The symbol CO(J4) represents the convex hull of a subset A of
X. To avoid trivial counterexamples, we will always assume Banach spaces have more
than one point. When necessary we will write (X,w) for X equipped with the weak
topology. Repeatedly, we will make use of the fact that for Banach spaces X and Y,
(X,w) x (Y,w) is (X x Yyw). The box norm on X x Y will be understood.

The Mosco topology TM, denned on the nonempty weakly closed subsets WCL(X)
of a Banach space X, has as a base all sets of the form

[UuU2,...,Un;K] = {Ae WCL(X): An Ut £ 0 for all i and A n K = 0}

where {U\, Ui, ..., Un} is a finite set of norm open subsets of X and K is a weakly
compact subset of X (this notation follows Klein and Thompson [16]). Observe that a
subbase for the Mosco topology consists of all hit sets of the form [17; 0] with U norm
open, and all miss sets of the form [X;Jf] with K weakly compact. This topology
was anticipated by the Fell topology [13, 14, 19], also called the topology of closed
convergence [16]. In fact, the Mosco topology is simply the supremum of the Fell
topologies determined by the strong and weak topologies on X. The rationale for its
name is as follows: convergence of a sequence (An) in WCL(X) to A in WCL(X) with
respect to TM agrees with Mosco convergence of sequences, as defined by Mosco in [17]:
(i) for each a € A, there exists (an) strongly convergent to a such that for n 6 Z+,
we have an £ An, and (ii) whenever n(l) < n(2) < n(3) < • • • , and ak G ^n(fc) > then
the weak convergence of (a*) to x E. X forces x to be in A (the reader is invited to
modify the proof in the convex case supplied in Theorem 3.1 of [3]). Of course, the
great interest in Mosco convergence stems from (but is not limited to) its stability with
respect to duality in reflexive spaces as proved sequentially in [18] and topologically in

[4]-
As mentioned in the introduction, we will be interested in the space of functions

from a Banach space X to a Banach space Y continuous with respect to the weak
topology on X and the strong topology on Y. We pause to recall some basic notions
from function spaces. An excellent reference for this subject is the recent monograph
of McCoy and Ntantu [20].

For any topological spaces X and Y, we denote the continuous functions from
X to Y by C(X, Y) (the topologies on X and Y will either be explicitly stated or
implied). As mentioned in the introduction, when X, Y are Banach spaces, the weak
topology on X and the strong topology on Y will be understood. The compact-open
topology on C(X, Y) for any topological spaces X and Y, having as a subbasis the
sets (A, V) = {/ e C(X, Y) : f(A) C V}, where A C X is compact a n d F c V is
open, will be denoted by TC . When the target space Y is uniformisable, it is often
advantageous to consider the compact-open topology TC from the point of view of
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[3] Function spaces and the Mosco topology 9

uniformities. Specifically, if U is a compatible uniformity for Y, the induced compatible
uniformity for the compact open topology has as a base all entourages of the form

{(/ ,*) € C{X, Y) x C{X, Y): ( / (*) , </(*)) G U for each x € K}

where K runs over the compact subsets of X and U runs over the entourages in li [26,
Theorem 43.7], or more generally, [20, Theorem 1.2.3]). When A" is a reflexive Banach
space with the weak topology, by the Banach-Alaoglu theorem, the sets {nB: n G Z+}
are cofinal in the (weakly) compact subsets of X. Thus, for any Banach space Y, all
sets of the form

D[n] = {( / , g) G C(X, Y) x C(X, Y): for all x G nB, | | / (x) - <,(x)|| < 1/n},

where n G Z+ give a countable base of entourages for uniformity compatible with TQ

on C(X, Y), when X is equipped with the weak topology and Y is equipped with the
norm topology. In particular, TC is metrisable in this case [26], p.257.

The well-known concept of continuous convergence for sequences of functions ([11],
p.268) can be equally well formulated for nets of functions (for a different but equivalent
formulation, see ([20], p.40).

DEFINITION: The net of functions (f\) from a topological space X to a topological
space Y is said to converge continuoxuly to / if for all x G X and for each neighbour-
hood V of f(x), there is a neighbourhood U of x such that for all sufficiently large A,
h{U) C V.

It is standard to call a topology T on C(X, Y) splitting (respectively conjoin-
ing) provided continuous convergence => r convergence (respectively r convergence =S>
continuous convergence). Other characterisations of splitting/conjoining topologies are
presented in [20]. That the compact-open topology is always splitting is an elementary
fact ([20], Theorem 2.5.2), whose proof we include for completeness.

LEMMA 2 . 1 . If (f\) converges to f continuously, then it converges to f in the
compact-open topology.

PROOF: Let / G (A, V), a subbasic open set in the compact-open topology. For
all a £ A, since V is a neighbourhood of / (a) , there is a neighbourhood Ua such
that f\(Ua) C V for sufficiently large A. Extract a finite subcover Uai, ..., Uan of A.
Choose Ao large enough so that A > Ao =» fx(Uai) C V for i = 1, 2, 3, .. . ,n . Thus
for A ^ Ao, fx{A) C fx(uUai) C V as required. D

We mention in passing that the compact-open topology on C(X, Y) is conjoining
provided X is locally compact ([11], p.275, [20], p.32), and that C(X, Y) can admit
at most one topology that is both splitting and conjoining.
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10 G. Beer and R. Tamaki [4]

Consistent with our initial discussion of the Mosco topology, the Mosco topology
on C(X, Y) for the Banach spaces X and Y, denoted by TM > is that having as a base
all sets of the form

[Vi, U2, ..., Un; K] = {f: / n Vti* 0 for all i, f n K = 0}

for strongly open Ui C X x Y and weakly compact K C X xY. Notice that we identify
functions with their graphs, which we will do freely in the sequel. This identification is
in the spirit of [21, 2, 22, 23, 15].

3 . MOSCO CONVERGENCE AND THE COMPACT-OPEN TOPOLOGY

We first wish to show that the Mosco topology on C(X, Y) is HausdorfF precisely
when we work in reflexive spaces. This is accomplished through a sequence of lemmas.

LEMMA 3 . 1 . Let X be a completely regular Hausdorff space. Let K be a
nonempty compact subset, x\, . . . , xn distinct points in Kc. Let /j,, Ai, . . . , Xn be
real scalars. Then there exists f £ C(X, R) with f(K) = fi, and /(z<) = A< for each
index i.

PROOF: Let QX be the Stone-Cech compactification of X ([11], p.243). K U
{xi,..., xn} is a compact (a fortiori closed) subset of (3X; so, if /o: K\j{x\, ..., xn} —»
R, where fo{K) = fi and fo(xi) = Ai, we can extend /o by Tietze ([11], p.149) to a
continuous / : (3X —> R. Now restrict / to X to obtain the desired function. U

LEMMA 3 . 2 . Let X be a nonreflexive Banach space and Y any Banach space.

Then (C(X, Y), TM) is not Hausdorff.

PROOF: We begin by proving the theorem for the special case Y = R. Suppose X

is not reflexive. It suffices to show that TM-open sets are dense. To this end, consider
nonempty TM-open basic sets [t/i, . . . , J7n;i^i] and [Un+i, •••, Um;K2J (where the
Ui's are norm open and K\ and K2 are weakly compact). Since X is not reflexive,
the projection of the weakly compact K{ 's onto X cannot contain any norm open
subset [12], p.425. Therefore, the projection of the open J7j's, being norm open, must
contain points outside of the projection iix{K 1 U Ki). Therefore, we can choose distinct
u,- G irx(Ui) — irx(Ki U K2) and scalars a;, so that (ui, a,-) 6 Ui. Now, the complete
regularity of the weak topology on X and Lemma 3.1 allow us to obtain a function /
passing through all the (uj, on) 's and, since K\ UK% is norm bounded, above Ki UK2 •

This / is clearly seen to be in [Uu..., Un; K^ D {Un+1, . . . , Um; K2].

Now for the general case, let y £ Y — {0} and let L be the linear span of y.

Since L is isometrically isomorphic to R, by what we just proved {C(X, L), TM) is
not Hausdorff. Therefore, since the Hausdorff property is hereditary, if we can embed
{C{X, L), TM) in (C{X, Y), TM) we will be done. Since C{X, L) C C(X, Y), we need
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[5] Function spaces and the Mosco topology 11

only show that TM ° n C(X, L) is precisely the Mosco topology on C(X, Y) restricted
to the subspace C(X, L) (we'll temporarily call this restricted topology T P ) .

First, let U\, ..., Un C X x Y be norm open in X x Y, and let K C X x Y be
weakly compact. Since convex closed sets are weakly closed, X x L is weakly closed, so
that K D (X x L) is weakly compact in X x L (here, we are implicitly using the fact
that the weak topology on a subspace is the inherited weak topology from the parent
space by the Hahn-Banach Theorem). Observe that

C{X, L) n [Uu ..., Un; K] = [Ux n (X x L), . . . , Un n {X x L); K n {X x L)\

where [Uu..., Un; K] is (C(X, Y), rM)-open and [Ux D(X x L), ..., Unn{X x L)\
KH(X x L)] is (C{X, L), TM)-open. Thus, TT C TM .

To see TM C TT, suppose U[, ..., U'n are norm open in X X L, and suppose K'
is weakly compact in X x L. Evidently, K' is weakly compact in X x Y and since
there must be Ui,..., Un norm open in X x Y with U[ = Ui PI (A" x L), we have
[U[,..., U'n\ K'} = C{X, L)n[Uu..., Un; K'} as required. D

We remark that the proof above shows that for any closed subspace L of Y, the
Mosco topology on the subspace C(X, L) of C(X, Y) is precisely the restricted Mosco
topology of the larger space. We will also need the following result, that appears as
Lemma 4.1 of [6].

LEMMA 3 . 3 . Let Y be a nonreflexive Ba.na.ch space. Let K be a weakly
compact subset of Y and let Vi,V2,...,Vn be nonempty norm open subsets of
Y (not necessarily distinct). Then there exist distinct points yi G Vi such that
co({yuy2,...,yn})nK = H).

In addition, we'll need this purely topological technical lemma:
LEMMA 3 . 4 . Let X be a completely regular Hausdorff space, and let Y be a

path-connected space, and let {xo, *i, X2> •••) *n} be a finite subset of X. Then
any function f: {xj, Xi, Xi, ..., xn} —> Y can be extended to a continuous function
<p:X ->Y.

PROOF: First, using the complete regularity of X, extend the map

g: {x0, xi, x2) . . . , a;n} -» [0, 1] defined by

g(ii) = i/n

to ip: X -* [0,1] (see Lemma 3.1). Now for each t = 1, 2, . . . , n , since each
[(t — l)/n, i/n] is homeomorphic to [0, 1], define a path TT,- : [(i — l)/n, i/n] —> Y from
f(xi-i) to /(*«)> t^at 1S> w e require ^(( t - l)/n) = / (XJ_I ) and 7r,(t) = f{x{). Let
7r: [0, 1] —» Y be the "pasting" of these functions. Since

{ [ ( i - l ) / n , i / n ] : t = l, . . . , n}
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12 G. Beer and R. Tamaki [6]

is a closed finite (a fortiori neighbourhood-finite) family, ?r is continuous ([11], p.83).
Hence, <p = n o rj> is the required extension. D

LEMMA 3 . 5 . Let Y be a nonreffexive Banach space and X be any Banach space.
Then (C(X, Y), TM) is not Hausdorff.

PROOF: We show that nonempty r^-basic open sets [Vx, ..., Vn;Ki] and
[V^+i, • • •» VniJ-K ]̂ must intersect. Take the projections on the Y axis and observe that
TTY(KI U K2) is weakly compact, and that the 7Ty(Vi) are norm open. Applying Lemma
3.3 to Y, we find distinct y,- £ Try(Vj) such that co({j/1, y2, . . . , J/m})n7ry(A'1 U K2) =
0. Now there are distinct a;,- £ X such that (ZJ, y,-) £ Vf. Let / be a par-
tial function mapping for each t the point xi to the point y^. Now using Lemma
3.4 and the fact that convex hulls are path-connected, extend / continuously to
/ ' : X —> co({yj, y2, . . . , J/m})- This extension / ' is seen to be the required function
lying the intersection. D

THEOREM 3 . 6 . Let X, Y be Banach spaces. Then the following are equivalent:

(a) T̂ f is Hausdorff on C(X, Y);
(b) X, Y are both reflexive.

PROOF: (a) => (b): This is immediate from Lemmas 3.2 and 3.5 above.
(b) =>• (a): Let f,g£ C(X, Y) and suppose /(a) ^ g(a). Since the graph of

g is weakly closed, consider A = (a, /(a)) + eB with e > 0 small enough such that
A PI g = 0. Then since closed balls are weakly compact in X x Y, f £ [Int A;0],
g 6 [X x Y; A] yields the desired separation. U

We now shall show that when X is reflexive and Y is finite dimensional, the Mosco
topology is precisely the compact-open topology with respect to the weak topology on
X. To this end we need

LEMMA 3 . 7 . Let X be a reflexive Banach space, and let f: X —* Rn be weakly
continuous. For m £ Z+, the "tube" Tm around f \ mBx given by

Tm = U{{x} x S(f{x), 1/m): x £ mBx}

is weakly compact.

PROOF: By the Eberlein-Smulyan result ([12], p.430), it is only necessary to show
that Tm is weakly sequentially compact. Thus, let ((xn, yn)} be a sequence in Tm,
that is, ||/(s:n) — Vn\\ = 1/m for all n G Z+. By reflexivity of X, mBx is weakly
compact, so we can assume without loss of generality (by passing to a subsequence)
that (xn) —» x weakly. Since / is weakly continuous, {f(xn)} —> f(x). Now since
||yn —/(a!n)|| = l/™», and (/(xn)) is bounded, (yn) is also bounded in Rn. So by
refining again, we can assume without loss of generality that (yn) —» y for some y.
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[7] Function spaces and the Mosco topology 13

Thus, by the continuity of the distance function, ||y — / (x) | | = 1/m whence (x, y) G Tm

as required. U

THEOREM 3 . 8 . Let X be a reflexive Banach space. Then the Mosco topology

on C{X, Rn) equals the compact-open topology with respect to the weak topology on

X.

PROOF: TC C TM- We work with the countable base for the usual uniformity for
Tc on C(X, R") whose typical entourage is of the form:

D[n] = {( / , 9) G C{X, Rn) x C{X, Rn): for all x G nBx, | | / (x) - 5 (x) | | < 1/n}.

Fix / G C{X, Rn) and fix n and let T = U{{x} x S( / (x) , 1/n): x G nBx} be the
weakly compact tube as defined in Lemma 3.7. Choose a strong neighbourhood V of
the origin 0 contained in nBx such that

Let W = V x (f(0) + (l/2n))(Int BRn). We claim that / G [W;T] C D[n](f); to wit,
let g G [W;T). To prove that g G D[n](f), we need to show that ||/(x) - g(x)\\ < 1/n
on nBx- Since g hits W, there is some XQ £ V such that g(xo) G f(0) +
(l/2n)(Int BRn). Now ||/(a;o) - /(^)| | < l/2n since x0 G V. Combining this with
||ff(xo) — /(^)| | < l/2n and the triangle inequality, we obtain ||/(a:o) — sK^o)!! < 1/w.
To finally see that ||/(s) - g(x)\\ < 1/n on nBx observe that ||/(-) - g(-)\\ is a weakly
continuous function on nBx (using that the difference of continuous functions is contin-
uous and that the norm function is continuous). Since g does not meet T, ||/(x) — g(x)\\
cannot equal 1/n. By the connectedness of nBx, that ||/(z) — </(a;)|[ < 1/n at one
point (namely x<>) must guarantee \\f(x) — g(x)\\ < 1/n throughout nBx- This is
precisely what we need to show for g to be in D[n](f).

TM C TC: Fix the TM-basic open set [Ui, ..., Um; K] and / G \U\, ..., Um; K).
We seek a r^-open neighbourhood of / contained in [Ui, ..., Um; K\. Now since / is
a weakly continuous map, the graph of / is weakly closed in X x Rn. Since / does not
intersect the weakly compact set K, there exists e > 0 such that (K + eB) D / = 0.
Now for every i — 1, 2, . . . , m, choose a point (x,-, y.) G / D Ui and 6 > 0 such that
(XJ, yi) + SB C Ui. Choosing an n large enough so that irx{K) U {z,},- C nBx and
1/n < min{5, e}, we have

feD[n](f)c[U1,...,Um;K)

as required. U

Notice that the inclusion TM C TC does not require reflexivity. Also notice that
when X is reflexive, the Mosco topology TM on C(X, Rn) is metrisable because there
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14 G. Beer and R. Tamaki [8]

is a countable basis for the uniformity of (C(X, Rn), TC) . The same statement for the

closed convex subsets of X requires that X be reflexive and separable [6, 3].

That re = TM may fail on C(X, Y) with X reflexive and Y infinite dimensional

is confirmed by the following example:

EXAMPLE. There is a sequence of functions (/„) in C(R, l2) Tjif-convergent to the

identically zero function / that is not strongly pointwise convergent (hence not Tc-

convergent). Let (en) be the usual orthonormal base for the sequence space, and define

fn:R-+h by

{ = 0 if x > 1/n or x < -1 /n ,

= (l-nx)en i f O < * < l / n ,

= (1 + nx)en if - 1/n < x < 0.
Let / £ C(R, I2) be the identically zero function f{x) = 0. We claim (/„) —» / in
TM but (/„) does not converge to the zero function pointwise. This last claim is clear
since /n(0) = en for all n . To see that (/„) —» / in TM, let \U\, ..., Un;K] be a TM-
basic open neighbourhood of / . Since each strongly open U, hits / (the "i?-axis"), let
(a;, 0) € Ui where a,- ^ 0 and choose N such that for all 2, 1/JV < |a;|. Then for all
n > N, /„ D Ui 7̂  0. Now consider the weakly compact K which misses / . We claim
that eventually (/„) misses K; otherwise, (by passing to a subsequence) we can find an
n0 such that if n > n0 , fnnK ^Q. For each n > n0 select a point (An, /xnen) £ fnf\K.
Since each An £ ]—1/n, l /n[, we have (Xn) —> 0. Since {fin'-

 n G Z+} is a bounded set
of scalars (in particular, never exceeding unity) and (en) —> 0 weakly, (finen) converges
weakly to 8 E h • The weak compactness of K would force (0, 0) £ K, & contradiction.

Let X be a normed linear space. We may of course view elements of X* as sitting
in C(X, R). Norm convergence of linear functionais means nothing more than uniform
convergence on bounded sets, and thus is stronger than TC -convergence. But with
reflexivity, we have as a corollary to Theorem 3.8 the following informal observation
made in sequential form in [5].

COROLLARY 3 . 9 . Suppose (ya) is a net in X* with X reflexive. The following
are equivalent:

(1) I ima | | y a -y | |=0 ;
(2) (y a ) -+y inT C ;
(3) (ya) -+y in TM .

PROOF: This corollary is immediate from what we know so far. Condition (1)
is equivalent to uniform convergence on bounded subsets, while (2) is equivalent to
uniform convergence on weakly compact subsets. Thus (1) and (2) are equivalent by
reflexivity. That (2) holds if and only if (3) holds is the content of Theorem 3.8. D
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[9] Function spaces and the Mosco topology - 15

As noted in Section 2, by local compactness, TC is conjoining on C(X, Y) for finite
dimensional X and any Banach space Y. The next example shows that TC (and hence
the weaker TM ) on C(X, R) for infinite dimensional X is never conjoining.

EXAMPLE. Let X be an infinite dimensional Banach space. There exists a net {yx) in

X* that converges to the origin 6* 6 X* in norm (thus in TC and in TM), yet (y\)

does not converge weakly continuously to 6*. We first construct a net (xx) such that

(llx*||) ~* °°> v e* (x*) ~~* & weakly. Consider the directed set

where ({ / i , . . . , / „ } , k) ^ ( { 5 l , . . . , gm}, I) = {/,} C {gi} and k < I. Map each
({/i> • • • > /n}> k) to any vector in Piker/< having norm k. This is possible since each
kernel has codimension 1, so nker / j cannot be trivial. Thus, while this net clearly
goes to oo in norm, it nevertheless converges weakly to 8, to wit: for any basic open
neighbourhood of 6 determined by functionals / i , . . . , fn, then xXo

 ls m the neigh-
bourhood where Ao = ({/ i , . - - , /n}> 1)- Furthermore, if A ^ Ao, then x\ is also in
that same neighbourhood.

Now, for each A, using the Hahn-Banach theorem, we can find a y\ 6 X* such that
yx(xx) = 1 and ||yA|| = l / | |x A | | . Since ||yA - 0*\\ = \\yx\\ = l/\\xx\\, {yx) converges to
6* in norm, yet we claim (yx) does not converge weakly continuously to 8". If it did,
for the point 0 and the neighbourhood (—1/2, 1/2) of 0, there would be a weakly open
neighbourhood V = V(0) and a Ao € D such that A $s Ao => yX{V) C ( -1 /2 , 1/2).
Since (xx) —* 8 weakly, (xx) is eventually in V. Therefore, there is some large Ai such
that yXl{V) C (—1/2, 1/2) and xXl G V, a contradiction, since yXl(xXl) — 1.

The last example shows more, namely that Tc is not conjoining for C(X, Y) when-
ever X is infinite dimensional and Y is any nontrivial Banach space, for Y contains
a one dimensional subspace. But there are attractive weaker versions of continuous
convergence which are equivalent to TC-convergence in C(X, Y) with X reflexive:

THEOREM 3 . 1 0 . Let X be & reflexive Banach space and let Y be a Banach

space, with f, (fx)X^L in C{X, Y). Then the following are equivalent:

(1) (/A)A£L converges to f in the compact-open topology;
(2) for all x £ X, e > 0, p > 0, tiiere exists a weak neighbourhood

W = W{x, e, p) of x and there exists Ao G L such that A ^ Ao =•

(3) for each cofinal function tp: M —» L, where M is a directed set, i

is eventually bounded and {x^)) -» x weakly, then

f(x) strongly.
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16 G. Beer and R. Tamaki [10]

PROOF: (1) =>• (2). Suppose f = re — lim/* and suppose that x £ X, e > 0,
p > 0 are given. We find a weakly open neighbourhood of x, say W = W(x), such
that f(W) C f{x) + (e/2)BY • Consider W n pBx • Since the weak closure of a
bounded set is bounded, the weak closure of W fl pBx is weakly compact. Then,
using the notation for subbasic open sets of the compact-open topology, / € (A, V) =
(w - cl W n pBx, f{x) + e(Int By)) and (fx) is eventually in (A, V). Therefore there
exists a Ao such that A > Ao implies fx 6 (A, V) so that fx{W n pBx) C f(x) +eBY •

(2) =>• (3). Let <p: M —* L be cofinal, ( I ^ J , ) ) be eventually bounded, and let
x = w — lima;^^). We need to show that (/^(/ofcvC/o)) ~* f(x) strongly. To this end
let e > 0 and let p be large enough so that z ^ ) 6 pBx eventually. By (2) there is a
weak neighbourhood W of x and fi0 £ M such that when fi > fi0 we have

UM(WnPBx)cf(x)+eBY.

Since (x^^)) —> x weakly, choose fii large enough so that fj, ^ /ij implies z ^ ) 6 Ŵ
and let /x2 be large enough so fi ^ /x2 implies xv,(M) G pB;t . Let p* e M majorise
each of no , /xi and /i2 • Then for p, ̂  /x*:

2-
3.

We conclude /v>(/i) (*¥>(/!)) G /(*) + eSy for p. ^ /x* , as required.
(3) =>• (1). Suppose (1) fails; then for some weakly compact subset A of X and a

norm open subset V of Y, we have / 6 (A, V) but /* ^ (A, V) frequently. Thus, there
is a cofinal subset V of L and for each I £ V a point x\ £ A such that /(zj) £ Vc. By
weak compactness, (a;j) has a subnet convergent weakly to some x £ A. This means
precisely that there is a directed set M, and a cofinal map a: M —> V so that the
aforementioned subnet converging weakly to x is (a;a(^)). Now write <p = i o a where
i : V —» X is the inclusion map. Evidently, (i,,^)) is bounded because A is. The
strong convergence of (/^(^{x^ti))} to /(z) is impossible, because this net lies in the
norm closed set Vc and f{x) 6 V. Thus, condition (3) must fail. D

4. EPIGRAPHICAL AND HYPOGRAPHICAL CONVERGENCE

Our next theorem relates the Mosco epi- and hypo- topologies for real valued
continuous functions to the Mosco topology for graphs. The idea is to identify / : X —>
R with its epigraph epi / (respectively its hypograph hypo/), that is, the points lying
on or above [respectively below] the graph of / , rather than with the graph of / itself.
This point of view is standard in one-sided (for example, convex) analysis [1, 10, 24,
4]-
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DEFINITION: Let A" be a Banach space. The epi-Moaco topology Tep; on C(X, R)
is generated by the miss sets {/: epi f C\K = 0} for weakly compact K C X x R, and
the hit sets {/: ep i /D V £ 0} for strongly open V C X xR. The hypo-Mosco topology
ThypO is defined similarly, replacing epi / by hypo / .

We will use the notation \U\, ..., Un;K]e for our basic open sets in the epi-Mosco
topology (for Ui strongly open and K weakly compact) and [U\, . . . , Un;K}^ for our
basic open sets in the hypo-Mosco topology.

THEOREM 4 . 1 . Let X be & reflexive Banach space. Then

TM = Tepi

on the function space C(X, R).

PROOF: Observe that Tepj V Thypo is generated by all sets of the form
[Uli...,U.iKl]en[Vu...,VtiK2]k.
TM C Tepj V Thypo: Sets of the form [V; K] where V = U x (a, j3) with U norm open
and convex in X and K weakly compact in X x R determine a subbase for the Mosco
topology T M on C(X, R). Let / 6 [V; K]. Then we claim

/ 6 [V; K D hypo/J. n [V; K n epi f]h C [V; K]

as required. If g G [V;K n hypo/] e n [V; K l~l epi / ] / , , there exists an xx e U with
g{xi) < /3 and Xj G U with g[x2) > a. By the intermediate value property for
continuous functions, there is a A £ [0, 1] such that </(Axi + [1 — A]x2) G (a> P)- This
guarantees g G [V; K].

Tepi V Thypo C TM : Suppose / € [Ui, . . . , U,\ Ki]e D [Vi, . . . , Vt; K2]h • We may assume
without loss of generality that the Ui are of the form Wi x (—oo, a) where Wi is open
in X and the Vj are of the form Gj x (/?, oo) for Gj open in X (see [4, Lemma 2.1]).
We seek a r^f-neighbourhood W of f contained in the set above. To this end, choose

(xi, ai) e f n Ui and (z,-, ft) G / D Vj.

for each i = 1, 2, . . . , « ; i = 1, 2, . . . , < . Choose e > 0 small enough so (x;, cti) + eB C

t̂ < and (z^, fij) + eB C V,- for all i and j .

Consider the weakly compact set K = nx(Ki U K2) U {x<} U {«,}. By Theorem

3.8, C(X, R) with the Mosco topology TM is homeomorphic to C(X, R) with the

compact-open topology TQ • The required neighbourhood of / is

W = {g: \f(x)-g{x)\ < 6 for all x € K}

where S = min{e, 6i, 62} and 5,- is the distance from the weakly closed set / to K{.

These Si are positive because disjoint weakly closed and weakly compact sets are a
positive distance apart. D
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THEOREM 4 . 2 . (Converse) Let X be a Banach space. If TM = fepi V Ti,ypO on

the function space C(X, R), then X is reflexive.

PROOF: Suppose on the contrary that X is not reflexive. We will show that TM
does not contain r e p j .

We again use the fact that in nonreflexive spaces, every weakly compact set has
empty norm interior. We will show that the Tepj-open set

where K C X x R is weakly compact is not TM-open. To this end, we show
that [Vi, V2, . . . , Fn ; l f i ] — ft is nonempty for every nonempty r^f-basic open set
[V1,V2,...,Vn;K1].

Since Ki U K is weakly compact and irx is weakly continuous, irx{K\ U K) is
also weakly compact and hence has empty norm interior. In particular, none of the sets
•KxiVi) are contained in nx{Ki U-K"); so, select Vi G Kx{Vi) — Tx{Ki UK) and an
a i G R such that (v{, a{) e V{. Let /?„ = inf{^: (x, fi) € K U K-i} = inf TTR{K UKX).

Using the complete regularity of X with the weak topology and Lemma 3.1, de-
fine g e C(X,R) so that g(vi) = a{, and g{nx(K U K^) = 0O - 1. Thus
g € [Vi, V2, ..., Vn;Kx} - ft, as required. D
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