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Cut finite element methods (CutFEM) extend the standard finite element method to
unfitted meshes, enabling the accurate resolution of domain boundaries and interfaces
without requiring the mesh to conform to them. This approach preserves the key
properties and accuracy of the standard method while addressing challenges posed
by complex geometries and moving interfaces.

In recent years, CutFEM has gained significant attention for its ability to dis-
cretize partial differential equations in domains with intricate geometries. This
paper provides a comprehensive review of the core concepts and key developments
in CutFEM, beginning with its formulation for common model problems and the
presentation of fundamental analytical results, including error estimates and condi-
tion number estimates for the resulting algebraic systems. Stabilization techniques for
cut elements, which ensure numerical robustness, are also explored. Finally, exten-
sions to methods involving Lagrange multipliers and applications to time-dependent
problems are discussed.
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1. Introduction
Accurate discretization of partial differential equations (PDEs) in complex geo-
metries or domains with interfaces is crucial for many applications. For interface
problems, the governing PDEs often involve material properties and solutions that
vary across the interface. Interface conditions couple the solution on both sides,
and in some cases an additional physical process at the interface is described by
a surface PDE. In certain applications these interfaces may deform, requiring the
PDE to be discretized on evolving domains. Examples of such interfaces or bound-
aries include cell membranes, interfaces between immiscible fluids, or fluid–solid
interfaces, such as heart valves controlling blood flow, glaciers, or an aeroplane
wing undergoing shape optimization.

The standard finite element method requires boundary-conforming meshes to
perform optimally when essential boundary conditions are present. However,
for complex or deforming geometries, the mesh generation can be cumbersome.
Therefore, discretizations that perform optimally, regardless of the position of the
boundary relative to the computational mesh, are highly desirable. In such dis-
cretizations, the physical domain defined by complex geometries or interfaces is
embedded within a computational domain that is easy to mesh, with the repres-
entation of the boundary or the interface independent of the computational mesh
on which the PDE is discretized. Hence, regular meshes such as Cartesian grids,
which are simple to generate, can be used for the discretization of the PDEs. While
this simplifies mesh generation, it is not straightforward to accurately impose es-
sential boundary and interface conditions on unfitted meshes, integrate on elements
cut by the boundary, and ensure the stability and well-conditioning of the resulting
linear systems. The standard finite element method requires boundary-conforming
meshes to perform optimally when essential boundary conditions are present. Early
examples of unfitted discretizations include the following: the immersed boundary
method (McCracken and Peskin 1980, Peskin 2002), where interface conditions are
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Cut finite element methods 3

incorporated as a source term in the PDE and discontinuities are regularized; the
fictitious domain method (Glowinski, Pan and Périaux 1994, Girault and Glowinski
1995), which uses Lagrange multipliers to impose essential boundary conditions;
the boundary penalty method (Barrett and Elliott 1986) and the volume penalty
method (Maury 2009), where Dirichlet boundary conditions are imposed weakly,
either by penalty terms directly on the boundary or within the volume.

Compared to the original immersed boundary method, which regularizes dis-
continuities in the solution and material parameters, the penalty method in Barrett
and Elliott (1986) handles discontinuities by solving separate problems in each sub-
domain and enforcing the interface conditions via a penalty approach. In Barrett
and Elliott (1986), optimal 𝐻1-estimates are derived for linear elements. However,
the 𝐿2-estimates are suboptimal, and the condition number of the resulting linear
system scales worse than that of standard FEM due to the choice of the penalty
parameter.

A different viewpoint for improving accuracy in the presence of strong or weak
discontinuities is to enrich the approximation space. Examples of such methods
include the extended finite element method (XFEM, Moës, Dolbow and Belytschko
1999, Fries and Belytschko 2010), the immersed finite element method (IFEM,
Zhang, Gerstenberger, Wang and Liu 2004) and the cut finite element method
(CutFEM, Burman et al. 2015b). In XFEM, the approximation space is locally
enriched to capture the discontinuity, with different enrichments for weak and strong
discontinuities. In the immersed finite element method, special basis functions that
satisfy the interface conditions are constructed on elements intersected by the
interface.

In CutFEM, the requirement for conforming approximation spaces is released.
Inspired by discontinuous Galerkin methods, the approximation space is enriched
(independent of the type of discontinuity) on elements cut by the unfitted interface.
This is achieved by defining active meshes that cover each subdomain separated by
the interface, with finite element spaces defined on these active meshes. Interface
conditions are imposed weakly, either using a consistent penalty method such
as Nitsche’s method (Nitsche 1971, Becker, Hansbo and Stenberg 2003, Hansbo
and Hansbo 2002, Hansbo, Hansbo and Larson 2003, Hansbo and Hansbo 2004,
Hansbo 2005) or through a Lagrange multiplier method (Burman and Hansbo
2010a). These methods are related, as shown by Stenberg (1995), where Nitsche’s
method is derived from a stabilized multiplier method.

Since the PDE is defined in the physical domain but the approximation space
in CutFEM is defined on the active mesh (which may not conform to the physical
domain), some control over the solution on the entire active mesh is desirable
and often necessary. To prove stability, independent of the boundary’s position
relative to the computational mesh, stabilization terms are often added to the weak
form. These stabilization terms also guarantee that the condition number of the
linear system resulting from the cut finite element discretization scales similarly to
that of the body-fitted discretization. For early contributions in this direction, see
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e.g. Burman (2010), Burman and Hansbo (2012), Burman and Zunino (2012) and
Wadbro, Zahedi, Kreiss and Berggren (2013).

Unfitted discretizations, depending on the relative position of the unfitted bound-
ary to the computational mesh, can lead to severely ill-conditioned linear systems.
In XFEM, strategies to address this include removing basis functions with very
small support (Reusken 2008) and preconditioning (Lehrenfeld and Reusken 2017,
Gross and Reusken 2023). In CutFEM, in addition to adding stabilization terms,
other techniques have been employed, such as using agglomeration of elements
or extension operators (Huang, Wu and Xiao 2017, Badia, Verdugo and Martı́n
2018, Burman, Hansbo and Larson 2022c), both aiming at extending the approx-
imate solution from the interior of the domain to the cut elements. The idea of
agglomerating elements for stability was first introduced in the context of unfitted
discontinuous Galerkin methods by Johansson and Larson (2013).

Cut finite element discretizations require accurate integration on cut elements,
and standard quadrature rules cannot be directly applied to such elements. When
the unfitted boundary is represented piecewise linearly, integration on a cut ele-
ment is straightforward. However, for high-order approximations of the geometry,
several strategies exist. For example, when the boundary is implicitly defined by
a level set function (Osher and Fedkiw 2001, Sethian 2001), high-order quadrat-
ure schemes on hyperrectangles, based on one-dimensional Gaussian quadrature
rules, have been proposed by Saye (2015, 2022). Lehrenfeld (2016) introduced an
algorithm based on an isoparametric mapping to perform integration on a piece-
wise linear approximation of the boundary. Another strategy, proposed in Burman,
Hansbo and Larson (2018b) within the CutFEM framework, drawing on ideas from
Bramble, Dupont and Thomée (1972), involves transforming the boundary condi-
tion at curved boundaries to conditions on a piecewise linear approximation of the
boundary. Unfitted methods that avoid explicit integration on cut elements also
exist. Examples include the transfer path method (Cockburn and Solano 2012), the
shifted boundary method (Main and Scovazzi 2018) and 𝜙-FEM (Duprez, Lleras
and Lozinski 2023). In these methods, integration is not carried out on cut ele-
ments; instead, integration is performed on elements that are entirely inside the
physical domain or on full elements that cover the physical domain. When bound-
ary conditions are transferred from the physical boundary to the boundary of the
computational mesh, there is often an underlying assumption regarding the rate at
which the distance between the mesh boundary and the exact physical boundary
should decrease.

Another unfitted discretization is the finite cell method (Parvizian, Düster and
Rank 2007), where the equations are extended outside the physical domain using
a scalar parameter that rapidly switches from being one in the physical domain to
a small positive number in the fictitious domain. The choice of this parameter is
a trade-off between accuracy and the condition number that can be tolerated. This
extension, with the discontinuous parameter, introduces other challenges, such as
accurate integration on cut elements. To reduce integration errors, all cells cut by
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the unfitted boundary are adaptively refined, and integration is performed on the
finer mesh. Dirichlet boundary conditions are enforced weakly, for example using
Nitsche’s method (Ruess et al. 2013).

The basic ideas of CutFEM. The basic ideas behind CutFEM can be summarized
as follows.

• Mesh. The domain of interest is covered by an ‘active mesh’. This active mesh
is typically created by embedding the physical domain into a computational
domain, which is equipped with a quasi-uniform mesh, referred to as the
background mesh. The elements in the background mesh that intersect the
domain of interest define the active mesh. For interface problems, a separate
active mesh is associated with each subdomain.

• Spaces. Finite element spaces are defined on the active mesh.

• Weak form. Essential interface and boundary conditions are imposed weakly
in the variational formulation, typically using either a consistent penalty
method, such as Nitsche’s method, or a Lagrange multiplier method.

• Robustness with respect to the geometry’s position relative to the mesh. A
common strategy for extending the control of the approximate solution from
the physical domain (where the PDE is defined) to the active mesh is to add
stabilization terms in the weak form. An alternative approach is to use ex-
tension operators. Agglomeration of elements can be used in combination
with both stabilization and extension, or as an independent strategy. Pre-
conditioning can be used to improve on the condition number of the linear
systems.

• Integration on cut elements. When the unfitted boundary is represented by a
piecewise linear approximation, integration is typically carried out on the cut
elements. For higher-order approximations of the boundary, various strategies
for handling the integration are available.

The same principles used for bulk domains can also be applied to approximating
PDEs on interfaces or manifolds. This was first proposed by Olshanskii, Reusken
and Grande (2009), and the method is referred to as the trace finite element method
(TraceFEM), as detailed in Reusken (2015). The original contribution proposed
an unstabilized unfitted discretization on the surface, but later work extended the
method to elements cut by the surface by incorporating stabilization terms into the
weak form. For stabilization terms specific to linear finite elements, see Burman,
Hansbo and Larson (2015c) and Burman et al. (2016b). For stabilization terms
that provide a uniform bound on the condition number even when higher-order
elements are used, refer to Olshanskii and Reusken (2017), Zahedi (2017), Grande,
Lehrenfeld and Reusken (2018), Burman, Hansbo, Larson and Massing (2018c)
and Larson and Zahedi (2019).
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The presented strategy applies to both stationary domains and evolving interfaces
and boundaries; see e.g. Hansbo, Larson and Zahedi (2015a, 2016) and Lehrenfeld
and Olshanskii (2019). In this paper we focus on model problems based on second-
order elliptic PDEs. To keep the exposition concise, we discretize the equations
using standard continuous finite elements away from the interface. However, the
methods are largely agnostic to the choice of discretization in the bulk, and there
is a large body of literature on unfitted methods based on the discontinuous Galer-
kin method; see e.g. Johansson and Larson (2013), Massjung (2012), Bastian and
Engwer (2009), Burman and Ern (2018), Cangiani, Dong and Georgoulis (2021),
Gürkan and Massing (2019), Burman, Hansbo, Larson and Massing (2017b) and
Cangiani et al. (2021). There is also a host of work dedicated to first-order hyper-
bolic problems utilizing cut cells, usually employing finite volume or discontinuous
Galerkin approaches.

Additional references and topics not covered in this review. There is a growing
body of literature addressing both theoretical and applied aspects of cut finite ele-
ment methods. A collection of articles on both theoretical and applied aspects was
presented in Bordas, Burman, Larson and Olshanskii (2017). While a comprehens-
ive discussion of all these developments is beyond the scope of the present review,
we provide some pointers to works on various topics below.

• Elliptic interface problems with high-order methods and geometry approxim-
ation. See Huang et al. (2017), Ji, Wang and Chen (2017), Lehrenfeld and
Reusken (2018), de Prenter, Lehrenfeld and Massing (2018), Wu and Xiao
(2019) and Burman, Cicuttin, Delay and Ern (2021a).

• A posteriori error estimation and adaptivity. Discussed in Chen, Li and Xiang
(2021), Burman, He and Larson (2022f), Chen and Liu (2023) and Chen and
Liu (2024). Associated flux recovery techniques are covered in Capatina and
He (2021) and Tchinda Ngueyong and Urquiza (2024).

• Numerical integration on cut cells. See Olshanskii and Safin (2016), Garhuom
and Düster (2022) and Aulisa and Loftin (2023).

• Efficient linear solvers. Covered in Ludescher, Gross and Reusken (2020),
Kothari and Krause (2022) and Gross and Reusken (2023).

• Recent work on moving domains. See Burman, Frei and Massing (2022b), Lou
and Lehrenfeld (2022), von Wahl, Richter and Lehrenfeld (2022), Heimann,
Lehrenfeld and Preuß (2023) and Badia, Martorell and Verdugo (2024).

• Linear elasticity. See Hansbo, Larson and Larsson (2017b) and Yang (2024).

• Biharmonic problems, plates and higher order elliptic problems. The bound-
ary value problem was discussed in Burman, Hansbo and Larson (2020a)
and Burman et al. (2022c) and the interface problem in Cai, Chen and Wang
(2021).

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492925000017
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 26 Jul 2025 at 10:59:45, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492925000017
https://www.cambridge.org/core


Cut finite element methods 7

• Non-linear solid mechanics. Covered in Badia, Caicedo, Martı́n and Principe
(2021) and Poluektov and Figiel (2022).

• Contact problems. Discussed in Fabre, Pousin and Renard (2016), Burman
and Hansbo (2017), Claus and Kerfriden (2018), Claus, Bigot and Kerfriden
(2018) and Claus et al. (2021).

• Incompressible flow problems with interfaces. Covered in Court (2019),
Cáceres, Guzmán and Olshanskii (2020), Burman, Delay and Ern (2021b),
Olshanskii, Quaini and Sun (2021) and Garcke, Nürnberg and Zhao (2023).
Other complex fluid models such as Oseen’s equations, three-field Stokes’
equations or non-Newtonian fluids, were considered in Burman, Claus and
Massing (2015a), Massing, Schott and Wall (2018), Winter, Schott, Massing
and Wall (2018), Ahlkrona and Elfverson (2021) and Anselmann and Bause
(2022).

• Fluid–structure interaction. See Burman and Fernández (2014), Massing,
Larson, Logg and Rognes (2015), Zonca, Vergara and Formaggia (2018),
Schott, Ager and Wall (2019), Ager, Schott, Winter and Wall (2019), Fer-
nández and Landajuela (2020), Dunn, Lui and Sarkis (2021), Fernández and
Gerosa (2021), Liu (2021) and Burman, Fernández and Gerosa (2023a).

• Shape and topology optimization. Discussed in Burman et al. (2017a), Vil-
lanueva and Maute (2017), Bernland, Wadbro and Berggren (2018), Burman
et al. (2019a), Dilgen, Jensen and Aage (2021), Dilgen et al. (2021) and
Bretin, Chapelat, Outtier and Renard (2022).

• Wave equations. The scalar wave equation is considered in Sticko and Kreiss
(2016, 2019), Burman, Hansbo and Larson (2022d) and Burman, Duran and
Ern (2022a), the elastic wave equation in Sticko, Ludvigsson and Kreiss
(2020), and Maxwell’s equations in Guo, Lin and Zou (2023), Chen, Li, Lyu
and Xiang (2024) and Yang and Xie (2024).

• Mixed-dimensional problems, flow in fractures and in fractured porous media.
See Giovanardi, Formaggia, Scotti and Zunino (2017), Burman, Hansbo,
Larson and Samvin (2019c), Odsæter, Kvamsdal and Larson (2019), Köppel,
Martin, Jaffré and Roberts (2019b), Köppel, Martin and Roberts (2019a),
Kerfriden, Claus and Mihai (2020), Burman, Hansbo and Larson (2020b)
and Chernyshenko and Olshanskii (2020).

• Solidification and phase change problems. Discussed in Olshanskii, Pal-
zhanov and Quaini (2023) and Tchinda Ngueyong, Urquiza and Martin
(2024a,b).

• Biomedical applications. See Bui, Tomar and Bordas (2019), Farina et al.
(2021) and Berre, Rognes and Massing (2024).

• Inverse problems with interfaces. Covered in Burman, He and Larson (2021c)
and Burman and Preuss (2023).
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• Reduced order models and multiscale modelling. See Karatzas, Nonino,
Ballarin and Rozza (2022), Mikaeili, Claus and Kerfriden (2022) and Zhang,
Deng and Wu (2024).

• CutFEM/TraceFEM for surface PDE. Discussed in Olshanskii and Reusken
(2014), Hansbo, Larson and Zahedi (2015b), Cenanovic, Hansbo and Larson
(2016), Olshanskii and Reusken (2017), Hansbo, Jonsson, Larson and Larsson
(2017a), Jonsson, Larson and Larsson (2017), Olshanskii, Quaini, Reusken
and Yushutin (2018), Hansbo, Larson and Larsson (2020), Olshanskii et al.
(2023) and Fries and Kaiser (2023).

• First-order hyperbolic problems. See Berger (2017), May and Berger (2017),
Engwer, May, Nüßing and Streitbürger (2020), Gürkan, Sticko and Massing
(2020), Fu and Kreiss (2021) Fu, Frachon, Kreiss and Zahedi (2022), May
and Laakmann (2024) and Fu, Kreiss and Zahedi (2024).

Outline. The paper is organized as follows. In Section 2 we introduce the ba-
sic concepts of CutFEM for several model problems of varying complexity. In
Section 3 we present the basic analysis of CutFEM in a more abstract setting,
discussing stability, convergence and conditioning of the discrete system. The
analysis is then applied to the model problems. In Section 4 we explore different
stabilization methods needed to control the conditioning of the discrete system; in
Section 5 we give further details for the case of an embedded surface. In Section 6
we analyse strong stability through an extension procedure, where unstable degrees
of freedom are eliminated, and show the connection to the weak stabilization meth-
ods introduced in Section 4. Section 7 focuses on Lagrange multiplier methods,
and we demonstrate how stable and accurate methods can be developed within the
CutFEM framework. In Section 8 we give further examples of problems addressed
using Lagrange multipliers and discuss hybridization methods, leading back to the
methods introduced in Section 2. Finally, in Section 9, we introduce CutFEM for
time-dependent problems with moving domains.

2. CutFEM for basic model problems
In this section we construct cut finite element methods for stationary model prob-
lems. We consider several types of problems: a boundary value problem, an
interface problem, an interface problem coupled with a surface PDE at the inter-
face, and the Stokes equations.

2.1. A boundary value problem

The continuous problem. Let Ω ⊂ R𝑑 be a domain with a smooth boundary 𝜕Ω,
and let 𝑢 : Ω → R be the solution to the boundary value problem

−∇ · (𝛼∇𝑢) = 𝑓 in Ω, 𝑢 = 𝑔 on 𝜕Ω, (2.1)
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Ω

∂Ω

Ω̃

(a) (b) (c)

Figure 2.1. (a) The domain Ω ⊂ R2 and the background domain Ω̃. (b) The
background mesh T̃ℎ, the active mesh Tℎ, (consisting of the grey triangles), and
the active domain Ωℎ (the grey region). (c) Edges marked in yellow illustrate the
edges in the set Fℎ, where the stabilization defined in equation (2.14) applies.

where 𝛼 ∈ R is a positive constant, and 𝑓 and 𝑔 are given functions. Typically,
𝑑 ∈ {1, 2, 3}. The corresponding weak formulation is as follows: find 𝑢 ∈ 𝑉𝑔 such
that

𝑎(𝑢, 𝑣) = 𝑙(𝑣) for all 𝑣 ∈ 𝑉0, (2.2)

where the forms are defined as

𝑎(𝑣, 𝑤) = (𝛼∇𝑣,∇𝑤)Ω, 𝑙(𝑣) = ( 𝑓 , 𝑣)Ω (2.3)

with (𝑣, 𝑤)𝜔 =
∫
𝜔
𝑣𝑤, equipped with the appropriate measure, and the spaces are

𝑉𝑔 = {𝑣 ∈ 𝐻1(Ω) | 𝑣 = 𝑔 on 𝜕Ω}, 𝑉0 = {𝑣 ∈ 𝐻1(Ω) | 𝑣 = 0 on 𝜕Ω}. (2.4)

Assume 𝑓 ∈ 𝐿2(Ω) and 𝑔 ∈ 𝐻1/2(𝜕Ω). It follows from the Lax–Milgram lemma
that there is a unique solution to the weak formulation (2.2).

The cut finite element method based on Nitsche’s method. Let Ω̃ ⊂ R𝑑 be a
polytopal domain such that Ω ⊂ Ω̃, and let T̃ℎ be a quasi-uniform partition of Ω̃
into shape-regular elements, with mesh parameter ℎ ∈ (0, ℎ0].

Let
Tℎ = {𝑇 ∈ T̃ℎ | 𝑇 ∩Ω ≠ ∅}, Ωℎ =

⋃
𝑇∈Tℎ

𝑇. (2.5)

We refer to Ω̃ as the background domain, T̃ℎ as the background mesh, Tℎ as the
active mesh, and Ωℎ as the active domain. Note that the background mesh is
not required to conform to the domain Ω, meaning the boundary 𝜕Ω typically
intersects the mesh elements, giving rise to so-called cut elements. An illustration
for a domain Ω ⊂ R2 is provided in Figure 2.1.
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10 E. Burman, P. Hansbo, M. G. Larson and S. Zahedi

Let 𝑉ℎ ⊂ 𝐶(Ωℎ) be a finite element space defined on the active mesh Tℎ. To
derive the method, we start from (2.1), multiply by 𝑣 ∈ 𝑉ℎ, and apply Green’s
formula:

( 𝑓 , 𝑣)Ω = −(∇ · (𝛼∇𝑢), 𝑣)Ω
= (𝛼∇𝑢,∇𝑣)Ω − (𝑛 · 𝛼∇𝑢, 𝑣)𝜕Ω
= (𝛼∇𝑢,∇𝑣)Ω − (𝑛 · 𝛼∇𝑢, 𝑣)𝜕Ω
− (𝑢 − 𝑔, 𝑛 · 𝛼∇𝑣)𝜕Ω︸                 ︷︷                 ︸

=0

+ 𝛽ℎ−1(𝑢 − 𝑔, 𝑣)𝜕Ω︸               ︷︷               ︸
=0

, (2.6)

where we have added a symmetrizing term and a penalty term, both of which vanish
for the exact solution and thus do not affect consistency. Here 𝛽 ≔ 𝛽0𝛼, with 𝛽0
a dimensionless penalty parameter. This leads to the following Nitsche method:
find 𝑢ℎ ∈ 𝑉ℎ such that

𝑎ℎ(𝑢ℎ, 𝑣) = 𝑙ℎ(𝑣) for all 𝑣 ∈ 𝑉ℎ, (2.7)

where the forms are defined as

𝑎ℎ(𝑣, 𝑤) = (𝛼∇𝑣,∇𝑤)Ω − (𝑛 · 𝛼∇𝑣, 𝑤)𝜕Ω
− (𝑣, 𝑛 · 𝛼∇𝑤)𝜕Ω + 𝛽ℎ−1(𝑣, 𝑤)𝜕Ω, (2.8)

𝑙ℎ(𝑤) = ( 𝑓 , 𝑤)Ω − (𝑔, 𝑛 · 𝛼∇𝑤)𝜕Ω + 𝛽ℎ−1(𝑔, 𝑤)𝜕Ω. (2.9)

To prove coercivity of the form 𝑎ℎ, we need the inverse inequality

ℎ1/2∥𝛼1/2∇𝑣∥𝜕Ω ≲ ∥𝛼1/2∇𝑣∥Ω, 𝑣 ∈ 𝑉ℎ . (2.10)

Here and below, we will use the notation 𝑎 ≲ 𝑏 to mean 𝑎 ≤ 𝑐𝑏, with 𝑐 being a
constant independent of the mesh size ℎ and the way the interface intersects the
mesh. However, the bound (2.10) does not hold in general due to the presence of
cut elements. This is because, for a cut element 𝑇 , the intersection 𝑇 ∩Ω can have
an arbitrarily small measure in R𝑑 while |𝑇 ∩ 𝜕Ω| ∝ ℎ, and the hidden constant
in (2.10) depends on the ratio between these two measures. Therefore, to ensure
coercivity, we assume the existence of a stabilizing form 𝑠ℎ : 𝑉ℎ × 𝑉ℎ → R such
that

ℎ1/2∥𝛼1/2∇𝑣∥𝜕Ω ≲ ∥𝛼1/2∇𝑣∥Ω + ∥𝛼1/2𝑣∥𝑠ℎ , 𝑣 ∈ 𝑉ℎ, (2.11)

where ∥𝑣∥2
𝑠ℎ

= 𝑠ℎ(𝑣, 𝑣). Thus we consider the following cut finite element method:
find 𝑢ℎ ∈ 𝑉ℎ such that

𝐴ℎ(𝑢ℎ, 𝑣) = 𝑙ℎ(𝑣) for all 𝑣 ∈ 𝑉ℎ, (2.12)

where

𝐴ℎ(𝑣, 𝑤) = 𝑎ℎ(𝑣, 𝑤) + 𝜏𝑠ℎ(𝑣, 𝑤), (2.13)

and the positive constant 𝜏 ∝ 𝛼.
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Cut finite element methods 11

A stabilizing form. For continuous piecewise linear finite elements on triangles, a
common stabilizing form 𝑠ℎ is the ghost penalty (Burman 2010), defined as

𝑠ℎ(𝑣, 𝑤) =
∑︁
𝐹∈Fℎ

ℎ([∇𝑛𝑣], [∇𝑛𝑤])𝐹 , (2.14)

where 𝑣, 𝑤 ∈ 𝑉ℎ, Fℎ consist of interior faces in the active mesh Tℎ that are
associated with cut elements (see Figure 2.1(c)), and [∇𝑛𝑣] is the jump in the
normal derivative across the face 𝐹.

The ghost penalty term is motivated by the estimate

∥∇𝑣∥2
𝑇1
≲ ∥∇𝑣∥2

𝑇2
+ ℎ∥ [∇𝑛𝑣] ∥2

𝐹 , (2.15)

where 𝑇1, 𝑇2 ∈ Tℎ are adjacent elements with 𝑇1 ∩ 𝑇2 = 𝐹.
Assuming that a non-cut element in Ω can be reached from a cut element by

passing through a sequence of faces in Fℎ, we can apply (2.15) repeatedly to derive
the following bound:

∥∇𝑣∥2
Ωℎ
≲ ∥∇𝑣∥2

Ω + ∥𝑣∥2
𝑠ℎ
. (2.16)

This shows that the stabilization form provides an extended control (in this case, in
the 𝐻1-seminorm) of finite element functions from the physical domain Ω to the
active domain Ωℎ, where they are defined. Equation (2.11) follows from this, and
since for 𝑣 ∈ 𝑉ℎ and 𝑇 ∈ Tℎ, the following inverse trace inequality holds:

∥∇𝑣∥𝑇∩𝜕Ω ≲ ℎ−1/2∥∇𝑣∥𝑇 . (2.17)

For more details on this inverse trace inequality, see Section 3.3.
We will return to the precise requirements for the stabilizing form and present

various stabilization forms in Section 4.

2.2. An interface problem

The continuous problem. Let Ω ⊂ R𝑑 be a domain with a smooth boundary 𝜕Ω,
and let Ω0 be a smooth, closed hypersurface residing in the interior of Ω. The
hypersurface Ω0 divides Ω into two subdomains, Ω = Ω1 ∪ Ω2, where Ω2 is the
domain enclosed by the interface Ω0. See Figure 2.2(a) for an illustration in R2.

We consider the following problem: find 𝑢 : Ω → R such that

−∇ · (𝛼𝑖∇𝑢) = 𝑓𝑖 in Ω𝑖 , 𝑖 = 1, 2, (2.18)
[𝑢] = 𝑔0 on Ω0, (2.19)

[𝑛 · 𝛼∇𝑢] = 𝑓0 on Ω0, (2.20)
𝑢 = 0 on 𝜕Ω, (2.21)

where 𝛼𝑖 > 0 are positive constants, and 𝑓𝑖 : Ω𝑖 → R (𝑖 = 1, 2), 𝑓0 : Ω0 → R and
𝑔0 : Ω0 → R are given functions. Assume 𝑓𝑖 ∈ 𝐿2(Ω𝑖) and 𝑔0 ∈ 𝐻1/2(Ω0). The
restriction of 𝑢 to Ω𝑖 is denoted by 𝑢𝑖 , and we define the jump conditions at the
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12 E. Burman, P. Hansbo, M. G. Larson and S. Zahedi

interface as

[𝑢] = 𝑢1 − 𝑢2, [𝑛 · 𝛼∇𝑢] = 𝑛1 · 𝛼1∇𝑢1 + 𝑛2 · 𝛼2∇𝑢2, (2.22)

where 𝑛𝑖 is the unit normal vector on Ω0, outward-directed with respect to Ω𝑖 . For
simplicity, we assume a homogeneous Dirichlet boundary condition on 𝜕Ω.

Let
𝑉1 = {𝑣 ∈ 𝐻1(Ω1) | 𝑣 = 0 on 𝜕Ω}, 𝑉2 = 𝐻1(Ω2). (2.23)

In the derivation of a weak formulation, the following jump and average operators
across the interface Ω0 will be convenient.

• For a scalar function 𝑣, where 𝑣𝑖 = 𝑣 |Ω𝑖
, 𝑖 = 1, 2, we define the jump and

average operators as

[𝑣] = 𝑣1 − 𝑣2, ⟨𝑣⟩ = 𝜂1𝑣1 + 𝜂2𝑣2, ⟨𝑣⟩∗ = 𝜂2𝑣1 + 𝜂1𝑣2, (2.24)

where 𝜂1 + 𝜂2 = 1 and 𝜂1, 𝜂2 ∈ [0, 1].
• For the normal flux,

[𝑛 · 𝛼∇𝑣] = 𝑛1 · 𝛼1∇𝑣1 + 𝑛2 · 𝛼2∇𝑣2 (2.25)

and

⟨𝑛 · 𝛼∇𝑣⟩ = 𝜂1𝑛1 · 𝛼1∇𝑣1 − 𝜂2𝑛2 · 𝛼2∇𝑣2, (2.26)
⟨𝑛 · 𝛼∇𝑣⟩∗ = 𝜂2𝑛1 · 𝛼1∇𝑣1 − 𝜂1𝑛2 · 𝛼2∇𝑣2. (2.27)

We then have the identity

[𝑛 · 𝑎∇𝑣𝑤] = ⟨𝑛 · 𝑎∇𝑣⟩[𝑤] + [𝑛 · 𝑎∇𝑣]⟨𝑤⟩∗. (2.28)

For 𝑖 = 1, 2, we multiply (2.18) by 𝑣𝑖 ∈ 𝑉𝑖 , integrate over Ω𝑖 , and apply Green’s
identity:

2∑︁
𝑖=1

( 𝑓𝑖 , 𝑣𝑖)Ω𝑖
=

2∑︁
𝑖=1

(−∇ · (𝛼𝑖∇𝑢𝑖), 𝑣𝑖)Ω𝑖

=

2∑︁
𝑖=1

(𝛼𝑖∇𝑢𝑖 ,∇𝑣𝑖)Ω𝑖
− (𝑛𝑖 · 𝛼𝑖∇𝑢𝑖 , 𝑣𝑖)Ω0

=

2∑︁
𝑖=1

(𝛼𝑖∇𝑢𝑖 ,∇𝑣𝑖)Ω𝑖
− (⟨𝑛 · 𝛼∇𝑢⟩, [𝑣])Ω0 − ([𝑛 · 𝛼∇𝑢], ⟨𝑣⟩∗)Ω0

=

2∑︁
𝑖=1

(𝛼𝑖∇𝑢𝑖 ,∇𝑣𝑖)Ω𝑖
− (⟨𝑛 · 𝛼∇𝑢⟩, [𝑣])Ω0 − ( 𝑓0, ⟨𝑣⟩∗)Ω0 . (2.29)

Here we also used the interface condition [𝑛 · 𝛼∇𝑢] = 𝑓0 on Ω0.
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Cut finite element methods 13

In the case 𝑔0 = 0, the solution remains in 𝑉 = 𝐻1
0(Ω), so we can take 𝑣𝑖 = 𝑣 |Ω𝑖

for 𝑣 ∈ 𝑉 and set 𝑣1 |Ω0 = 𝑣2 |Ω0 = 𝑣0. Thus the weak formulation is as follows: find
𝑢 ∈ 𝑉 such that

𝑎(𝑢, 𝑣) = 𝑙(𝑣) for all 𝑣 ∈ 𝑉, (2.30)

where the forms are defined as

𝑎(𝑣, 𝑤) =
2∑︁
𝑖=1

(𝛼𝑖∇𝑢𝑖 ,∇𝑣𝑖)Ω𝑖
, (2.31)

𝑙(𝑣) =
2∑︁
𝑖=1

( 𝑓𝑖 , 𝑣𝑖)Ω𝑖
+ ( 𝑓0, ⟨𝑣⟩∗)Ω0 =

2∑︁
𝑖=0

( 𝑓𝑖 , 𝑣𝑖)Ω𝑖
. (2.32)

Observe that when 𝑔0 = 0, the interface is present in the weak formulation (2.30)
through the jump in the coefficients 𝛼1 and 𝛼2. Since the solution remains in
𝐻1(Ω), the existence of a unique solution to the weak formulation (2.30) follows
from the Lax–Milgram lemma. However, the jump in the coefficient 𝛼 results in
a discontinuity in the normal component of the gradient across the interface. As
a result, the solution is no longer in 𝐻2(Ω), and a naive discretization using finite
elements that does not account for the interface will lead to a loss of accuracy in
the approximate solution.

In the case 𝑔0 ≠ 0, a weak formulation can be obtained by introducing a Lagrange
multiplier 𝜆 to replace −⟨𝑛 · 𝛼∇𝑢⟩. The weak formulation then becomes: find
(𝑢1, 𝑢2, 𝜆) ∈ 𝑉1 ×𝑉2 × Λ such that

𝑎(𝑢, 𝑣) + 𝑏(𝜆, 𝑣) = 𝑙(𝑣), (2.33)
𝑏(𝜇, 𝑢) = (𝑔0, 𝜇), (2.34)

for all (𝑣1, 𝑣2, 𝜇) ∈ 𝑉1 ×𝑉2 × Λ. Here the bilinear form 𝑎 is as in (2.31) and

𝑏(𝜆, 𝑣) = (𝜆, [𝑣])Ω0 , (2.35)

𝑙(𝑣) =
2∑︁
𝑖=1

( 𝑓𝑖 , 𝑣𝑖)Ω𝑖
+ ( 𝑓0, ⟨𝑣⟩∗)Ω0 . (2.36)

Note that the trace of a function in 𝐻1(Ω𝑖) on Ω0 belongs to 𝐻1/2(Ω0). Therefore
𝜆 must be sought in the dual of 𝐻1/2(Ω0), i.e. in Λ ≔ 𝐻−1/2(Ω0). The well-
posedness of the weak formulation (2.33)–(2.34) follows from Brezzi (1974). We
will formulate cut finite element methods based on discretizing this well-posed
weak formulation.
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14 E. Burman, P. Hansbo, M. G. Larson and S. Zahedi

For 𝑔0 ≠ 0, a variational formulation can also be obtained by following Nitsche’s
strategy to enforce the interface conditions. Starting from equation (2.29), we
obtain the following:

2∑︁
𝑖=1

( 𝑓𝑖 , 𝑣𝑖)Ω𝑖
=

2∑︁
𝑖=1

(𝛼𝑖∇𝑢𝑖 ,∇𝑣𝑖)Ω𝑖
− (⟨𝑛 · 𝛼∇𝑢⟩, [𝑣])Ω0 − ( 𝑓0, ⟨𝑣⟩∗)Ω0 .

=

2∑︁
𝑖=1

(𝛼𝑖∇𝑢𝑖 ,∇𝑣𝑖)Ω𝑖
− (⟨𝑛 · 𝛼∇𝑢⟩, [𝑣])Ω0

− ([𝑢] − 𝑔0, ⟨𝑛 · 𝛼∇𝑣⟩)Ω0︸                        ︷︷                        ︸
=0

+ 𝛽([𝑢] − 𝑔0, [𝑣])Ω0︸                 ︷︷                 ︸
=0

−( 𝑓0, ⟨𝑣⟩∗)Ω0 .

(2.37)

Here we used the interface condition [𝑢] = 𝑔0, and introduced a symmetrizing term
and a penalty term, where 𝛽 ∈ 𝐿∞(Ω0) is a penalty parameter. Both of these terms
vanish for the exact solution. Although a well-posed weak formulation cannot be
obtained directly from this approach, we note that any solution to (2.18)–(2.21)
such that 𝑢𝑖 ∈ 𝑉𝑖 ∩ 𝐻3/2+𝜖 (Ω𝑖), 𝜖 > 0, for 𝑖 = 1, 2, also satisfies the formulation
(2.37). Therefore this formulation can serve as a starting point for deriving accurate
cut finite element methods. If the exact solution has insufficient regularity, one may
nevertheless show that approximations obtained using (2.37) converge optimally
(Burman, Hansbo and Larson 2024b).

The cut finite element method based on Nitsche’s method. We first derive a cut
finite element method based on the formulation (2.37), where Nitsche’s method
is used to impose the interface conditions weakly. Let Ω̃ be a polytopal domain
such that Ω ⊆ Ω̃, equipped with a background mesh T̃ℎ. For simplicity, in order
to focus on the interface, we assume that 𝜕Ω̃ = 𝜕Ω. We define the active meshes
and corresponding active domains associated with the subdomains Ω𝑖 , 𝑖 = 1, 2, as
follows:

Tℎ,𝑖 = {𝑇 ∈ T̃ℎ | 𝑇 ∩Ω𝑖 ≠ ∅}, Ωℎ,𝑖 =
⋃

𝑇∈Tℎ,𝑖

𝑇. (2.38)

An illustration of these domains and meshes is provided in Figure 2.2.
Next, let 𝑉ℎ,𝑖 ⊂ 𝐶(Ωℎ,𝑖) be finite element spaces defined on the active meshes

Tℎ,𝑖 , for 𝑖 = 1, 2, with the condition that 𝑣1 = 0 on 𝜕Ω for 𝑣1 ∈ 𝑉ℎ,1. Define the
space

𝑊ℎ = 𝑉ℎ,1 ⊕ 𝑉ℎ,2. (2.39)

We then arrive at the following cut finite element method: find 𝑢ℎ ∈ 𝑊ℎ such that

𝐴ℎ(𝑢ℎ, 𝑣) = 𝑙ℎ(𝑣) for all 𝑣 ∈ 𝑊ℎ, (2.40)
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Ω2

Ω0

n1

Ω

Ω1

(a) (b) (c)

Figure 2.2. (a) The subdomains Ω𝑖 , 𝑖 = 1, 2, the interface Ω0 and the domain Ω.
The background domain Ω̃ coincides in this case with the physical domain Ω. (b)
The background mesh T̃ℎ, the active mesh Tℎ,1 (consisting of the grey triangles)
and the active domain Ωℎ,1 (the grey region). (c) The active mesh Tℎ,2 (consisting
of the grey triangles) and the active domain Ωℎ,2 (the grey region).

where the forms are defined as

𝐴ℎ(𝑣, 𝑤) = 𝑎ℎ(𝑣, 𝑤) + 𝑠ℎ(𝑣, 𝑤), (2.41)

𝑎ℎ(𝑣, 𝑤) =
2∑︁
𝑖=1

(𝛼𝑖∇𝑣𝑖 ,∇𝑤𝑖)Ω𝑖

− (⟨𝑛 · 𝛼∇𝑣⟩, [𝑤])Ω0 − ([𝑣], ⟨𝑛 · 𝛼∇𝑤⟩)Ω0 + (𝛽ℎ−1 [𝑣], [𝑤])Ω0 , (2.42)

𝑠ℎ(𝑣, 𝑤) =
2∑︁
𝑖=1

𝜏𝑖𝑠ℎ,𝑖(𝑣𝑖 , 𝑤𝑖), (2.43)

𝑙ℎ(𝑣) =
2∑︁
𝑖=1

( 𝑓𝑖 , 𝑣𝑖)Ω𝑖
+ ( 𝑓0, ⟨𝑣⟩∗)Ω0 − (𝑔0, ⟨𝑛 · 𝛼∇𝑣⟩)Ω0 + (𝛽ℎ−1𝑔0, [𝑣])Ω0 .

(2.44)

Here 𝜏𝑖 are non-negative constants, and the penalty parameter

𝛽 ≔ 𝛽0
𝛼1𝛼2

𝛼1 + 𝛼2
, (2.45)

where 𝛽0 must be chosen sufficiently large to ensure coercivity (see Section 3.7).
Note that the solution 𝑢ℎ ∈ 𝑊ℎ consists of a pair of functions, i.e. 𝑢ℎ = (𝑢ℎ,1, 𝑢ℎ,2),
where 𝑢ℎ,𝑖 ∈ 𝑉ℎ,𝑖 for 𝑖 = 1, 2. Since the two active meshes Tℎ,𝑖 , for 𝑖 = 1, 2,
overlap on the cut elements, 𝑢ℎ is double-valued on these elements, as illustrated
in Figure 2.3 for a one-dimensional case with continuous piecewise linear finite
element spaces 𝑉ℎ,𝑖 . As an approximation to the interface problem, we define �̃�ℎ
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Ω0Ω1 Ω2

Th

Th,1
Ωh,1

Th,2
Ωh,2

uh,1 ∈ Vh,1

uh,2 ∈ Vh,2

Figure 2.3. An illustration in one space dimension of how a solution 𝑢ℎ ∈ 𝑊ℎ from
the cut finite element method (2.40) might look. Note that 𝑢ℎ = (𝑢ℎ,1, 𝑢ℎ,2), where
𝑢ℎ,𝑖 ∈ 𝑉ℎ,𝑖 for 𝑖 = 1, 2, with 𝑉ℎ,𝑖 here consisting of continuous piecewise linear
finite elements.

as follows:

�̃�ℎ(𝒙) =

{
𝑢ℎ,1 if 𝒙 ∈ Ω1,
𝑢ℎ,2 if 𝒙 ∈ Ω2.

(2.46)

One way to minimize the required penalty 𝛽 is by carefully selecting the weights
𝜂𝑖 . We will see in Section 3.7 that by choosing the weights as

𝜂1 =
𝛼2

𝛼1 + 𝛼2
, 𝜂2 =

𝛼1
𝛼1 + 𝛼2

, (2.47)

which correspond to the harmonic average of 𝛼1 and 𝛼2 (Dryja 2003), we can
minimize the global penalty parameter 𝛽. This choice is also known to make the
error in the approximation of the fluxes robust with respect to the contrast in the
diffusion coefficients (Burman, Guzmán, Sánchez and Sarkis 2018a).

In the original formulation by Hansbo and Hansbo (2002), the finite element
space𝑉ℎ,𝑖 was defined as the restriction of a finite element space on the background
mesh to the subdomain Ω𝑖 , rather than to the active mesh and the active subdomain
Ωℎ,𝑖 . In this case the stabilization term 𝑠ℎ was not included (i.e. 𝜏𝑖 = 0), and
coercivity was instead ensured by choosing the weights as

𝜂𝑖 |𝑇 =
|𝑇 ∩Ω𝑖 |

|𝑇 | (2.48)

for each cut element, i.e. 𝑇 ∈ Tℎ,0. However, the condition number of the resulting
linear system was found to be sensitive to the position of the interface relative to
the background mesh.
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Cut finite element methods 17

For moderate ratios of the parameters 𝛼𝑖 , 𝑖 = 1, 2, this choice of the weights 𝜂𝑖
ensures stability with 𝜏𝑖 = 0 and with a constant penalty parameter 𝛽, as we will
illustrate in a numerical example in Section 2.5. However, without the stabilization
form (i.e. with 𝜏𝑖 = 0), stability cannot be guaranteed independently of both the
position of the interface and the parameters 𝛼𝑖 , 𝑖 = 1, 2. Optimal choices of
parameters have been proposed by several authors (Barrau, Becker, Dubach and
Luce 2012, Annavarapu, Hautefeuille and Dolbow 2012, Wadbro et al. 2013).
The problem of ill-conditioning with respect to the position of the interface in
the presence of high (even infinite) contrast was solved for the fictitious domain
problem, the interface problem and PDEs on surfaces by introducing a penalty
operator extending coercivity from the physical domain to the whole mesh domain
(Burman 2010, Burman and Hansbo 2012, Burman and Zunino 2012, Burman et al.
2015c). A different approach with the same objective was introduced in Wadbro
et al. (2013). Stability is a critical aspect in the design of cut finite element methods,
as it influences both the accuracy of the approximation and the conditioning of the
resulting linear system. To ensure stability and robustness, the common strategy
in CutFEM, first proposed in Burman and Zunino (2012), is to add stabilization
terms 𝑠ℎ,𝑖 and to choose the weights independently of the cut configuration, but
depending on the parameters 𝛼𝑖 as in (2.47).

A cut finite element method based on Lagrange multipliers. In addition to the active
meshes and the active finite element spaces associated with the bulk subdomains
Ω1 and Ω2, as defined in equations (2.38) and (2.39), we now introduce an active
mesh for the Lagrange multiplier, which is associated with the hypersurface Ω0,
along with a corresponding finite element space on this mesh. Specifically, let

Tℎ,0 = {𝑇 ∈ T̃ℎ | 𝑇 ∩Ω0 ≠ ∅}, Ωℎ,0 =
⋃

𝑇∈Tℎ,0

𝑇, (2.49)

and let Λℎ ⊂ 𝐿2(Ωℎ,0) denote an appropriate finite element space for the Lagrange
multiplier on the active mesh Tℎ,0. We refer to Section 7 for more details of how
to choose the space Λℎ.

Cut finite element methods can be constructed by directly discretizing the weak
formulation in equations (2.33)–(2.34) and adding stabilization forms. This results
in the following weak formulation: find (𝑢ℎ, 𝜆ℎ) ∈ 𝑊ℎ × Λℎ such that

𝐴ℎ(𝑢ℎ, 𝑣) + 𝑏(𝜆ℎ, 𝑣) = 𝑙(𝑣), (2.50)
𝑏(𝜇ℎ, 𝑢ℎ) − 𝜏0𝑠ℎ,0(𝜇ℎ, 𝜆ℎ) = (𝑔0, 𝜇ℎ), (2.51)

for all (𝑣, 𝜇ℎ) ∈ 𝑊ℎ × Λℎ, where the bilinear form 𝐴ℎ is defined as

𝐴ℎ(𝑣, 𝑤) = 𝑎(𝑣, 𝑤) + 𝑠ℎ(𝑣, 𝑤). (2.52)

Here 𝑎 is the bilinear form defined in equation (2.31), 𝑏 is defined in equation
(2.35), 𝑙 is the linear form defined in equation (2.36) and 𝑠ℎ is the stabilization form
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18 E. Burman, P. Hansbo, M. G. Larson and S. Zahedi

(a) (b) (c)

Figure 2.4. The active mesh Tℎ,𝑖 (consisting of the grey triangles), which are the
elements from the background mesh T̃ℎ that intersect the subdomain Ω𝑖 . The edges
marked in yellow indicate the faces where stabilization is active. Here (a) 𝑖 = 0,
(b) 𝑖 = 1, (c) 𝑖 = 2.

as given in equation (2.43), with each form 𝑠ℎ,𝑖 stabilizing the operator associated
with Ω𝑖 , and the constants 𝜏𝑖 are positive constants.

An example of the stabilization form 𝑠ℎ,𝑖 for 𝑖 = 1, 2, in the case of continuous
piecewise linear finite elements, is the ghost penalty stabilization introduced in
equation (2.14):

𝑠ℎ,𝑖(𝑣, 𝑤) =
∑︁

𝐹∈Fℎ,𝑖

ℎ([∇𝑛𝑣], [∇𝑛𝑤])𝐹 . (2.53)

For 𝑖 = 0 and discontinuous piecewise linear finite elements, an example is

𝑠ℎ,0(𝑣, 𝑤) =
∑︁

𝐹∈Fℎ,0

ℎ([𝑣], [𝑤])𝐹 + ℎ3([∇𝑣], [∇𝑤])𝐹 . (2.54)

Note that the scaling with ℎ in the stabilization differs for 𝑖 = 1, 2 compared to
𝑖 = 0, as it depends on the operator being stabilized by the stabilization form. The
set Fℎ,𝑖 consists of interior faces in the active mesh Tℎ,𝑖 that are associated with cut
elements. Thus each face in Fℎ,𝑖 is shared by two elements in the active mesh Tℎ,𝑖 ,
with at least one of the elements being a cut element. Note that boundary edges
are excluded from Fℎ,𝑖 . For an illustration, see the yellow edges in Figure 2.4.

2.3. An interface problem coupled to a surface problem at the interface

The continuous problem. Using the same notation as in the previous subsection
for the interface problem, we now consider the following problem: find 𝑢 : Ω → R
such that

−∇ · (𝛼𝑖∇𝑢) = 𝑓𝑖 in Ω𝑖 , 𝑖 = 1, 2, (2.55)
−𝑛𝑖 · 𝛼𝑖∇𝑢𝑖 = [𝑏𝑢]𝑖 on Ω0, 𝑖 = 1, 2, (2.56)
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Cut finite element methods 19

−∇0 · (𝛼0∇0𝑢0) = 𝑓0 − [𝑛 · 𝛼∇𝑢] on Ω0, (2.57)
𝑢 = 0 on 𝜕Ω. (2.58)

Here the jump operators are defined by

[𝑏𝑣]𝑖 = 𝑏𝑖𝑣𝑖 − 𝑏0𝑣0, [𝑛 · 𝛼∇𝑣] = 𝑛1 · 𝛼1∇𝑣1 + 𝑛2 · 𝛼2∇𝑣2, (2.59)

𝛼𝑖 ∈ R and 𝑏𝑖 ∈ R are positive constants, 𝑓𝑖 : Ω𝑖 → R, are given functions, assume
𝑓𝑖 ∈ 𝐿2(Ω𝑖), and ∇0 denotes the surface gradient.

Now let 𝑉0 = 𝐻1(Ω0), and let 𝑉1, 𝑉2 be defined as in equation (2.23). Define

𝑊 = 𝑉0 ⊕ 𝑉1 ⊕ 𝑉2. (2.60)

We multiply equation (2.55) by 𝑏𝑖𝑣𝑖 with 𝑣𝑖 ∈ 𝑉𝑖 , for 𝑖 = 1, 2, integrate over Ω𝑖 ,
apply Green’s identity, and use the interface conditions to obtain

2∑︁
𝑖=1

( 𝑓𝑖 , 𝑏𝑖𝑣𝑖)Ω𝑖
=

2∑︁
𝑖=1

−(∇ · (𝛼𝑖∇𝑢𝑖), 𝑏𝑖𝑣𝑖)Ω𝑖
(2.61)

=

2∑︁
𝑖=1

𝑏𝑖(𝛼𝑖∇𝑢𝑖 ,∇𝑣𝑖)Ω𝑖
− (𝑛𝑖 · 𝛼𝑖∇𝑢𝑖 , 𝑏𝑖𝑣𝑖)Ω0

=

2∑︁
𝑖=1

𝑏𝑖(𝛼𝑖∇𝑢𝑖 ,∇𝑣𝑖)Ω𝑖
− (𝑛𝑖 · 𝛼𝑖∇𝑢𝑖 , 𝑏𝑖𝑣𝑖 − 𝑏0𝑣0)Ω0 − ([𝑛 · 𝛼∇𝑢], 𝑏0𝑣0)Ω0

=

2∑︁
𝑖=1

𝑏𝑖(𝛼𝑖∇𝑢𝑖 ,∇𝑣𝑖)Ω𝑖
+

2∑︁
𝑖=1

([𝑏𝑢]𝑖 , [𝑏𝑣]𝑖)Ω0 − (∇0 · (𝛼0∇0𝑢0) + 𝑓0, 𝑏0𝑣0)Ω0

=

2∑︁
𝑖=1

𝑏𝑖(𝛼𝑖∇𝑢𝑖 ,∇𝑣𝑖)Ω𝑖
+

2∑︁
𝑖=1

([𝑏𝑢]𝑖 , [𝑏𝑣]𝑖)Ω0 + 𝑏0(𝛼0∇0𝑢0,∇0𝑣0)Ω0 − ( 𝑓0, 𝑏0𝑣0)Ω0 .

We thus have the following weak formulation: find 𝑢 ∈ 𝑊 such that

𝑎(𝑢, 𝑣) = 𝑙(𝑣) for all 𝑣 ∈ 𝑊, (2.62)

where the forms are defined as

𝑎(𝑣, 𝑤) = 𝑏0(𝛼0∇0𝑢0,∇0𝑣0)Ω0 +
2∑︁
𝑖=1

(𝑏𝑖(𝛼𝑖∇𝑢𝑖 ,∇𝑣𝑖)Ω𝑖
+ ([𝑏𝑢]𝑖 , [𝑏𝑣]𝑖)Ω0), (2.63)

𝑙(𝑣) =
2∑︁
𝑖=0

𝑏𝑖( 𝑓𝑖 , 𝑣𝑖)Ω0 . (2.64)

Existence, uniqueness and stability of the formulation (2.62) follow from the Lax–
Milgram lemma.

The cut finite element method. Let Ω̃ be a polygonal domain such that Ω ⊂ Ω̃,
equipped with a background mesh T̃ℎ. We define the active meshes and the active
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20 E. Burman, P. Hansbo, M. G. Larson and S. Zahedi

domains associated with the subdomains Ω𝑖 , for 𝑖 = 0, 1, 2, as follows:

Tℎ,𝑖 = {𝑇 ∈ T̃ℎ | 𝑇 ∩Ω𝑖 ≠ ∅}, Ωℎ,𝑖 =
⋃

𝑇∈Tℎ,𝑖

𝑇. (2.65)

Next, let 𝑉ℎ,𝑖 ⊂ 𝐶(Ωℎ,𝑖) be finite element spaces defined on the active meshes
Tℎ,𝑖 for 𝑖 = 0, 1, 2, with the condition that 𝑣1 = 0 on 𝜕Ω for 𝑣1 ∈ 𝑉ℎ,1. Define

𝑊ℎ = 𝑉ℎ,0 ⊕ 𝑉ℎ,1 ⊕ 𝑉ℎ,2. (2.66)

In this case we can base the cut finite element method directly on the weak formu-
lation (2.62), adding a stabilizing form. This leads to the following formulation:
find 𝑢ℎ ∈ 𝑊ℎ such that

𝐴ℎ(𝑢ℎ, 𝑣) = 𝑙(𝑣) for all 𝑣 ∈ 𝑊ℎ, (2.67)

where 𝑙 is the linear form defined in (2.63) and

𝐴ℎ(𝑣, 𝑤) = 𝑎(𝑣, 𝑤) + 𝑠ℎ(𝑣, 𝑤), (2.68)

with 𝑎 defined in equation (2.63). The stabilizing form is defined as

𝑠ℎ(𝑣, 𝑤) =
2∑︁
𝑖=0

𝜏𝑖𝑠ℎ,𝑖(𝑣𝑖 , 𝑤𝑖), (2.69)

where each form 𝑠ℎ,𝑖 stabilizes the operator associated with Ω𝑖 , and 𝜏𝑖 are positive
constants.

An example of the stabilization form 𝑠ℎ,𝑖 , in the case of continuous piecewise
linear finite elements, is the ghost penalty stabilization:

𝑠ℎ,𝑖(𝑣, 𝑤) =
∑︁

𝐹∈Fℎ,𝑖

ℎ𝑘([∇𝑛𝑣], [∇𝑛𝑤])𝐹 , (2.70)

where 𝑘 = 0 for 𝑖 = 0 (the surface problem: see the work by Burman et al. 2015c),
and 𝑘 = 1 as in (2.14) for 𝑖 = 1, 2. As before, the set Fℎ,𝑖 consists of interior faces
in the active mesh Tℎ,𝑖 that are shared by at least one cut element. We will discuss
stabilization terms for bulk problems in more detail in Section 4, while stabilization
for surface problems will be addressed in Section 5.

2.4. The Stokes interface problem

The continuous problem. Let Ω ⊂ R𝑑 , where 𝑑 = 2 or 3, be a domain with a
polygonal boundary 𝜕Ω. The domain Ω contains two incompressible immiscible
fluids, separated by the interface Ω0. Each fluid, with viscosity 𝜇𝑖 , occupies a
subdomain Ω𝑖 ⊂ Ω, 𝑖 = 1, 2. We seek the velocity 𝒖 : Ω → R2 and the pressure
𝑝 : Ω → R such that

−∇ · (𝜇𝝐(𝒖) − 𝑝𝑰) = 𝒇 𝑖 in Ω𝑖 , 𝑖 = 1, 2, (2.71)
∇ · 𝒖 = 0 in Ω𝑖 , 𝑖 = 1, 2, (2.72)
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Cut finite element methods 21

[𝒖] = 0 on Ω0, (2.73)
[𝒏 · (𝜇𝝐(𝒖) − 𝑝𝑰)] = 𝜎𝜅𝒏 on Ω0, (2.74)

𝒖 = 0 on 𝜕Ω. (2.75)

Here 𝝐(𝒖) = (∇𝒖 + (∇𝒖)⊤)/2 is the strain rate tensor, 𝜇 is the viscosity function,
defined by 𝜇 = 2𝜇𝑖 in Ω𝑖 , 𝜎 is the surface tension coefficient, 𝜅𝒏 is the mean
curvature vector, and 𝒇 𝑖 : Ω𝑖 → R𝑑 is a given external force field (e.g. the gravit-
ational force). We assume homogeneous Dirichlet boundary conditions, but other
types of suitable boundary conditions on 𝜕Ω are also possible. In particular, we
may have 𝒖 = 𝒖𝐵, where 𝒖𝐵 is a given function, and by Gauss’s integral theorem,
this function satisfies ∫

𝜕Ω

𝒖𝐵 · 𝒏𝐵 d𝑠 =
∫
Ω

∇ · 𝒖 d𝒙 = 0, (2.76)

where 𝒏𝐵 denotes the unit outward-directed normal vector on the boundary 𝜕Ω.
Note that the pressure 𝑝 is determined from equations (2.71)–(2.75) only up to an
additive constant. This constant is typically fixed by requiring

∫
Ω
𝑝 d𝒙 = 0.

Let

𝑽 = {𝒗 ∈ [𝐻1(Ω)]𝑑 | 𝑣 = 0 on 𝜕Ω}, 𝑄 =

{
𝑞 ∈ 𝐿2(Ω) |

∫
Ω

𝑞 d𝒙 = 0
}
. (2.77)

Take 𝒗𝑖 = 𝒗 |Ω𝑖
for 𝒗 ∈ 𝑽 and set 𝒗1 |Ω0 = 𝒗2 |Ω0 = 𝒗0. For 𝑖 = 1, 2, we multiply

equation (2.71) by 𝒗 ∈ 𝑽, integrate over Ω𝑖 , and apply Green’s identity:

2∑︁
𝑖=1

( 𝒇 𝑖 , 𝒗𝑖)Ω𝑖
=

2∑︁
𝑖=1

(−∇ · (𝜇𝝐(𝒖) − 𝑝𝑰), 𝒗)Ω𝑖

=

2∑︁
𝑖=1

(𝜇𝝐(𝒖), 𝝐(𝒗))Ω𝑖
− (𝑝,∇ · 𝒗)Ω𝑖

+
2∑︁
𝑖=1

−(𝜇𝝐(𝒖)𝒏𝑖 , 𝒗)Ω0 + (𝑝, 𝒏𝑖 · 𝒗)Ω0

=

2∑︁
𝑖=1

(𝜇𝝐(𝒖), 𝝐(𝒗))Ω𝑖
− (𝑝,∇ · 𝒗)Ω𝑖

− (𝜎𝜅𝒏, 𝒗0)Ω0 , (2.78)

where 𝒏𝑖 is the unit normal vector on Ω0, outward-directed with respect to Ω𝑖 , and
we used the interface condition (2.74).

Further, let 𝑞𝑖 = 𝑞 |Ω𝑖
for 𝑞 ∈ 𝑄. Multiplying (2.72) by 𝑞 ∈ 𝑄 and integrating

over Ω𝑖 we arrive at the following weak formulation: find 𝒖 ∈ 𝑽 and 𝑝 ∈ 𝑄 such
that

𝑎(𝒖, 𝒗) + 𝑏(𝒗, 𝑝) = 𝑙(𝒗) for all 𝒗 ∈ 𝑽, (2.79)
𝑏(𝒖, 𝑞) = 0 for all 𝑞 ∈ 𝑄, (2.80)
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where the forms are defined as

𝑎(𝒗, 𝒘) =
2∑︁
𝑖=1

(2𝜇𝑖𝝐(𝒗), 𝝐(𝒘))Ω𝑖
, (2.81)

𝑏(𝒗, 𝑞) = −
2∑︁
𝑖=1

(𝑞,∇ · 𝒗)Ω𝑖
, (2.82)

𝑙(𝒗) =
2∑︁
𝑖=0

( 𝒇 𝑖 , 𝒗𝑖)Ω𝑖
, (2.83)

with 𝒇 0 = 𝜎𝜅𝒏. We next formulate a cut finite element discretization based on
Nitsche’s method.

The cut finite element method based on Nitsche’s method. We use the same notation
as in Section 2.2. Let Ω̃ be a polytopal domain such that Ω ⊂ Ω̃, equipped with
a background mesh T̃ℎ. For simplicity, we assume that 𝜕Ω̃ = 𝜕Ω. We define the
active meshes and corresponding active domains associated with the subdomains
Ω𝑖 , 𝑖 = 1, 2, as before:

Tℎ,𝑖 = {𝑇 ∈ T̃ℎ | 𝑇 ∩Ω𝑖 ≠ ∅}, Ωℎ,𝑖 =
⋃

𝑇∈Tℎ,𝑖

𝑇. (2.84)

An illustration of these domains and meshes is provided in Figure 2.4. On the
active mesh Tℎ,𝑖 , we define finite element spaces 𝑽ℎ,𝑖 for the velocity and 𝑄ℎ,𝑖

for the pressure. These pairs of spaces (𝑽ℎ,𝑖 , 𝑄ℎ,𝑖) are chosen to be either inf-sup
stable pairs or pairs that are stable with some pressure stabilization. Examples
include the stabilized P1-P0 pair (Becker, Burman and Hansbo 2009), the P1 iso
P2 elements (linear elements both for the velocity and the pressure but on different
meshes) (Hansbo, Larson and Zahedi 2014), the Taylor–Hood elements (Kirchhart,
Gross and Reusken 2016) and the Scott–Vogelius pair (Liu, Neilan and Olshanskii
2023). See also the work by Guzmán and Olshanskii (2018) for inf-sup stability of
various element pairs in the context of cut finite element discretizations.

Define

𝑾ℎ = 𝑽ℎ,1 ⊕ 𝑽ℎ,2, 𝑄ℎ = 𝑄ℎ,1 ⊕ 𝑄ℎ,2, (2.85)

with 𝑄ℎ ⊂ 𝑄.
Similar to the derivation of the weak formulation for the interface problem in

Section 2.2, we can obtain a weak formulation by integrating by parts in each
subdomain and imposing interface conditions weakly using Nitsche’s method. For
𝑖 = 1, 2, we multiply (2.71) by 𝒗ℎ = (𝒗ℎ,1, 𝒗ℎ,2) ∈ 𝑾ℎ, where 𝒗ℎ,𝑖 ∈ 𝑽ℎ,𝑖 , integrate
over Ω𝑖 , apply Green’s identity, use the identity (2.28), and apply the interface
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conditions. This results in the following formulation:

2∑︁
𝑖=1

( 𝒇 𝑖 , 𝒗ℎ,𝑖)Ω𝑖
=

2∑︁
𝑖=1

(−∇ · (𝜇𝝐(𝒖) − 𝑝𝑰), 𝒗ℎ)Ω𝑖

=

2∑︁
𝑖=1

(𝜇𝝐(𝒖), 𝝐(𝒗ℎ))Ω𝑖
− (𝑝,∇ · 𝒗ℎ)Ω𝑖

+
2∑︁
𝑖=1

−(𝜇𝝐(𝒖)𝒏𝑖 , 𝒗ℎ)Ω0 + (𝑝, 𝒏𝑖 · 𝒗ℎ)Ω0

=

2∑︁
𝑖=1

(𝜇𝝐(𝒖), 𝝐(𝒗ℎ))Ω𝑖
− (𝑝,∇ · 𝒗ℎ)Ω𝑖

− (⟨(𝜇𝜀(𝒖) − 𝑝I)𝒏⟩, [𝒗ℎ])Ω0

− (𝜎𝜅𝒏, ⟨𝒗ℎ⟩∗)Ω0

=

2∑︁
𝑖=1

(𝜇𝝐(𝒖), 𝝐(𝒗ℎ))Ω𝑖
− (𝑝,∇ · 𝒗ℎ)Ω𝑖

+ (⟨𝑝⟩, [𝒏 · 𝒗ℎ])Ω0 − (⟨𝜇𝜀(𝒖)𝒏⟩, [𝒗ℎ])Ω0

− ([𝒖], ⟨𝜇𝜀(𝒗ℎ)𝒏⟩)Ω0 + (𝛽ℎ−1 [𝒖], [𝒗ℎ])Ω0 − (𝜎𝜅𝒏, ⟨𝒗ℎ⟩∗)Ω0 . (2.86)

Note that in the derivation we rewrote the interface term and used the interface
condition (2.74) as∫

Ω0

[((𝜇𝜀(𝒖) − 𝑝I)𝒏)𝒗ℎ] =
∫
Ω0

⟨(𝜇𝜀(𝒖) − 𝑝I)𝒏⟩[𝒗ℎ] +
∫
Ω0

[(𝜇𝜀(𝒖) − 𝑝I)𝒏]︸              ︷︷              ︸
𝜎𝜅𝒏

⟨𝒗ℎ⟩∗,

(2.87)
while the condition [𝒖] = 0 at Ω0 is enforced by introducing both a symmetrizing
term and a penalty term in equation (2.86), both of which vanish for the exact
solution 𝒖. We also multiply (2.72) by 𝑞ℎ = (𝑞ℎ,1, 𝑞ℎ,2) ∈ 𝑄ℎ, and to obtain a
skew-symmetric coupling, we introduce the term (⟨𝑞ℎ⟩, [𝒖 · 𝒏])Ω0 , which vanishes
for the exact solution.

Based on this derivation, we can now state the following cut finite element
formulation: find 𝒖ℎ ∈ 𝑊ℎ and 𝑝ℎ ∈ 𝑄ℎ such that

𝐴(𝒖ℎ, 𝒗ℎ) + 𝑏ℎ(𝒗ℎ, 𝑝ℎ) = 𝑙(𝒗ℎ), (2.88)
𝑏ℎ(𝒖ℎ, 𝑞ℎ) − 𝑆𝑏 = 0, (2.89)

for all 𝒗ℎ ∈ 𝑾ℎ and 𝑞ℎ ∈ 𝑄ℎ. Here

𝐴ℎ(𝒗, 𝒘) = 𝑎ℎ(𝒗, 𝒘) + 𝑆𝑎, (2.90)

𝑎ℎ(𝒗, 𝒘) =
2∑︁
𝑖=1

(2𝜇𝑖𝝐(𝒗), 𝝐(𝒘))Ω𝑖
− (⟨𝜇𝜀(𝒗)𝒏⟩, [𝒘])Ω0

− ([𝒗], ⟨𝜇𝜀(𝒘)𝒏⟩)Ω0 + 𝛽ℎ−1([𝒗], [𝒘])Ω0 , (2.91)
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𝑏ℎ(𝒗, 𝑞) = −
2∑︁
𝑖=1

(𝑞,∇ · 𝒗)Ω𝑖
+ (⟨𝑞⟩, [𝒗 · 𝒏])Ω0 , (2.92)

𝑙ℎ(𝒗) =
2∑︁
𝑖=1

( 𝒇 𝑖 , 𝒗)Ω𝑖
+ (𝜎𝜅𝒏, ⟨𝒗⟩∗)Ω0 . (2.93)

Note that in the derivation of the weak formulation in equation (2.86) we added the
term −([𝒖], ⟨𝜇𝜀(𝒗ℎ)𝒏⟩)Ω0 in order to obtain a symmetric bilinear form, 𝑎ℎ. If we
had instead added ([𝒖], ⟨𝜇𝜀(𝒗ℎ)𝒏⟩)Ω0 , we would have arrived at an anti-symmetric
version of Nitsche’s method, for which coercivity of 𝑎ℎ can be established more
easily. Boiveau and Burman (2015) studied a finite element method based on the
non-symmetric version of Nitsche’s method for incompressible linear elasticity,
and showed that the penalty term can be eliminated. However, obtaining optimal
a priori error estimates in the 𝐿2-norm can be more challenging for the anti-
symmetric formulation, due to the lack of adjoint consistency.

In early work, Becker et al. (2009) proposed a stabilized formulation using piece-
wise affine approximation for the velocities and piecewise constant approximation
for the pressure. Pressure stability was ensured by a term 𝑆𝑏 penalizing the jump of
the pressure across all interior element faces in the active mesh, thereby enabling
optimal error estimates independent of the boundary’s position relative to the mesh.
The stabilization form 𝑆𝑎 was not used, meaning uniform control of the condition
number was not achieved. The advantage of adding both stabilization forms to
the weak formulation is that they ensure stability and well-posed linear systems,
regardless of the position of the interface or the boundary relative to the mesh, as
discussed in Hansbo et al. (2014). We also refer to Burman and Hansbo (2014)
and Massing, Larson, Logg and Rognes (2014) for the Stokes fictitious domain
problem.

In most studies, ghost penalty stabilization has been used to stabilize both the
velocity and the pressure, with 𝑆𝑎 = 𝑠ℎ,𝒖(𝒗, 𝒘) and 𝑆𝑏 = 𝑠ℎ,𝑝(𝑝, 𝑞). For instance,
in the case of P1 iso P2 elements (continuous piecewise linear elements for both
the velocity and pressure, but on different meshes), the stabilization terms take the
form (Hansbo et al. 2014)

𝑠ℎ,𝒖(𝒗, 𝒘) =
𝑑∑︁
𝑙=1

2∑︁
𝑖=1

𝜏𝒖,𝑖

∑︁
𝐹∈Fℎ,𝑖

ℎ([∇𝒗𝑙𝑖 · 𝒏𝐹], [∇𝒘𝑙
𝑖 · 𝒏𝐹])𝐹 , (2.94)

𝑠ℎ,𝑝(𝑝, 𝑞) =
2∑︁
𝑖=1

𝜏𝑝,𝑖

∑︁
𝐹∈Fℎ,𝑖

ℎ3([∇𝑝 · 𝒏𝐹], [∇𝑞 · 𝒏𝐹])𝐹 , (2.95)

where 𝒏𝐹 is the normal vector associated with the face 𝐹. The scaling with ℎ differs
for the velocity and the pressure, as it depends on the operator being stabilized by
the stabilization form.
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Recently, Liu et al. (2023) and Frachon, Hansbo, Nilsson and Zahedi (2024a)
demonstrated that, with the stabilization 𝑠ℎ,𝑝(𝑝, 𝑞), cut finite element discretiz-
ations cannot guarantee pointwise divergence-free velocity field approximations,
even when the underlying finite element pair satisfies the divergence-free property.
To address this issue, Frachon et al. (2024a) propose a modified stabilization ap-
proach for the bilinear form 𝑏ℎ, where they choose 𝑆𝑏 = 𝑠ℎ,𝑝(div 𝒖ℎ, 𝑞) for element
pairs such that ∇ · 𝑉ℎ,𝑖 = 𝑄ℎ,𝑖 .

Cut finite element methods that produce pointwise divergence-free velocity ap-
proximations for the Stokes problem in domains with unfitted boundaries, where
boundary conditions are imposed weakly, have recently been developed by Bur-
man, Hansbo and Larson (2024a) and by Frachon, Nilsson and Zahedi (2024b). In
Burman et al. (2024a), a CutFEM framework for divergence-free elements using
Lagrange multipliers is proposed, and optimal a priori error estimates are derived
without the need for stabilization forms; for well-conditioning of the resulting linear
systems, a ghost penalty term for the velocity may be added. This approach was
extended to the case of Darcy flow in Lehrenfeld, van Beeck and Voulis (2023).
In contrast, Frachon et al. (2024b) investigate compatible cut finite element dis-
cretizations that rely on stabilization, emphasizing the importance of selecting
appropriate stabilization forms to avoid polluting the divergence condition. They
stress ensuring that the condition∫

𝜕Ω

𝒖ℎ · 𝒏 d𝑠 = 0 (2.96)

holds when imposing the boundary conditions weakly, and caution against intro-
ducing terms such as (⟨𝑞ℎ⟩, [𝒖ℎ · 𝒏])Ω0 into the weak form of the mass continuity
equation. These factors are essential for ensuring robust, pointwise divergence-free
unfitted discretizations.

Frachon et al. (2024b) have developed cut finite element methods based on the
Brezzi–Douglas–Marini (BDM) and Raviart–Thomas (RT) spaces, both families
of 𝑯div-conforming finite element spaces. By combining the ideas from Frachon
et al. (2024b) with the cut finite element method based on Nitsche’s method and the
Scott–Vogelius pair proposed in Liu et al. (2023), robust, pointwise divergence-free
cut finite element discretizations can be obtained.

For extensions of the presented cut finite element discretization to two-phase
Navier–Stokes flows and insoluble surfactants, see Claus and Kerfriden (2019) and
Frachon and Zahedi (2019, 2023).

2.5. Numerical illustration

We first present some numerical solutions to the interface problem (2.18)–(2.21)
to demonstrate the performance of CutFEM based on (2.40), using the parameters
𝛽 = 102 and 𝜏𝑖 = 10−1, with 𝑃1 triangular elements. In Figure 2.5 we show the
two subdomains Ω𝑖 , 𝑖 = 1, 2. We apply zero boundary conditions strongly on the
outer boundary of Ω1.
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Figure 2.5. The domainsΩ1 andΩ2 used for the numerical examples of the interface
problem (2.18)–(2.21).

(a) (b)

Figure 2.6. The standard FEM solution (a) and the CutFEM solution (b) of the
interface problem. The interface is highlighted by the black curve in (b).

Figure 2.7. The difference between the standard FEM and CutFEM solutions.
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Cut finite element methods 27

Figure 2.8. The CutFEM solution of the interface problem with 𝑔0 ≠ 0.

Figure 2.9. The CutFEM solution of the interface problem with 𝑓0 ≠ 0.

We compare the standard continuous FEM with CutFEM on the same mesh when
𝛼1 = 10, 𝛼2 = 1 and 𝑓0 = 𝑔0 = 0. The mesh is not aligned with the interface, which
is represented by a piecewise linear approximation. Exact integration, accounting
for the interface position, is performed in both methods. In Figure 2.6 we show
the two solutions, and in Figure 2.7 we show the difference between the CutFEM
solution and the standard continuous FEM solution. Note that in this example there
is a discontinuity in the normal derivative of the solution and the error between the
CutFEM solution, and the standard continuous FEM solution is not limited to the
vicinity of the interface. Instead, it affects the solution globally in Ω2.

In Figure 2.8 we show the CutFEM solution when 𝛼1 = 𝛼2 = 1, 𝑓0 = 0 and
𝑔0 = 1, and in Figure 2.9 we show the result when 𝛼1 = 𝛼2 = 1, 𝑓0 = 10 and 𝑔0 = 0.
The cut finite element approach is seen to handle discontinuities easily, both in the
solution and in the gradient of the solution.

Finally, we consider the Stokes interface problem (2.71)–(2.75) and a static drop,
represented as a circle with radius 𝑟 = 0.5. The viscosities of both fluids are set
to one, 𝒇 𝑖 = 0, and we choose 𝜎 = 1. Thus the exact velocity is zero, and due to
the surface tension force, there is a jump in the exact pressure across the interface,
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Figure 2.10. The approximate pressure for the Stokes interface problem: the
standard FEM solution (a) and the CutFEM solution (b). The exact pressure is
represented by the dotted line in (a).

equal to the magnitude of the curvature. We compare the standard continuous FEM
with CutFEM on the same mesh using P1 iso P2 elements (linear elements both
for the velocity and pressure, but on different meshes). In Figure 2.10 we show the
cross-section of the pressure approximation from both CutFEM and the standard
continuous FEM. We observe that the pressure solution using CutFEM is accurate,
and in this case the exact pressure is obtained. However, since the mesh is not fitted
to the interface where the pressure discontinuity occurs, the approximate pressure
solution obtained using the standard FEM with globally continuous elements ex-
hibits oscillations around the interface. The approximation of the velocity field is
exact to machine precision using CutFEM, whereas with the standard FEM we ob-
serve spurious currents (unphysical velocities) around the interface. The CutFEM
results hold for both 𝑆𝑏 = 𝑠ℎ,𝑝(𝑝, 𝑞) and 𝑆𝑏 = 𝑠ℎ,𝑝(div 𝒖ℎ, 𝑞). The standard FEM
solution is based on the discretization of the weak form (2.79)–(2.80).

3. Fundamental analysis of CutFEM
In this section we present the fundamental analysis of CutFEM for second-order
symmetric problems. As discussed in the previous section, cut finite element
methods impose boundary or interface conditions weakly on unfitted meshes using
a consistent penalty method (such as Nitsche’s method) or via Lagrange multipliers.
The analysis of cut finite element discretizations using Lagrange multipliers is
addressed in Section 7.

3.1. Abstract formulation

Consider the following abstract problems.
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1. The continuous problem. Find 𝑢 ∈ 𝑊 such that

𝑎(𝑢, 𝑣) = 𝑙(𝑣) for all 𝑣 ∈ 𝑊, (3.1)

where 𝑎(𝑢, 𝑣) is a bilinear form and 𝑙(𝑣) is a linear functional corresponding to
the weak formulation of a second-order symmetric boundary value problem.
The boundary conditions are incorporated in the function space 𝑊 , with
homogeneous Dirichlet boundary conditions assumed for simplicity. In the
case of non-homogeneous Dirichlet boundary conditions, the trial and the test
space will differ (see the boundary value problem in Section 2.1).

2. The cut finite element method (CutFEM). Find 𝑢ℎ ∈ 𝑊ℎ such that

𝐴ℎ(𝑢ℎ, 𝑣) = 𝑙ℎ(𝑣) for all 𝑣 ∈ 𝑊ℎ, (3.2)

where 𝐴ℎ is a bilinear form given by

𝐴ℎ(𝑣, 𝑤) = 𝑎ℎ(𝑣, 𝑤) + 𝑠ℎ(𝑣, 𝑤). (3.3)

Here 𝑎ℎ and 𝑙ℎ represent the discretized bilinear form and linear functional, re-
spectively. These forms may coincide with the continuous counterparts 𝑎 and 𝑙,
or, in the case of CutFEM based on Nitsche’s method, they may differ slightly due
to the weak imposition of boundary or interface conditions (for examples, see Sec-
tion 2). The term 𝑠ℎ represents the stabilization form. This section states abstract
assumptions on the stabilization form that ensure stability and well-conditioned
discretized systems, independent of the cuts in the unfitted mesh. Then, in Sec-
tion 4, we provide several concrete examples of such stabilization operators. In the
abstract setting, we do not explicitly account for the dependences of the coefficients
in the forms. However, we will consider several examples below where we include
the dependences of the problem parameters.

To derive a priori error estimates, we make the following assumptions.

A1. Consistency. The exact solution 𝑢 ∈ 𝑊 also satisfies

𝑎ℎ(𝑢, 𝑣) = 𝑙ℎ(𝑣) for all 𝑣 ∈ 𝑊ℎ, (3.4)

where 𝑊 ⊂ 𝑊 .
A2. Continuity. There is a norm ||| · |||ℎ such that

𝑎ℎ(𝑣, 𝑤) ≲ |||𝑣 |||ℎ |||𝑤 |||ℎ for all 𝑣, 𝑤 ∈ 𝑊 +𝑊ℎ, (3.5)

and |||𝑤 |||ℎ is well-defined for all 𝑤 ∈ 𝑊 +𝑊ℎ. Furthermore, the stabilization
form is an inner product on 𝑊ℎ, induces a norm ∥𝑣∥2

𝑠ℎ
= 𝑠ℎ(𝑣, 𝑣), and by the

Cauchy–Schwarz inequality we have

𝑠ℎ(𝑣, 𝑤) ≲ ∥𝑣∥𝑠ℎ ∥𝑤∥𝑠ℎ for all 𝑣, 𝑤 ∈ 𝑊ℎ . (3.6)

A3. Stability. On 𝑊ℎ we have

|||𝑣 |||ℎ,⋆ ≲ sup
𝑤∈𝑊ℎ\{0}

𝐴ℎ(𝑣, 𝑤)
|||𝑤 |||ℎ,⋆

for all 𝑣 ∈ 𝑊ℎ (3.7)
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uniformly, where

|||𝑣 |||2
ℎ,⋆ = |||𝑣 |||2ℎ + ∥𝑣∥2

𝑠ℎ
. (3.8)

A4. Approximation. There is an interpolation operator 𝜋ℎ : 𝐻𝑠(O) → 𝑊ℎ, 𝑠 ≥ 1,
such that for 𝑣 ∈ 𝐻𝑠(O)

|||𝑣 − 𝜋ℎ𝑣 |||ℎ ≲ ℎ𝑠−1∥𝑣∥𝐻𝑠(O), 1 ≤ 𝑠 ≤ 𝑝 + 1. (3.9)

Furthermore, the stabilization form 𝑠ℎ satisfies the weak consistency

∥𝜋ℎ𝑣∥𝑠ℎ ≲ ℎ𝑠−1∥𝑣∥𝐻𝑠(O), 1 ≤ 𝑠 ≤ 𝑝 + 1. (3.10)

Note that in assumption A1 we introduce a new space𝑊 because we typically need
to assume that the weak solution to (3.1) is regular enough for (3.4) to hold, due
to the bilinear forms 𝑎 and 𝑎ℎ. Compare the bilinear forms 𝑎 and 𝑎ℎ in Section 2,
where the form 𝑎ℎ arises from applying Nitsche’s method. The norm ||| · |||ℎ is
typically associated with 𝑎ℎ. The domain O refers to the physical domain. In
the context of the boundary value problem in Section 2.1, O corresponds to Ω,
while for the interface problem in Section 2.2, it represents the disjoint union of
the different subdomains, O =

⊔
𝑖 Ω𝑖 . The norm ∥𝑣∥2

𝐻𝑠(O) is then defined as the
sum of the norms over each subdomain,

∥𝑣∥2
𝐻𝑠(O) =

∑︁
𝑖

∥𝑣𝑖 ∥2
𝐻𝑠(Ω𝑖) and ∥𝑣∥2

𝑠ℎ
=
∑︁
𝑖

∥𝑣𝑖 ∥2
𝑠ℎ,𝑖

. (3.11)

Next we will establish optimal order a priori estimates provided assumptions
A1–A4 are satisfied. We will then construct interpolation operators 𝜋ℎ satisfying
assumption A4. Finally, we will verify that assumptions A1–A3 hold for the cut
finite element methods introduced in Section 2 for the boundary value problem,
the interface problem and the coupled bulk–surface problem. We will see that
assumption A3 (stability), depending on 𝑎ℎ, may impose an additional design
criterion for the stabilization form 𝑠ℎ.

3.2. Error estimate

Theorem 3.1. For 𝑢 ∈ 𝑊 ∩ 𝐻 𝑝+1(O), and provided A1–A4 hold, there exists a
constant such that

|||𝑢 − 𝑢ℎ |||ℎ ≲ ℎ𝑝 ∥𝑢∥𝐻 𝑝+1(O). (3.12)

Proof. We begin by splitting the error into two parts using the interpolation
operator

|||𝑢 − 𝑢ℎ |||ℎ ≲ |||𝑢 − 𝜋ℎ𝑢 |||ℎ + |||𝜋ℎ𝑢 − 𝑢ℎ |||ℎ . (3.13)

For the first term in (3.13), we directly conclude, using the interpolation estimate
(3.9) (assumption A4), that

|||𝑢 − 𝜋ℎ𝑢 |||ℎ ≲ ℎ𝑝 ∥𝑢∥𝐻 𝑝+1(O). (3.14)
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Cut finite element methods 31

For the second term in (3.13) we use the definition of ||| · |||ℎ,⋆ (equation (3.8))
and apply assumption A3 (stability) to conclude that

|||𝜋ℎ𝑢 − 𝑢ℎ |||ℎ ≤ |||𝜋ℎ𝑢 − 𝑢ℎ |||ℎ,⋆ ≲ sup
𝑤∈𝑊ℎ\{0}

𝐴ℎ(𝜋ℎ𝑢 − 𝑢ℎ, 𝑤)
|||𝑤 |||ℎ,⋆

. (3.15)

We estimate the numerator in (3.15) by using the fact that (3.2), assumption A1
(consistency), A2 (continuity) and assumption A4 (approximation) all hold. This
leads to

𝐴ℎ(𝜋ℎ𝑢 − 𝑢ℎ, 𝑤) = 𝐴ℎ(𝜋ℎ𝑢, 𝑤) − 𝑙ℎ(𝑤)
= 𝑎ℎ(𝜋ℎ𝑢, 𝑤) − 𝑙ℎ(𝑤) + 𝑠ℎ(𝜋ℎ𝑢, 𝑤)
= 𝑎ℎ(𝜋ℎ𝑢 − 𝑢, 𝑤) + 𝑠ℎ(𝜋ℎ𝑢, 𝑤)
≲ |||𝜋ℎ𝑢 − 𝑢 |||ℎ |||𝑤 |||ℎ + ∥𝜋ℎ𝑢∥𝑠ℎ ∥𝑤∥𝑠ℎ
≲
(
|||𝜋ℎ𝑢 − 𝑢 |||2ℎ + ∥𝜋ℎ𝑢∥2

𝑠ℎ

)1/2 |||𝑤 |||ℎ,⋆
≲ ℎ𝑝 ∥𝑢∥𝐻 𝑝+1(O) |||𝑤 |||ℎ,⋆. (3.16)

Combining (3.15) with (3.16), we get

|||𝜋ℎ𝑢 − 𝑢ℎ |||ℎ,⋆ ≲ ℎ𝑝 ∥𝑢∥𝐻 𝑝+1(O). (3.17)

Finally, the result follows from (3.13), (3.14), (3.15) and (3.17).

Next we shall derive an 𝐿2-error estimate. To that end, let 𝜙 ∈ 𝑊 be the solution
to the dual problem

𝑎(𝑣, 𝜙) = (𝜓, 𝑣) for all 𝑣 ∈ 𝑊, (3.18)

with 𝜓 ∈ 𝐿2(O), and assume that we have the elliptic regularity

∥𝜙∥𝐻2(O) ≲ ∥𝜓∥𝐿2(O). (3.19)

Furthermore, we assume that 𝜙 ∈ 𝑊 ∩ 𝐻2(O) and the discrete form 𝑎ℎ is adjoint
consistent,

𝑎ℎ(𝑣, 𝜙) = (𝑣, 𝜓) for all 𝑣 ∈ 𝑊ℎ +𝑊. (3.20)

Theorem 3.2. For 𝑢 ∈ 𝑊∩𝐻 𝑝+1(O), and provided A1–A4, the elliptic regularity
(3.19), and the adjoint consistency (3.20) all hold, there exists a constant such that

∥𝑢 − 𝑢ℎ∥𝐿2(O) ≲ ℎ𝑝+1∥𝑢∥𝐻 𝑝+1(O). (3.21)

Setting 𝑣 = 𝑢 − 𝑢ℎ in (3.20), we get

(𝜓, 𝑢 − 𝑢ℎ)O = 𝑎ℎ(𝑢 − 𝑢ℎ, 𝜙)
= 𝑎ℎ(𝑢 − 𝑢ℎ, 𝜙 − 𝜋ℎ𝜙) + 𝑎ℎ(𝑢 − 𝑢ℎ, 𝜋ℎ𝜙)
= 𝑎ℎ(𝑢 − 𝑢ℎ, 𝜙 − 𝜋ℎ𝜙) + 𝑙ℎ(𝜋ℎ𝜙) − 𝑎ℎ(𝑢ℎ, 𝜋ℎ𝜙)︸                       ︷︷                       ︸

=𝑠ℎ(𝑢ℎ , 𝜋ℎ𝜙)
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32 E. Burman, P. Hansbo, M. G. Larson and S. Zahedi

= 𝑎ℎ(𝑢 − 𝑢ℎ, 𝜙 − 𝜋ℎ𝜙) + 𝑠ℎ(𝑢ℎ, 𝜋ℎ𝜙)
≲ |||𝑢 − 𝑢ℎ |||ℎ |||𝜙 − 𝜋ℎ𝜙 |||ℎ + ∥𝑢ℎ∥𝑠ℎ ∥𝜋ℎ𝜙∥𝑠ℎ
≲ |||𝑢 − 𝑢ℎ |||ℎ |||𝜙 − 𝜋ℎ𝜙 |||ℎ
+ (∥𝑢ℎ − 𝜋ℎ𝑢∥𝑠ℎ + ∥𝜋ℎ𝑢∥𝑠ℎ )∥𝜋ℎ𝜙∥𝑠ℎ
≲ ℎ𝑝+1∥𝑢∥𝐻 𝑝+1(O)∥𝜙∥𝐻2(O)

≲ ℎ𝑝+1∥𝑢∥𝐻 𝑝+1(O)∥𝜓∥𝐿2(O), (3.22)

where we used the energy error estimate (3.12) and estimate (3.17), assumption
(3.10) on 𝑠ℎ, interpolation error estimates, and finally the elliptic regularity (3.19).
Taking 𝜓 = 𝑢 − 𝑢ℎ concludes the proof.

3.3. Useful inequalities

Here we recall some inequalities that will be used in the forthcoming analysis. For
𝑇 ∈ Tℎ, we have the standard trace inequality (see e.g. Brenner and Scott 2008)

∥𝑣∥2
𝜕𝑇 ≲ ℎ−1∥𝑣∥2

𝑇 + ℎ∥∇𝑣∥2
𝑇 , 𝑣 ∈ 𝐻1(𝑇), (3.23)

and a trace inequality for cut elements, which is frequently used in CutFEM (see
Wu and Xiao 2019),

∥𝑣∥2
𝑇∩Ω0

≲ ℎ−1∥𝑣∥2
𝑇 + ℎ∥∇𝑣∥2

𝑇 , 𝑣 ∈ 𝐻1(𝑇), (3.24)

where the constant is independent of how Ω0 intersects 𝑇 and of ℎ. We also
frequently use the standard inverse inequality (see Brenner and Scott 2008)

|𝑣 |2
𝐻 𝑗 (𝑇) ≲ ℎ−2( 𝑗−𝑠)∥𝑣∥2

𝐻𝑠(𝑇), 0 ≤ 𝑠 ≤ 𝑗 , 𝑣 ∈ 𝑊ℎ, (3.25)

which, when combined with (3.24), yields the following for 𝑣 ∈ 𝑊ℎ:

∥𝑣∥2
𝑇∩Ω0

≲ ℎ−1∥𝑣∥2
𝑇 , 𝑣 ∈ 𝑊ℎ . (3.26)

3.4. Approximation properties

Here we construct interpolation operators for bulk domains and embedded surfaces.
To simplify the description, we consider the case when there is one bulk domain
O = Ω or one surface O = Ω0. For interface problems with several subdomains
Ω𝑖 , interpolation operators have to be constructed in the same way, but for each
subdomain and finite element space 𝑉ℎ,𝑖 .

The main idea when constructing interpolation operators for CutFEM is to first
extend the function that we shall approximate using a stable extension operator,
and then to interpolate the extended function using a stable interpolation operator.

Bulk domain. Let 𝐸𝐵 : 𝐻𝑠(Ω) → 𝐻𝑠(R𝑑) be an extension operator with 𝑠 ≥ 1,
such that 𝐸𝐵𝑣 |Ω = 𝑣 and

∥𝐸𝐵𝑣∥𝐻𝑠(R𝑑) ≲ ∥𝑣∥𝐻𝑠(Ω) for all 𝑣 ∈ 𝐻𝑠(Ω), (3.27)
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where we refer to Stein (1970) for details. Recall from Section 2.1 that the domain
Ω is embedded in a computational domain Ω̃, and recall the definition of the active
domain Ωℎ, as given in equation (2.5), and also that 𝑉ℎ denotes the finite element
space defined on this active domain.

Let 𝜋ℎ,𝐶 : 𝐿2(Ω̃) → 𝑉ℎ denote the Clément interpolation operator. For each
element 𝑇 ∈ Tℎ we have the following interpolation error estimate:

∥𝑤 − 𝜋ℎ,𝐶𝑤∥𝐻𝑚(𝑇) ≤ 𝐶ℎ𝑝+1−𝑚∥𝑤∥𝐻 𝑝+1(𝑁ℎ(𝑇)), 0 ≤ 𝑚 ≤ 𝑝 + 1, (3.28)

where 𝑁ℎ(𝑇) ⊂ Ωℎ is the union of the neighbouring elements of 𝑇 . We now define
the interpolation operator 𝜋ℎ : 𝐿2(Ω) → 𝑉ℎ by

𝜋ℎ𝑣 = 𝜋ℎ,𝐶𝐸𝐵𝑣. (3.29)

Using the interpolation error estimate in (3.28) and the stability of the extension
operator (3.27), we obtain

∥𝑣 − 𝜋ℎ𝑣∥𝐻𝑚(Ω) ≤ ∥𝐸𝐵𝑣 − 𝜋ℎ,𝐶𝐸𝐵𝑣∥𝐻𝑚(Ωℎ)

≲ ℎ𝑝+1−𝑚∥𝐸𝐵𝑣∥𝐻 𝑝+1(Ωℎ)

≲ ℎ𝑝+1−𝑚∥𝑣∥𝐻 𝑝+1(Ω). (3.30)

Surfaces. Let Ω0 ⊂ R𝑑 be a smooth, embedded codimension-one hypersurface.
Let dist(𝑥,Ω0) = inf𝑦∈Ω0 ∥𝑥 − 𝑦∥R𝑑 be the distance function associated with Ω0,
and let

𝑈𝛿(Ω0) = {𝑥 ∈ R𝑑 | dist(𝑥,Ω0) ≤ 𝛿} (3.31)

denote the tubular neighbourhood of Ω0 with thickness 2𝛿 > 0. Then, for 𝛿0 > 0
small enough, the closest-point projection 𝑝Ω0 : 𝑈𝛿0(Ω0) → Ω0 is well-defined,
and we can define an extension operator 𝐸𝑆 : 𝐻𝑠(Ω0) → 𝐻𝑠(𝑈𝛿(Ω0)) such that
𝐸𝑆𝑣 = 𝑣 ◦ 𝑝Ω0 and

∥𝐸𝑆𝑣∥𝐻𝑠(𝑈𝛿 (Ω0)) ≲ 𝛿1/2∥𝑣∥𝐻𝑠(Ω0), 𝑣 ∈ 𝐻𝑠(Ω0), (3.32)

for any 0 < 𝛿 ≤ 𝛿0. In the same way as for the bulk domain, we define the
interpolation operator 𝜋ℎ : 𝐻𝑠(Ω0) → 𝑉ℎ,0 by

𝜋ℎ𝑣 = 𝜋ℎ,𝐶𝐸𝑆𝑣. (3.33)

Recall from Section 2.3 the definition of the active domain Ωℎ,0 (see equation
(2.65)) and the finite element space 𝑉ℎ,0, defined on this domain. From equation
(3.28) we obtain

∥𝐸𝑆𝑣 − 𝜋ℎ,𝐶𝐸𝑆𝑣∥𝐻𝑚(Ωℎ,0) ≲ ℎ𝑝+1−𝑚∥𝐸𝑆𝑣∥𝐻 𝑝+1(Ωℎ,0)

≲ ℎ𝑝+1−𝑚ℎ1/2∥𝑣∥𝐻 𝑝+1(Ω0), (3.34)

for ℎ ∈ (0, ℎ0], with ℎ0 small enough to guarantee that Ωℎ,0 ⊂ 𝑈𝛿0(Ω0) and
Ωℎ,0 ⊂ 𝑈𝛿(Ω0) with 𝛿 ≲ ℎ. Note that the patch 𝑁ℎ(𝑇) for 𝑇 ∈ Tℎ (see equation
(3.28)) can always be adjusted so that 𝑁ℎ(𝑇) ⊂ Ωℎ,0.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492925000017
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 26 Jul 2025 at 10:59:45, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492925000017
https://www.cambridge.org/core


34 E. Burman, P. Hansbo, M. G. Larson and S. Zahedi

To bound the interpolation error on the surface, we use the elementwise trace
inequality (3.24) and combine it with equation (3.34) to obtain

∥∇𝑚
0 (𝑣 − 𝜋ℎ𝑣)∥2

Ω0
≲ ℎ−1∥∇𝑚(𝐸𝑆𝑣 − 𝜋ℎ,𝐶𝐸𝑆𝑣)∥2

Ωℎ,0

+ ℎ∥∇𝑚+1(𝐸𝑆𝑣 − 𝜋ℎ,𝐶𝐸𝑆𝑣)∥2
Ωℎ,0

≲ ℎ2(𝑝+1−𝑚)∥𝑣∥2
𝐻 𝑝+1(Ω0). (3.35)

3.5. Condition number estimate

Next we prove a bound of the condition number of the stiffness matrix associated
with the cut finite element method defined by (3.2). The stiffness matrix 𝐴ℎ is
defined by

(𝐴ℎ �̂�, 𝑤)R𝑁 = 𝐴ℎ(𝑣, 𝑤), 𝑣, 𝑤 ∈ 𝑊ℎ . (3.36)

The operator 𝑊ℎ ∋ 𝑣 ↦→ �̂� ∈ R𝑁 is the coefficient extraction operator, which maps
the function 𝑣 to the vector of coefficients �̂� = (̂𝑣1, �̂�2, . . . , �̂�𝑁 ) with respect to a
standard finite element basis {𝜑𝑖}𝑁𝑖=1 in 𝑊ℎ, and the expansion

𝑣 =

𝑁∑︁
𝑖=1

�̂�𝑖𝜑𝑖 . (3.37)

Recall that for a symmetric positive semidefinite problem, the spectral condition
number is defined as

cond(𝐴ℎ) =
𝜆max
𝜆min

, (3.38)

where 𝜆max and 𝜆min are the maximum and minimum eigenvalues, respectively, of
the eigenvalue problem

𝐴ℎ �̂� = 𝜆�̂�. (3.39)

Recall that the domain O refers to the physical domain, and let Oℎ denote
the active domain associated with O, as described in Section 2. In the context
of the boundary value problem in Section 2.1, Oℎ corresponds to Ωℎ, while
for the interface problem in Section 2.2, it represents the disjoint union of the
different active subdomains, Oℎ =

⊔
𝑖 Ωℎ,𝑖 . Let the norm ∥𝑣∥Oℎ

of a function
𝑣 = (𝑣1, 𝑣2) ∈ 𝑊ℎ be defined as

∥𝑣∥2
Oℎ

=
∑︁
𝑖

∥𝑣𝑖 ∥2
Ωℎ,𝑖

. (3.40)

Here we focus on bulk problems. For coupled bulk–surface problems, we need to
precondition the problem by setting 𝑣0 = ℎ1/2�̃�0 and solving for �̃�0. For further
details, see Section 3.8 and Burman, Hansbo, Larson and Zahedi (2016a).

To derive an estimate of the condition number, we will need the following
assumptions.
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A5. Inverse bound. There exists a constant such that

|||𝑣 |||ℎ,⋆ ≲ ℎ−1∥𝑣∥Oℎ
, 𝑣 ∈ 𝑊ℎ . (3.41)

This inverse bound usually follows by the trace inequality and from stand-
ard inverse inequalities for standard finite element spaces on quasi-uniform
meshes; see Section 3.3.

A6. Poincaré inequality. There exists a constant such that

∥𝑣∥Oℎ
≲ |||𝑣 |||ℎ,⋆, 𝑣 ∈ 𝑊ℎ . (3.42)

This Poincaré inequality requires stabilization to control the finite element
functions in 𝑊ℎ on Oℎ.

A7. Norm equivalence. There exist constants such that

ℎ𝑑 ∥�̂�∥2
R𝑁

∼ ∥𝑣∥2
Oℎ

, 𝑣 ∈ 𝑊ℎ . (3.43)

This standard estimate follows from the quasi-uniformity of the mesh and the
use of a nodal basis (Ern and Guermond 2006).

Next we will show that a similar bound on the spectral condition number, which
is satisfied by standard finite element methods, also holds for CutFEM, provided
assumptions A2–A3 and A5–A7 are satisfied. We will verify assumption A6 in
Section 4.

Theorem 3.3. Provided A2–A3 and A5–A7 hold, there exists a constant such
that

cond(𝐴ℎ) ≲ ℎ−2. (3.44)

Proof. The eigenvalues are characterized by the Rayleigh quotient

(𝐴ℎ �̂�, �̂�)R𝑁
∥�̂�∥2
R𝑁

=
𝐴ℎ(𝑣, 𝑣)
∥�̂�∥2
R𝑁

. (3.45)

To bound 𝐴ℎ(𝑣, 𝑣) from above, we use assumption A2 (continuity (3.5)–(3.6)), A5
(inverse bound (3.41)), followed by A7 (norm equivalence (3.43)). This gives the
estimate

𝐴ℎ(𝑣, 𝑣) ≲ |||𝑣 |||2ℎ ≲ ℎ−2∥𝑣∥2
Oℎ
≲ ℎ𝑑−2∥�̂�∥2

R𝑁
. (3.46)

Therefore we have

𝜆max = max
𝑣∈𝑊ℎ

𝐴ℎ(𝑣, 𝑣)
∥�̂�∥R𝑁

≲ ℎ𝑑−2. (3.47)

To derive a bound from below, we use assumption A3 (stability (3.7)), A7 (norm
equivalence (3.43)) and A6 (Poincaré inequality (3.42)), and proceed as follows:

ℎ𝑑 ∥�̂�∥2
R𝑁
≲ ∥𝑣∥2

Oℎ
≲ |||𝑣 |||2

ℎ,⋆ ≲ 𝐴ℎ(𝑣, 𝑣). (3.48)
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From this we conclude that

𝜆min = min
𝑣∈𝑊ℎ

𝐴ℎ(𝑣, 𝑣)
∥�̂�∥R𝑁

≳ ℎ𝑑 . (3.49)

Combining the bounds for 𝜆max and 𝜆min completes the proof.

In the following subsections we verify some of the assumptions for the bound-
ary value problem, the interface problem and the coupled bulk–surface problem,
presented in Section 2.

3.6. Nitsche’s method for a boundary value problem

Recall the boundary value problem presented in Section 2.1. The continuous
problem is as follows: find 𝑢 ∈ 𝑉𝑔 such that

𝑎(𝑢, 𝑣) = 𝑙(𝑣) for all 𝑣 ∈ 𝑉0, (3.50)

where
𝑎(𝑣, 𝑤) = (𝛼∇𝑣,∇𝑤)Ω, 𝑙(𝑣) = ( 𝑓 , 𝑣)Ω, (3.51)

and

𝑉𝑔 = {𝑣 ∈ 𝐻1(Ω) | 𝑣 = 𝑔 on 𝜕Ω}. (3.52)

For the cut finite element method based on Nitsche’s method, we seek 𝑢ℎ ∈ 𝑉ℎ

such that

𝐴ℎ(𝑢ℎ, 𝑣) = 𝑙ℎ(𝑣) for all 𝑣 ∈ 𝑉ℎ, (3.53)

where the forms are defined as follows:

𝐴ℎ(𝑣, 𝑤) = 𝑎ℎ(𝑣, 𝑤) + 𝜏𝑠ℎ(𝑣, 𝑤), (3.54)
𝑎ℎ(𝑣, 𝑤) = (𝛼∇𝑣,∇𝑤)Ω − (𝑛 · 𝛼∇𝑣, 𝑤)𝜕Ω

− (𝑣, 𝑛 · 𝛼∇𝑤)𝜕Ω + 𝛽ℎ−1(𝑣, 𝑤)𝜕Ω, (3.55)
𝑙ℎ(𝑤) = ( 𝑓 , 𝑤)Ω − (𝑔, 𝑛 · 𝛼∇𝑤)𝜕Ω + 𝛽ℎ−1(𝑔, 𝑤)𝜕Ω. (3.56)

By assuming that the weak solution to (3.50) belongs to 𝑊 = 𝑉𝑔 ∩ 𝐻3/2+𝜀(Ω),
applying partial integration, and using the boundary condition, we obtain

𝑎ℎ(𝑢, 𝑣) − 𝑙ℎ(𝑣) = (𝛼∇𝑢,∇𝑣)Ω − (𝑛 · 𝛼∇𝑢, 𝑣)𝜕Ω − ( 𝑓 , 𝑣)Ω
= (−∇ · 𝛼∇𝑢, 𝑣)Ω − ( 𝑓 , 𝑣)Ω = 0. (3.57)

Thus the method is consistent, and assumption A1 holds.
Next, we define the norm

|||𝑣 |||2ℎ = ∥𝛼1/2∇𝑣∥2
Ω + ℎ∥𝛼1/2∇𝑣∥2

𝜕Ω + ℎ−1∥𝛼1/2𝑣∥2
𝜕Ω, (3.58)

and we note that the following continuity result holds:

𝑎ℎ(𝑣, 𝑤) ≤ max
(

1,
𝛽

𝛼

)
|||𝑣 |||ℎ |||𝑤 |||ℎ . (3.59)
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Cut finite element methods 37

To prove assumption A3 (stability) we begin by

𝑎ℎ(𝑣, 𝑣) ≥ ∥𝛼1/2∇𝑣∥2
Ω − 2|(𝑛 · 𝛼∇𝑣, 𝑣)𝜕Ω | + 𝛽ℎ−1∥𝑣∥2

𝜕Ω. (3.60)

Next, we estimate the negative term using the stabilization form 𝑠ℎ. Assuming that
𝑠ℎ provides the estimate

ℎ∥𝛼1/2∇𝑣∥2
𝜕Ω ≲ ∥𝛼1/2∇𝑣∥2

Ω + ∥𝛼1/2𝑣∥2
𝑠ℎ
, (3.61)

we can bound the boundary term as follows:

2|(𝑛 · 𝛼∇𝑣, 𝑣)𝜕Ω | ≤ 2∥𝛼1/2∇𝑣∥𝜕Ω∥𝛼1/2𝑣∥𝜕Ω
≤ 𝛿1ℎ∥𝛼1/2∇𝑣∥2

𝜕Ω + 𝛿−1
1 ℎ−1∥𝛼1/2𝑣∥2

𝜕Ω

≤ 𝛿1𝐶(∥𝛼1/2∇𝑣∥2
Ω + ∥𝛼1/2𝑣∥2

𝑠ℎ
) + 𝛿−1

1 ℎ−1∥𝛼1/2𝑣∥2
𝜕Ω, (3.62)

with 𝛿1 > 0. Hence

𝐴ℎ(𝑣, 𝑣) = 𝑎ℎ(𝑣, 𝑣) + 𝜏𝑠ℎ(𝑣, 𝑣) ≥ (1 − 𝛿1𝐶)∥𝛼1/2∇𝑣∥2
Ω

+ (𝛽 − 𝛿−1
1 )ℎ−1∥𝛼1/2𝑣∥2

𝜕Ω + (𝜏 − 𝛿1𝐶𝛼)∥𝑣∥2
𝑠ℎ
. (3.63)

To finalize the stability estimate, we add and subtract the term 𝛿0ℎ∥𝛼1/2∇𝑣∥2
𝜕Ω

,
and then use the estimate (3.61) again to bound the negative term. This gives

𝐴ℎ(𝑣, 𝑣) = 𝑎ℎ(𝑣, 𝑣) + 𝜏𝑠ℎ(𝑣, 𝑣)
≥ (1 − 𝛿𝐶)∥𝛼1/2∇𝑣∥2

Ω + 𝛿0ℎ∥𝛼1/2∇𝑣∥2
𝜕Ω

+ (𝛽 − 𝛿−1
1 )ℎ−1∥𝛼1/2𝑣∥2

𝜕Ω + (𝜏 − 𝛿𝐶𝛼)∥𝑣∥2
𝑠ℎ
. (3.64)

Choosing small enough constants 𝛿𝑖 > 0 with 𝛿 = 𝛿1 + 𝛿0, a sufficiently large
Nitsche penalty parameter 𝛽 and stabilization constant 𝜏 (proportional to 𝛼), we
obtain the desired stability estimate.

For the condition number, assumption A5 (inverse bound) follows from apply-
ing the trace inequality (3.24) and standard inverse inequalities on elements (see
Section 3.3). We obtain for 𝑣 ∈ 𝑉ℎ

|||𝑣 |||2
ℎ,⋆ = |||𝑣 |||2ℎ + 𝛼∥𝑣∥2

𝑠ℎ

= ∥𝛼1/2∇𝑣∥2
Ω + ℎ∥𝛼1/2∇𝑣∥2

𝜕Ω + ℎ−1∥𝛼1/2𝑣∥2
𝜕Ω + 𝛼∥𝑣∥2

𝑠ℎ

≲ ℎ−2∥𝛼1/2𝑣∥2
Ωℎ

+ 𝛼∥𝑣∥2
𝑠ℎ
. (3.65)

Thus, for assumption A5 to hold, we require the following inequality:

∥𝑣∥2
𝑠ℎ
≲ ℎ−2∥𝑣∥2

Ωℎ
. (3.66)

Using, for example, the ghost penalty stabilization form discussed in Section 2.1, it
is straightforward to verify that this inequality holds. For assumption A6, we need
the bound

𝛼∥𝑣∥2
Ωℎ
≲ |||𝑣 |||2ℎ + 𝛼∥𝑣∥2

𝑠ℎ
, (3.67)
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which, together with (3.61) and (3.66), provides design criteria for the stabilization
form 𝑠ℎ. In Section 4 we will present stabilization forms that satisfy these con-
ditions. Finally, assumption A7 (norm equivalence) holds, as shown in Ern and
Guermond (2006) using a nodal basis.

3.7. The interface problem

We now consider the interface problem in Section 2.2. We focus on verifying
assumption A3 (stability) and, in particular, explore how the weights 𝜂𝑖 can be
used to minimize the penalty parameter, both with and without the presence of the
stabilization form.

Recall the definition of the bilinear form 𝐴ℎ, as given in equations (2.41)–(2.43).
For 𝑣 ∈ 𝑊ℎ we have

𝐴ℎ(𝑣, 𝑣) =
2∑︁
𝑖=1

𝛼𝑖 ∥∇𝑣𝑖 ∥2
Ω𝑖

+ 𝜏𝑖 ∥𝑣𝑖 ∥2
𝑠ℎ,𝑖

− 2(⟨𝑛 · 𝛼∇𝑣⟩, [𝑣])Ω0 + 𝛽ℎ−1∥ [𝑣] ∥2
Ω0
.

(3.68)

We will carry out the analysis in the following norm:

|||𝑣 |||2ℎ =

2∑︁
𝑖=1

∥𝛼1/2
𝑖

∇𝑣𝑖 ∥2
Ω𝑖

+ ℎ

2∑︁
𝑖=1

𝜂𝑖 ∥𝛼1/2
𝑖

∇𝑣𝑖 ∥2
Ω0

+ ℎ−1 𝛼1𝛼2
𝛼1 + 𝛼2

∥ [𝑣] ∥2
Ω0
. (3.69)

Next, assuming that the stabilization ensures the inverse estimate

ℎ∥𝛼1/2
𝑖

∇𝑣𝑖 ∥2
Ω0
≲ ∥𝛼1/2

𝑖
∇𝑣𝑖 ∥2

Ω𝑖
+ ∥𝛼1/2

𝑖
𝑣𝑖 ∥2

𝑠ℎ,𝑖
, (3.70)

and using the definition of the weighted average

⟨𝑛 · 𝛼∇𝑣⟩ = 𝜂1𝑛1 · 𝛼1∇𝑣1 − 𝜂2𝑛2 · 𝛼2∇𝑣2

= 𝜂1𝑛1 · 𝛼1∇𝑣1 + 𝜂2𝑛1 · 𝛼2∇𝑣2, (3.71)

we obtain

2(⟨𝑛 · 𝛼∇𝑣⟩, [𝑣])Ω0

=

2∑︁
𝑖=1

2(𝜂𝑖𝑛1 · 𝛼𝑖∇𝑣𝑖 , [𝑣])Ω0

≤
2∑︁
𝑖=1

𝛿𝑖ℎ∥𝛼1/2
𝑖

∇𝑣𝑖 ∥2
Ω0

+ 𝛿−1
𝑖 ℎ−1𝜂2

𝑖 𝛼𝑖 ∥ [𝑣] ∥2
Ω0

≤
2∑︁
𝑖=1

𝛿𝑖𝐶𝑖

(
∥𝛼1/2

𝑖
∇𝑣𝑖 ∥2

Ω𝑖
+ ∥𝛼1/2

𝑖
𝑣𝑖 ∥2

𝑠ℎ,𝑖

)
+ 𝛿−1

𝑖 𝜂2
𝑖 𝛼𝑖ℎ

−1∥ [𝑣] ∥2
Ω0
, (3.72)
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for 𝛿𝑖 > 0, with 𝐶𝑖 being the constant in the estimate (3.70). Hence

𝐴ℎ(𝑣, 𝑣) ≥
2∑︁
𝑖=1

(1 − 𝛿𝑖𝐶𝑖)∥𝛼1/2
𝑖

∇𝑣𝑖 ∥2
Ω𝑖

+
(
𝛽 −

2∑︁
𝑖=1

𝛿−1
𝑖 𝜂2

𝑖 𝛼𝑖

)
ℎ−1∥ [𝑣] ∥2

Ω0
+

2∑︁
𝑖=1

(𝜏𝑖 − 𝛿𝑖𝐶𝑖𝛼𝑖)∥𝑣𝑖 ∥2
𝑠ℎ,𝑖

. (3.73)

To finalize the stability estimate, we add and subtract the term 𝛿0𝜂𝑖ℎ∥𝛼1/2
𝑖

∇𝑣𝑖 ∥2
Ω0

,
for 𝑖 = 1, 2, where 0 ≤ 𝜂𝑖 ≤ 1, and then use the estimate (3.70) again to bound the
negative term. This gives

𝐴ℎ(𝑣, 𝑣) ≥
2∑︁
𝑖=1

(1 − 𝛿𝑖𝐶𝑖)∥𝛼1/2
𝑖

∇𝑣𝑖 ∥2
Ω𝑖

+ 𝛿0ℎ

2∑︁
𝑖=1

𝜂𝑖 ∥𝛼1/2
𝑖

∇𝑣𝑖 ∥2
Ω0

+
(
𝛽 − max

𝑖=1,2
(𝛿−1

𝑖 )
2∑︁
𝑖=1

𝜂2
𝑖 𝛼𝑖

)
ℎ−1∥ [𝑣] ∥2

Ω0

+
2∑︁
𝑖=1

(𝜏𝑖 − 𝛿𝑖𝐶𝑖𝛼𝑖)∥𝑣𝑖 ∥2
𝑠ℎ,𝑖

. (3.74)

By choosing sufficiently small constants 𝛿𝑖 > 0 and 𝛿𝑖 = 𝛿𝑖 + 𝛿0𝜂𝑖 , and selecting a
sufficiently large Nitsche penalty parameter 𝛽 such that

𝛽 > max
𝑖=1,2

(𝛿−1
𝑖 )

2∑︁
𝑖=1

𝜂2
𝑖 𝛼𝑖 ≳

𝛼1𝛼2
(𝛼1 + 𝛼2)

, (3.75)

along with sufficiently large stabilization constants 𝜏𝑖 (proportional to 𝛼𝑖), we can
obtain the desired stability estimate.

Choosing the weights to minimize the Nitsche penalty parameter. We note that the
Nitsche penalty parameter 𝛽 depends on the choice of weights 𝜂𝑖 . By selecting
these weights appropriately, we can minimize the required penalty parameter. Spe-
cifically, we observe from (3.74) that we want to select 𝜂1 such that the expression∑2

𝑖=1 𝜂
2
𝑖
𝛼𝑖 = 𝜂2

1𝛼1 + (1 − 𝜂1)2𝛼2 is minimized.
Taking the derivative of this expression with respect to 𝜂1, we find that the

optimal weights correspond to the harmonic mean of the coefficients 𝛼1 and 𝛼2
given by

𝜂1 =
𝛼2

𝛼1 + 𝛼2
, 𝜂2 =

𝛼1
𝛼1 + 𝛼2

. (3.76)

With these weights, we have
2∑︁
𝑖=1

𝜂2
𝑖 𝛼𝑖 =

𝛼1𝛼2
(𝛼1 + 𝛼2)

, (3.77)
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and 𝛽 can be chosen as

𝛽 = 𝛽0
𝛼1𝛼2

(𝛼1 + 𝛼2)
, (3.78)

where 𝛽0 is a constant. It is also important to understand how the method behaves
when 𝛼2 tends to zero or infinity, while 𝛼1 and the right-hand side remain fixed.
We find the following.

• When 𝛼2 → 0, we have 𝜂1 = 0 and 𝜂2 = 1, and the problem reduces to a
homogeneous Neumann condition for 𝑢1 on Ω0.

• When 𝛼2 → ∞, we have 𝜂1 = 1 and 𝜂2 = 0, the solution becomes constant
in Ω2, and we obtain a Dirichlet boundary condition for 𝑢1 on Ω0. However,
the constant value in Ω2 remains unknown and must be determined as part of
the solution.

Choosing the weights to handle stability without stabilization. Alternatively, we
can define weights based on how the interface cuts the element. By selecting
appropriate weights, we can prove stability with respect to the unstabilized norm
||| · |||ℎ. Let us consider piecewise linear elements. In this case, the gradient is
constant within each element, and we have the identity

ℎ𝑇,𝑖 ∥𝛼1/2
𝑖

∇𝑣𝑖 ∥2
Ω0∩𝑇 =

|Ω𝑖 ∩ 𝑇 |
|Ω0 ∩ 𝑇 | ∥𝛼

1/2
𝑖

∇𝑣𝑖 ∥2
Ω0∩𝑇 = ∥𝛼1/2

𝑖
∇𝑣𝑖 ∥2

Ω𝑖∩𝑇 (3.79)

for any element 𝑇 ∈ Tℎ,𝑖 that intersects the interface Ω0, where we define

ℎ𝑇,𝑖 =
|Ω𝑖 ∩ 𝑇 |
|Ω0 ∩ 𝑇 | . (3.80)

Using this, we obtain the estimate

2(⟨𝑛 · 𝛼∇𝑣⟩, [𝑣])Ω0

=

2∑︁
𝑖=1

2(𝜂𝑖𝑛1 · 𝛼𝑖∇𝑣𝑖 , [𝑣])Ω0

≤
2∑︁
𝑖=1

𝛿𝑖ℎ𝑇,𝑖 ∥𝛼1/2
𝑖

∇𝑣𝑖 ∥2
Ω0

+ 𝛿−1
𝑖 ℎ−1

𝑇,𝑖𝜂
2
𝑖 𝛼𝑖 ∥ [𝑣] ∥2

Ω0

≤
2∑︁
𝑖=1

𝛿𝑖 ∥𝛼1/2
𝑖

∇𝑣𝑖 ∥2
Ωℎ,𝑖

+
( 2∑︁

𝑖=1
𝛿−1
𝑖 𝜂2

𝑖 ℎ
−1
𝑇,𝑖𝛼𝑖

)
ℎℎ−1∥ [𝑣] ∥2

Ω0
. (3.81)
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Cut finite element methods 41

Next, we add and subtract 𝛿0ℎ𝑇,𝑖 ∥𝛼1/2
𝑖

∇𝑣𝑖 ∥2
Ω0

, and use the identity in (3.79) to
estimate the negative term. We obtain the following estimate:

𝑎ℎ(𝑣, 𝑣) ≥
2∑︁
𝑖=1

(1 − 𝛿𝑖)∥𝛼1/2
𝑖

∇𝑣𝑖 ∥2
Ω𝑖

+ 𝛿0ℎ

2∑︁
𝑖=1

(ℎ𝜂𝑖ℎ−1
𝑇,𝑖)

−1𝜂𝑖 ∥𝛼1/2
𝑖

∇𝑣𝑖 ∥2
Ω0

+
(
𝛽 − max

𝑖=1,2
(𝛿−1

𝑖 )ℎ
2∑︁
𝑖=1

𝜂2
𝑖 ℎ

−1
𝑇,𝑖𝛼𝑖

)
ℎ−1∥ [𝑣] ∥2

Ω0
. (3.82)

Here 𝛿𝑖 > 0 must be chosen small enough with 𝛿𝑖 = 𝛿𝑖 +𝛿0, and the Nitsche penalty
parameter 𝛽 must satisfy

𝛽 > max
𝑖=1,2

(𝛿−1
𝑖 )ℎ

2∑︁
𝑖=1

𝜂2
𝑖 ℎ

−1
𝑇,𝑖𝛼𝑖 . (3.83)

By choosing the weights 𝜂𝑖 so that
∑2

𝑖=1 𝜂
2
𝑖
ℎ−1
𝑇,𝑖

𝛼𝑖 is minimized, we obtain the
weights corresponding to the harmonic average:

𝜂1 =
ℎ−1
𝑇,2𝛼2

ℎ−1
𝑇,1𝛼1 + ℎ−1

𝑇,2𝛼2
=

ℎ𝑇,1𝛼2

ℎ𝑇,2𝛼1 + ℎ𝑇,1𝛼2
, (3.84)

𝜂2 =
ℎ−1
𝑇,1𝛼1

ℎ−1
𝑇,1𝛼1 + ℎ−1

𝑇,2𝛼2
=

ℎ𝑇,2𝛼1

ℎ𝑇,2𝛼1 + ℎ𝑇,1𝛼2
. (3.85)

We now show that the constants in (3.82) remain bounded independently of the cut
configuration, i.e. the values of ℎ𝑇,1 and ℎ𝑇,2. This will demonstrate coercivity
(stability),

|||𝑣 |||2ℎ ≲ 𝑎ℎ(𝑣, 𝑣), (3.86)

without the need for stabilization. More precisely, we will show that there exists a
constant 𝐶 > 0, independent of how the interface cuts the mesh, such that

ℎ𝜂𝑖ℎ
−1
𝑇,𝑖 ≤ 𝐶, (3.87)

if the following conditions hold:

|Ω0 ∩ 𝑇 | ≲ ℎ𝑑−1 (3.88)

and

𝛼𝑖 ∼ 1. (3.89)

The first assumption means that the complexity of the interface is limited, and the
second condition is satisfied for each fixed bounded constant coefficient pair 𝛼1
and 𝛼2. Note that using 0 ≤ 𝜂𝑖 ≤ 1 and 𝛼𝑖 ∼ 1, we have

ℎ𝜂2
𝑖 ℎ

−1
𝑇,𝑖𝛼𝑖 ≤ ℎ𝜂𝑖ℎ

−1
𝑇,𝑖 . (3.90)
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(a) (b)

Figure 3.1. The solution with 𝜏𝑖 = 0.1 (a) and 𝜏𝑖 = 0 (b).

Now,

ℎ𝜂𝑖ℎ
−1
𝑇,𝑖 = ℎℎ−1

𝑇,𝑖

ℎ𝑇,𝑖𝛼 𝑗

ℎ𝑇,2𝛼1 + ℎ𝑇,1𝛼2
=

ℎ𝛼 𝑗

ℎ𝑇,2𝛼1 + ℎ𝑇,1𝛼2
∼ ℎ

ℎ𝑇,1 + ℎ𝑇,2
. (3.91)

By observing that

ℎ𝑇,1 + ℎ𝑇,2 =
|Ω1 ∩ 𝑇 |
|Ω0 ∩ 𝑇 | +

|Ω2 ∩ 𝑇 |
|Ω0 ∩ 𝑇 | =

|Ω1 ∩ 𝑇 | + |Ω2 ∩ 𝑇 |
|Ω0 ∩ 𝑇 | =

|𝑇 |
|Ω0 ∩ 𝑇 | , (3.92)

we conclude that

ℎ𝜂𝑖ℎ
−1
𝑇,𝑖 ∼

ℎ|Ω0 ∩ 𝑇 |
|𝑇 | ≤ 𝐶, (3.93)

where we finally used (3.88). Thus we have shown that stability holds.
Note that to ensure that the condition number remains well-behaved, we need to

add a stabilization form such that the following Poincaré inequality holds:
2∑︁
𝑖=1

𝛼𝑖 ∥𝑣𝑖 ∥2
Ωℎ,𝑖
≲ |||𝑣 |||2ℎ +

2∑︁
𝑖=1

𝛼𝑖 ∥𝑣𝑖 ∥2
𝑠ℎ,𝑖

. (3.94)

This demonstrates that while coercivity with respect to an unstabilized norm is
achievable, at least for linear elements and each fixed and bounded pair of coef-
ficients 𝛼1 and 𝛼2, stabilization is required to guarantee that the stiffness matrix
remains well-conditioned.

Numerical illustration. We first show the cut finite element solution to the problem
in Section 2.5 with 𝜏𝑖 = 0 and compare it with the case where 𝜏𝑖 = 0.1 (see
Figure 3.1). The weights are chosen according to equations (3.84)–(3.85), ensuring
stability also without stabilization.
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Figure 3.2. Smallest eigenvalue of the system matrix for different choices of
weights, with and without stabilization. Δ denotes the distance from the interface
to the node at 𝑥 = 0.5.

To investigate the effect of the interface position on the eigenvalues and the
conditioning of the discrete problem, we consider a one-dimensional interface
problem defined on 𝑥 ∈ (0, 1) with diffusion parameters 𝛼1 = 1 (to the left of the
cut) and 𝛼2 = 10 (to the right of the cut). We set 𝑔0 = 𝑓0 = 0, 𝑓𝑖 = 1, and impose
zero boundary conditions at 𝑥 = {0, 1}. The domain is discretized with ten linear
elements of equal size, and the position of the interface is varied, moving it from
𝑥 = 0.55 towards the node at 𝑥 = 0.5.

Figure 3.2 shows the effect on the smallest eigenvalue. We compare the diffusion-
weighted average (3.76) with the diffusion–size average (3.84)–(3.85), both with
and without stabilization. We observe that the diffusion-weighted average (3.76)
eventually leads to a singular system matrix when stabilization is not applied,
whereas the diffusion–size average does not. In Figure 3.3 we illustrate the effect
of stabilization on the condition number of the system matrix. While the diffusion–
size average remains stable, it still leads to severe ill-conditioning for a small cut.
Stabilization effectively remedies this problem.

3.8. Coupled bulk–surface problem

Recalling Section 2.3, we have

𝐴ℎ(𝑣, 𝑤) = 𝑎(𝑣, 𝑤) + 𝑠ℎ(𝑣, 𝑤), (3.95)
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Figure 3.3. Condition number with and without stabilization, Here we use the
diffusion–size weighted average.

with

𝑎(𝑣, 𝑤) = 𝑏0(𝛼0∇0𝑣0,∇0𝑤0)Ω0

+
2∑︁
𝑖=1

(𝑏𝑖(𝛼𝑖∇𝑣𝑖 ,∇𝑤𝑖)Ω𝑖
+ ([𝑏𝑣]𝑖 , [𝑏𝑤]𝑖)Ω0), (3.96)

and thus in this case 𝑎ℎ(𝑣, 𝑤) = 𝑎(𝑣, 𝑤). The energy norm is defined by

|||𝑣 |||2ℎ = 𝑎(𝑣, 𝑣). (3.97)

As a result, we obtain consistency, continuity and stability (assumptions A1–A3),
and thus we directly obtain error estimates.

To derive a condition number estimate, we first precondition the problem by
using the substitution

𝑣0 = ℎ1/2�̃�0, (3.98)

and then we solve for (�̃�0, 𝑣1, 𝑣2). Note that the same substitution is done for the
test function.

We will need to verify the inverse bound (assumption A5) and the Poincaré in-
equality (assumption A6). For the preconditioned problem, the Poincaré inequality
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takes the form

𝑏0∥�̃�0∥2
Ωℎ,0

+
2∑︁
𝑖=1

𝑏𝑖 ∥𝑣𝑖 ∥2
Ωℎ,𝑖
≲ 𝑏0ℎ∥𝛼1/2

0 ∇0�̃�0∥2
Ω0

+ 𝑏0ℎ∥�̃�0∥2
𝑠ℎ,0

+
2∑︁
𝑖=1

𝑏𝑖 ∥𝛼1/2
𝑖

∇𝑣𝑖 ∥2
Ω𝑖

+ ∥[𝑏𝑣]𝑖 ∥2
Ω0

+ 𝑏𝑖 ∥𝑣𝑖 ∥2
𝑠ℎ,𝑖

.

(3.99)

To establish this inequality, we assume that the stabilization forms 𝑠ℎ,𝑖 are such that

∥𝑣𝑖 − 𝜆𝑖(𝑣𝑖)∥2
Ωℎ,𝑖
≲ ∥𝛼1/2

𝑖
∇𝑣𝑖 ∥2

Ω𝑖
+ ∥𝑣𝑖 ∥2

𝑠ℎ,𝑖
, 𝑖 = 1, 2, (3.100)

For 𝑖 = 0, we assume that we have

∥�̃�0 − 𝜆𝑖(�̃�0)∥2
Ωℎ,𝑖
≲ ℎ∥𝛼1/2

0 ∇�̃�0∥2
Ω𝑖

+ ℎ∥�̃�0∥2
𝑠ℎ,0 , (3.101)

where we note that we have an additional ℎ factor multiplying the first term that
compensates for the difference in the dimension of Ω0 and Ωℎ,0. Here 𝜆𝑖 : 𝑉ℎ,𝑖 →
𝑃0(Ωℎ,𝑖) is a map that takes 𝑣 ∈ 𝑉ℎ,𝑖 to a constant function such that𝜆𝑖 is the identity
map on constant functions 𝑣𝑖 . Here 𝑃0(𝜔) is the space of constant functions on 𝜔.
We also note that in the preconditioned form we have control over the right-hand
sides (3.100) and (3.101).

Choosing 𝜆𝑖 such that

(𝑏𝑖(𝑣𝑖 − 𝜆𝑖(𝑣𝑖)), 𝑤)Ω0 = 0 for all 𝑤 ∈ 𝑃0(Ω0), (3.102)

which is the 𝐿2-projection onto constant functions on Ω0, we obtain

([𝑏(𝑣 − 𝜆(𝑣))]𝑖 , 𝑤)Ω0 = 0 for all 𝑤 ∈ 𝑃0(Ω0) (3.103)

and

∥ [𝑏𝑣]𝑖 ∥2
Ω0

= ∥ [𝑏(𝑣 − 𝜆(𝑣))]𝑖 ∥2
Ω0

+ ∥[𝑏𝜆(𝑣)]𝑖 ∥2
Ω0
. (3.104)

Using (3.100), we proceed as follows:

𝑏0∥�̃�0∥2
Ωℎ,0

+
2∑︁
𝑖=1

𝑏𝑖 ∥𝑣𝑖 ∥2
Ωℎ,𝑖

≲ 𝑏0∥�̃�0 − 𝜆0(�̃�0)∥2
Ωℎ,0

+ 𝑏0∥𝜆0(�̃�0)∥2
Ωℎ,0

+
2∑︁
𝑖=1

𝑏𝑖 ∥𝑣𝑖 − 𝜆𝑖(𝑣𝑖)∥2
Ωℎ,𝑖

+ 𝑏𝑖 ∥𝜆𝑖(𝑣𝑖)∥2
Ωℎ,𝑖

≲ 𝑏0ℎ∥∇0�̃�0∥2
Ωℎ,0

+ 𝑏0∥�̃�0∥2
𝑠ℎ,0 + 𝑏0∥𝜆0(�̃�0)∥2

Ωℎ,0

+
2∑︁
𝑖=1

𝑏𝑖 ∥𝛼1/2
𝑖

∇𝑣𝑖 ∥2
Ω𝑖

+ 𝑏𝑖 ∥𝑣𝑖 ∥2
𝑠ℎ,𝑖

+ 𝑏𝑖 ∥𝜆𝑖(𝑣𝑖)∥2
Ωℎ,𝑖

. (3.105)
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Here we used the fact that 𝜆𝑖(𝑣𝑖) is a constant function and the definition (3.102).
It remains to bound

𝑏0∥𝜆0(�̃�0)∥2
Ωℎ,0

+
2∑︁
𝑖=1

𝑏𝑖 ∥𝜆𝑖(𝑣𝑖)∥2
Ωℎ,0

≲ 𝑏0ℎ∥𝜆0(�̃�0)∥2
Ω0︸            ︷︷            ︸

=𝑏0 ∥𝜆0(𝑣0)∥2
Ω0

+
2∑︁
𝑖=1

𝑏𝑖 ∥𝜆𝑖(𝑣𝑖)∥2
Ω0

=⋆, (3.106)

where we used the fact that we have constant functions on domains with measures
such that |Ωℎ,0 | ≲ ℎ|Ω0 | and |Ωℎ,𝑖 | ≲ |Ω𝑖 | ≲ |Ω0 | for 𝑖 = 1, 2, and finally for the
first term the definition 𝑣0 = ℎ1/2�̃�0.

First, using a trace inequality onΩ1 (which holds since we have the homogeneous
boundary condition on the outer boundary), we get

∥𝜆1(𝑣1)∥2
Ω0
≲ ∥𝑣1∥2

Ω0
≲ ∥𝛼1/2

1 ∇𝑣1∥2
Ω1
. (3.107)

Next we use this to bound the term involving 𝜆0(𝑣0):

∥𝑏0𝜆0(𝑣0)∥2
Ω0
≲ ∥𝑏0𝜆0(𝑣0) − 𝑏1𝜆1(𝑣1)∥2

Ω0
+ 𝑏1∥𝜆1(𝑣1)∥2

Ω0

≲ ∥ [𝑏𝜆(𝑣)]1∥2
Ω0

+ 𝑏1∥𝛼1/2
1 ∇𝑣1∥2

Ω1
. (3.108)

Proceeding in the same way, we get

𝑏2∥𝜆2(𝑣2)∥2
Ω0
≲

2∑︁
𝑖=1

∥ [𝑏𝜆(𝑣)]𝑖 ∥2
Ω0

+ 𝑏1∥𝛼1/2
1 ∇𝑣1∥2

Ω1
, (3.109)

and we conclude that

⋆ ≲
2∑︁
𝑖=1

∥ [𝑏𝜆(𝑣)]𝑖 ∥2
Ω0

+ 𝑏1∥𝛼1/2
1 ∇𝑣1∥2

Ω1

≲
2∑︁
𝑖=1

∥ [𝑏𝑣]𝑖 ∥2
Ω0

+ 𝑏1∥𝛼1/2
1 ∇𝑣1∥2

Ω1
, (3.110)

where we used (3.104). Finally, by combining this bound with (3.105), we arrive
at the desired estimate (3.99).

Finally, we comment on assumption A5. For the bulk terms we have

𝑏𝑖 ∥∇𝑣𝑖 ∥2
Ω𝑖
≲ 𝑏𝑖 ∥∇𝑣𝑖 ∥2

Ωℎ,𝑖
≲ 𝑏𝑖ℎ

−2∥𝑣𝑖 ∥2
Ωℎ,𝑖

, (3.111)

and for the surface term

𝑏0ℎ∥∇0�̃�0∥2
Ω0
≲ 𝑏0∥∇0�̃�0∥2

Ωℎ,0
≲ 𝑏0ℎ

−2∥�̃�0∥2
Ωℎ,0

. (3.112)

The coupling terms can be estimated in a similar way, which completes the verifi-
cation of the inverse inequality.
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4. Weak stabilization
This section introduces weak stabilization forms for cut finite element methods
in bulk domains. These forms are added to the weak formulation to improve
control over the solution in the active mesh, beyond the physical domain. When the
solution is not adequately controlled across the entire active mesh, problems such
as ill-conditioned linear systems, loss of accuracy and severe time-step restrictions
in time-dependent problems can arise, depending on the position of the boundary
or the interface relative to the computational mesh. The fundamental idea behind
the weak stabilization technique is to control the variation of the discrete functions
between neighbouring elements. A standard approach for achieving this is by
controlling the jump in normal derivatives across element faces, typically by adding
appropriately scaled stiffness proportional to these jumps. However, we will also
explore how this technique can be generalized in several directions.

In this section we assume that the physical domain is denoted by Ω and the active
domain by Ωℎ (for notation, refer to Section 2). In problems involving multiple
bulk domains Ω𝑖 separated by interfaces, stabilization must be applied in each
active mesh Ωℎ,𝑖 corresponding to each subdomain Ω𝑖 individually. Therefore, all
results presented in this section apply to each subdomain separately.

4.1. Abstract properties

A weak stabilization form for a second-order problem is a positive semidefinite
bilinear form 𝑠ℎ,𝑚 acting on 𝑉ℎ that satisfies the following assumptions.

• There exists a constant such that

∥∇𝑚𝑣∥2
Ωℎ
≲ ∥∇𝑚𝑣∥2

Ω + ∥𝑣∥2
𝑠ℎ,𝑚

, 𝑣 ∈ 𝑉ℎ, (4.1)

where we recall that Ωℎ = ∪𝑇∈Tℎ
𝑇 and ∥𝑣∥2

Ωℎ
=
∑

𝑇∈Tℎ
∥𝑣∥2

𝑇
. Here 𝑚 = 0 or

𝑚 = 1.
• There exists a constant such that the weak consistency condition (3.10) holds,

∥𝜋ℎ𝑣∥𝑠ℎ,𝑚 ≲ ℎ𝑠−𝑚∥𝑣∥𝐻𝑠(Ω), 1 ≤ 𝑠 ≤ 𝑝 + 1, (4.2)

where 𝜋ℎ : 𝐻𝑠(Ω) → 𝑉ℎ is the interpolation operator introduced in Section 3.4
for bulk domains.

In the previous sections we used 𝑠ℎ,𝑖 to denote the stabilization associated with
the domain Ω𝑖 . When necessary for clarity, we may write 𝑠ℎ,𝑖,𝑚, where the index 𝑖

indicates that the stabilization form is associated with the domain Ω𝑖 . However, in
this section we consider only one bulk domain, so we adopt the simplified notation
𝑠ℎ,𝑚, where 𝑚 represents the order of derivatives that we control.

4.2. Examples of stabilization forms

We classify the elements in the active mesh into small and large elements, where
small elements have a limited intersection with the domain Ω and therefore require
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stabilization. More precisely, an element is considered large, given a parameter
0 ≤ 𝛾 ≤ 1, if

𝛾 ≤ |𝑇 ∩Ω|
|𝑇 | . (4.3)

Otherwise, the element is considered small.
We decompose the active mesh Tℎ and the domain Ωℎ as

Tℎ = T 𝐿
ℎ ∪ T 𝑆

ℎ , Ωℎ = Ω𝐿
ℎ ∪Ω𝑆

ℎ , (4.4)

where Ω𝐿
ℎ

and Ω𝑆
ℎ

represent the domains formed by the large and small elements
of the active mesh, respectively.

Face-based stabilization forms. The most common stabilization term for cut ele-
ments is the face or ghost penalty (Burman 2010), defined as

𝑠ℎ,𝑚(𝑣, 𝑤) =
∑︁
𝐹∈Fℎ

𝑝∑︁
𝑗=1

𝜏𝑗ℎ
2( 𝑗−𝑚)+1([∇ 𝑗

𝑛𝑣], [∇ 𝑗
𝑛𝑤])𝐹 , (4.5)

where 𝑚 = 0, 1, 𝜏𝑗 are positive constants, and Fℎ is the set of all interior faces
shared by an element in Tℎ(𝜕Ω) = {𝑇 ∈ Tℎ | 𝑇∩𝜕Ω ≠ 𝜙}. The term [∇ 𝑗

𝑛𝑣] denotes
the jump in the 𝑗 th normal derivative across the face 𝐹 shared by two elements 𝑇1
and 𝑇2, that is,

[∇ 𝑗
𝑛𝑣] = ∇ 𝑗

𝑛𝑣1 − ∇ 𝑗
𝑛𝑣2, (4.6)

where 𝑣𝑖 denotes the function 𝑣 on element 𝑇𝑖 , and 𝑛 is the unit normal to the face
𝐹 outward directed with respect to 𝑇1.

For simplicity, let us consider the case of linear elements, i.e. 𝑝 = 1. In this
case, for elements 𝑇1 and 𝑇2 sharing a face 𝐹, there exist constants such that for all
𝑣 ∈ 𝑉ℎ,

∥𝑣∥2
𝑇1
≲ ∥𝑣∥2

𝑇2
+ ℎ3∥ [∇𝑛𝑣] ∥2

𝐹 , ∥∇𝑣∥2
𝑇1
≲ ∥∇𝑣∥2

𝑇2
+ ℎ∥ [∇𝑛𝑣] ∥2

𝐹 , (4.7)

which correspond to 𝑚 = 0 and 𝑚 = 1, respectively. To derive these estimates, let
𝑣𝑖 denote the polynomial on 𝑇𝑖 , for 𝑖 = 1, 2, and extend its definition to 𝑇1 ∪ 𝑇2.
Taylor expansion around a point 𝑥𝐹 ∈ 𝐹 yields

𝑣1(𝑥) − 𝑣2(𝑥) = 𝑣1(𝑥𝐹) − 𝑣2(𝑥𝐹) + (𝑥 − 𝑥𝐹) · ∇(𝑣1 − 𝑣2)
= 𝑛 · (𝑥 − 𝑥𝐹)𝑛 · ∇(𝑣1 − 𝑣2), (4.8)

since 𝑣1 − 𝑣2 = 0 on 𝐹. For the first estimate in (4.7), we subtract and add 𝑣2, use
the triangle inequality, and then apply the Taylor expansion,

∥𝑣1∥2
𝑇1
≲ ∥𝑣1 − 𝑣2∥2

𝑇1
+ ∥𝑣2∥2

𝑇1
≲ ∥(𝑥 − 𝑥𝐹) · ∇(𝑣1 − 𝑣2)∥2

𝑇1
+ ∥𝑣2∥2

𝑇2

≲ ℎ3∥∇𝑛(𝑣1 − 𝑣2)∥2
𝐹 + ∥𝑣2∥2

𝑇2
= ℎ3∥ [∇𝑛𝑣] ∥2

𝐹 + ∥𝑣2∥2
𝑇2
. (4.9)

Here we used the estimate ∥𝑣2∥𝑇1 ≲ ∥𝑣2∥𝑇2 , which holds because 𝑣2 is a polynomial.
The second estimate in (4.7) follows in a similar manner. However, note that
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Figure 4.1. The idea behind stabilization. The dotted yellow edges and purple
elements represent the edges and elements involved in the stabilization process. (a)
Full stabilization. Stabilization is applied across all interior faces in the active mesh
that are shared by an element in Tℎ(𝜕Ω) = {𝑇 ∈ Tℎ | 𝑇 ∩ 𝜕Ω ≠ 𝜙}. (b) Macro-
element stabilization with 𝛾 = 1. In this case, all cut elements are considered small,
and each small element is connected via stabilization to only one large element.
The elements 𝑇1 and 𝑇2 belong to T 𝑆

ℎ
, but are connected to 𝑇3 ∈ T 𝐿

ℎ
via edges, on

which stabilization is applied. (c) 𝛾 = 0.3. Here 𝑇1 is small, while 𝑇2 is classified
as large and belongs to 𝑇𝐿

ℎ
. Each small element is connected to one large element.

∇𝑣1 − ∇𝑣2 ≠ 0 on 𝐹, and the higher-order terms in the Taylor expansion vanish
since the gradients are piecewise constant (for 𝑝 = 1), leading to an ℎ-scaling factor
instead of the ℎ3-scaling factor.

Using the pairwise bounds, either directly or through a chain of neighbouring
elements that share faces (see Figure 4.1), the degrees of freedom on small elements
in T 𝑆

ℎ
can be controlled by the degrees of freedom on large elements in T 𝐿

ℎ
, for

which we have the robust inverse estimate

∥∇𝑣∥2
𝑇 ≲ ∥∇𝑣∥2

𝑇∩Ω, 𝑇 ∈ 𝑇𝐿
ℎ , (4.10)

and thus

∥∇𝑣∥2
Ωℎ
≲ ∥∇𝑣∥2

Ω + ∥𝑣∥2
𝑠ℎ,1 , ∥𝑣∥2

Ωℎ
≲ ∥𝑣∥2

Ω + ∥𝑣∥2
𝑠ℎ,0 . (4.11)

Note that the constants in these estimates depend on the lengths of the paths
connecting cut elements to interior elements, or, more generally, small elements
to large elements. The length of these paths depends on both the properties and
resolution of the boundary, as well as the mesh properties. It can be shown that
the path length is uniformly bounded for smooth boundaries and locally quasi-
uniform meshes with sufficiently small mesh sizes. For higher-order piecewise
polynomial approximations (𝑝 > 1), the bound in equation (4.1) is derived in a
similar manner to the 𝑝 = 1 case, by simply including the higher-order terms in the
Taylor expansion.
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The stabilization term also satisfies the bound

∥𝑣∥𝑠ℎ,𝑚 ≲ ∥∇𝑚𝑣∥Ωℎ
, 𝑣 ∈ 𝑉ℎ, (4.12)

for 𝑚 = 0, 1. Recall the definition of 𝑠ℎ,𝑚 in equation (4.5). The inequality in
equation (4.12) follows from the triangle inequality, a standard trace inequality (see
(3.23)) and standard inverse estimates (see (3.25)). These inequalities allow us to
pass from the face 𝐹 to the neighbouring elements 𝑇1 and 𝑇2, and removing the
term ∇ 𝑗−1

𝑛 using the factor ℎ 𝑗−1,

ℎ2( 𝑗−𝑚)+1∥ [∇ 𝑗
𝑛𝑣] ∥2

𝐹 ≲
2∑︁
𝑙=1

ℎ2( 𝑗−𝑚)+1∥∇ 𝑗
𝑛𝑣𝑙 ∥2

𝐹

≲
2∑︁
𝑙=1

ℎ2( 𝑗−𝑚)∥∇ 𝑗𝑣𝑙 ∥2
𝑇𝑙
≲

2∑︁
𝑙=1

∥∇𝑚𝑣𝑙 ∥2
𝑇𝑙
. (4.13)

Thus we have the equivalence

∥∇𝑚𝑣∥2
Ω + ∥𝑣∥2

𝑠ℎ,𝑚
∼ ∥∇𝑚𝑣∥2

Ωℎ
, 𝑚 = 0, 1. (4.14)

Finally, stabilization can be applied more restrictively by connecting each small
element in 𝑇𝑆

ℎ
to only one large element in 𝑇𝑆

ℎ
, and by choosing 𝛾 < 1 so that cut

elements with a large intersection with the physical domainΩ are classified as large.
In this case the set Fℎ in equation (4.5) will contain fewer faces compared to the full
stabilization, where all interior faces shared by an element in Tℎ(𝜕Ω) = {𝑇 ∈ Tℎ |
𝑇 ∩ 𝜕Ω ≠ 𝜙} are included in Fℎ. An illustration can be found in Figure 4.1. We
refer to Larson and Zahedi (2023) for further details of this so-called macro-element
stabilization.

Element-based stabilization forms. An alternative implementation of the face pen-
alty, which is particularly convenient for higher-order polynomials (as it avoids the
need for higher-order derivatives), is given by (see Preuß 2018)

𝑠ℎ,𝑚(𝑣, 𝑤) =
∑︁
𝐹∈Fℎ

𝜏ℎ−2𝑚([𝑣], [𝑤])𝑃(𝐹), (4.15)

or equivalently

𝑠ℎ,𝑚(𝑣, 𝑤) =
∑︁
𝐹∈Fℎ

𝜏ℎ2(1−𝑚)([∇𝑣], [∇𝑤])𝑃(𝐹), (4.16)

where for each face 𝐹 ∈ Fℎ, 𝑃(𝐹) denotes the union of the two elements sharing
the face 𝐹. Here the jump is defined as

[∇𝑙𝑣] = ∇𝑙𝑣𝑒1 − ∇𝑙𝑣𝑒2 on 𝑃(𝐹) = 𝑇1 ∪ 𝑇2, 𝑙 = 0, 1, (4.17)

where 𝑣𝑒
𝑖

represents the polynomial 𝑣𝑖 extended from 𝑇𝑖 to 𝑇1 ∪𝑇2 in the canonical
way.
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Projection-based stabilization forms. For this approach we consider stabilization
on patches or macro-elements, where each small element is associated with a patch
of neighbouring elements that contains a large element. We then penalize the
difference between the finite element functions restricted to the patch and a global
polynomial defined on the patch. More precisely, let {𝑀𝑇 : 𝑇 ∈ T 𝑃

ℎ
} be a set of

patches, where T 𝑃
ℎ

⊂ T 𝐿
ℎ

is a subset of large elements that enumerate the patches,
such that the patches cover all small elements, that is,

Ω𝑆
ℎ ⊂ ∪𝑇∈T 𝑃

ℎ
𝑀𝑇 . (4.18)

We then define the stabilization form,

𝑠ℎ,𝑚(𝑣, 𝑤) =
∑︁

𝑇∈T 𝑃
ℎ

𝜏ℎ−2(1−𝑚)(∇𝑚(𝑣 − 𝑃𝑘,𝑚𝑣),∇𝑚(𝑤 − 𝑃𝑘,𝑚𝑤))𝑀𝑇
, (4.19)

for 𝑚 = 0, 1, where 𝑃𝑘,𝑚 : 𝑉ℎ |𝑀𝑇
→ P𝑘(𝑀𝑇 ) is the 𝐿2-projector for 𝑚 = 0 and the

Ritz projector for 𝑚 = 1. The choice of the global polynomial is not critical; for
instance, we may take the canonical extension of the polynomial on a large element
in the patch.

Stabilized bilinear forms. We may alternatively take the viewpoint that we stabil-
ize the inner products involved in the formulation, rather than adding a separate
stabilization term. A typical formulation will involve 𝐿2(Ω)-inner products, and we
can define the stabilized 𝐿2-inner product on the space of discontinuous piecewise
polynomials 𝑋ℎ as

(𝑣, 𝑤)ℎ,Ω = (𝑣, 𝑤)Ω + 𝑠ℎ(𝑣, 𝑤), (4.20)

where, for example,

𝑠ℎ(𝑣, 𝑤) =
∑︁
𝐹∈Fℎ

𝑝∑︁
𝑗=0

𝜏𝑗ℎ
2 𝑗+1([∇ 𝑗

𝑛𝑣], [∇ 𝑗
𝑛𝑤])𝐹 . (4.21)

Since the jump in the function itself is included in 𝑠ℎ, we can, as before (see (4.13)),
show the following equivalences:

∥𝑣∥ℎ,Ω ∼ ∥𝑣∥Ωℎ
, ∥∇𝑣∥ℎ,Ωℎ

∼ ∥∇𝑣∥Ωℎ
. (4.22)

This approach is of particular interest when we have a finite element space that
satisfies an inf-sup condition for standard elements:

𝑚∥𝑞∥𝑄 ≤ sup
𝑣∈𝑉ℎ

𝑏(𝑣, 𝑞)
∥𝑣∥𝑉

, (4.23)

where 𝑏(𝑣, 𝑞) = (𝐵𝑣, 𝑞)Ω for some operator 𝐵, such as the divergence operator, and
the finite element spaces are such that 𝐵𝑉ℎ = 𝑄ℎ. Then we stabilize the 𝐿2-inner
product, leading to

𝑏ℎ(𝑣, 𝑞) = (𝐵𝑣, 𝑞)Ω + 𝑠ℎ(𝐵𝑣, 𝑞). (4.24)
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Taking 𝑣 such that 𝐵𝑣 = 𝑞, we get

𝑏ℎ(𝑣, 𝑞) = (𝐵𝑣, 𝑞)Ω + 𝑠ℎ(𝐵𝑣, 𝑞) = (𝑞, 𝑞)Ω + 𝑠ℎ(𝑞, 𝑞) ≳ ∥𝑞∥2
Ωℎ

, (4.25)

which, together with the inequality ∥𝑣∥𝑉 ≲ ∥𝑞∥𝑄, establishes the inf-sup condition.
Specifically,

∥𝑞∥Ωℎ
≲

𝑏ℎ(𝑣, 𝑞)
∥𝑞∥𝑄

≲
𝑏ℎ(𝑣, 𝑞)
∥𝑣∥𝑉

∥𝑣∥𝑉
∥𝑞∥𝑄

≲
𝑏ℎ(𝑣, 𝑞)
∥𝑣∥𝑉

. (4.26)

On the other hand, if we take 𝑞 = 𝐵𝑣, we obtain

𝑏ℎ(𝑣, 𝐵𝑣) = (𝐵𝑣, 𝐵𝑣)Ω + 𝑠ℎ(𝐵𝑣, 𝐵𝑣) ≳ ∥𝐵𝑣∥2
Ωℎ

. (4.27)

Thus both 𝑞 and the constraint are controlled on the active mesh. This is a powerful
tool whenever the two above choices of test functions are allowed. For instance,
this is the case when approximating the Stokes equations or the Darcy equation,
where the finite element space for the velocities has a divergence-free subspace
with approximation properties. In such cases, both the pressure and the divergence
can be controlled. See Frachon et al. (2024a,b) in the context where 𝐵 is the
divergence operator and the curl operator.

4.3. Generalized pairwise stabilization

We can generalize the construction of the stabilization form by assuming access
to a mapping 𝑆ℎ : T 𝑆

ℎ
→ T 𝐿

ℎ
, which maps a small element 𝑇 onto a large element

𝑆ℎ(𝑇) such that
diam(𝑆ℎ(𝑇) ∪ 𝑇) ≲ ℎ. (4.28)

Such a map exists for domains with Lipschitz boundaries and sufficiently small
mesh sizes ℎ; see Burman et al. (2022c). For each small element 𝑇 ∈ T 𝑆

ℎ
, we

define the jump as
[𝑣]𝑇 = 𝑣 |𝑇 − (𝑣 |𝑆ℎ(𝑇))𝑒 |𝑇 , (4.29)

where (𝑣 |𝑆ℎ(𝑇))𝑒 denotes the canonical extension of the polynomial on the large
element 𝑆ℎ(𝑇).

A generalized stabilization form is then defined by

𝑠ℎ,𝑚(𝑣, 𝑤) =
∑︁

𝑇∈T 𝑆
ℎ

𝜏ℎ𝛼𝑚𝑏𝑇 ([𝑣]𝑇 , [𝑤]𝑇 ), (4.30)

where 𝑏𝑇 is a positive semidefinite form, and 𝛼𝑚 is chosen so that 𝑠ℎ,𝑚 stabilizes
the 𝐻𝑚-norm:

∥𝑣∥2
𝐻𝑚(Ωℎ) ≲ ∥𝑣∥2

𝐻𝑚(Ω) + ∥𝑣∥2
𝑠ℎ,𝑚

. (4.31)

Further, the following weak consistency holds:

∥𝜋ℎ𝑣∥𝑠ℎ,𝑚 ≲ ℎ𝑠−𝑚∥𝑣∥𝐻𝑠(Ω), 𝑚 ≤ 𝑠 ≤ 𝑝 + 1. (4.32)

We now provide examples of generalized pairwise stabilization forms.
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𝐻𝑚 stabilization. Let

𝑏𝑇 ([𝑣]𝑇 , [𝑤]𝑇 ) = ([𝑣]𝑇 , [𝑤]𝑇 )𝐻𝑚(𝑇) (4.33)

and 𝛼𝑚 = 0 in equation (4.30). This gives

𝑠ℎ,𝑚(𝑣, 𝑤) =
∑︁

𝑇∈T 𝑆
ℎ

𝜏([𝑣]𝑇 , [𝑤]𝑇 )𝐻𝑚(𝑇), (4.34)

with [𝑣]𝑇 as in equation (4.29). We then have, for 𝑣 ∈ 𝑉ℎ and 𝑇 ∈ T 𝑆
ℎ

,

∥𝑣∥2
𝐻𝑚(𝑇) ≲ ∥𝑣 − (𝑣 |𝑆ℎ(𝑇))𝑒∥2

𝐻𝑚(𝑇) + ∥(𝑣 |𝑆ℎ(𝑇))𝑒∥2
𝐻𝑚(𝑇)

≲ ∥ [𝑣]𝑇 ∥2
𝐻𝑚(𝑇) + ∥𝑣∥2

𝐻𝑚(𝑆ℎ(𝑇)). (4.35)

This gives the global bound

∥𝑣∥2
𝐻𝑚(Ωℎ) = ∥𝑣∥2

𝐻𝑚(Ω𝐿
ℎ

) +
∑︁

𝑇∈T 𝑆
ℎ

∥𝑣∥2
𝐻𝑚(𝑇)

≲ ∥𝑣∥2
𝐻𝑚(Ω𝐿

ℎ
) +

∑︁
𝑇∈T 𝑠

ℎ

∥ [𝑣]𝑇 ∥2
𝐻𝑚(𝑇) + ∥𝑣∥2

𝐻𝑚(𝑆ℎ(𝑇))

≲ ∥𝑣∥2
𝐻𝑚(Ω𝐿

ℎ
) + ∥𝑣∥2

𝑠ℎ,𝑚
, (4.36)

where we used that 𝑆ℎ maps 𝑇 to a large element in T 𝐿
ℎ

. Thus we directly get
stabilization of the 𝐻𝑚-norm.

Normal gradient and 𝐿2 control. We now present a stabilization form specifically
designed to address the inverse inequality for the normal gradient, which is essential
for proving coercivity in Nitsche’s method, as well as the 𝐿2 control needed to bound
the condition number. Let

𝑠ℎ(𝑣, 𝑤) =
∑︁

𝑇∈T 𝑆
ℎ

(𝜕Ω)

𝜏1ℎ(∇𝑛 [𝑣]𝑇 ,∇𝑛 [𝑤]𝑇 )𝑇∩𝜕Ω + 𝜏([𝑣], [𝑤])𝑇 . (4.37)

The first term gives precisely the inverse inequality

ℎ∥∇𝑛𝑣∥2
𝜕Ω ≲ ∥∇𝑣∥2

Ω + ∥𝑣∥2
𝑠ℎ
, (4.38)

while the second term ensures the 𝐿2 control

∥𝑣∥2
Ωℎ
≲ ∥𝑣∥2

Ω + ∥𝑣∥2
𝑠ℎ
. (4.39)

5. Weak stabilization on surfaces
As with bulk problems, we ensure adequate control of the approximate solution
to surface PDEs across the entire active mesh by incorporating stabilization terms
into the weak formulation of CutFEM. These stabilization forms are necessary to
obtain a uniform bound on the condition number, and, in certain cases (e.g. for
Lagrange multipliers), they are also required for stability, as discussed in Section 7.
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5.1. Abstract properties

Let Ω0 be (𝑑 − 1)-dimensional surface embedded in R𝑑 , with 𝑑 = 2 or 3. Consider
an active mesh Tℎ,0 of 𝑑-dimensional elements that cover Ω0. The union of the
elements in Tℎ,0 forms the domain Ωℎ,0, and we have a finite element space 𝑉ℎ,0
defined on this active mesh, as described in Section 2.

A weak stabilization form is a positive semidefinite bilinear form 𝑠ℎ,𝑚 acting on
𝑉ℎ,0, which satisfies the following conditions.

• There exists a constant such that

∥∇𝑚𝑣∥2
Ωℎ,0
≲ ℎ∥∇𝑚

0 𝑣∥2
Ω0

+ ∥𝑣∥2
𝑠ℎ,𝑚

, 𝑣 ∈ 𝑉ℎ,0, 𝑚 = 0, 1, (5.1)

where ∇0 denotes the tangential gradient on Ω0, and the factor ℎ compensates
for the difference in dimensions.

• There exists a constant such that weak consistency holds:

∥𝜋ℎ𝑣∥𝑠ℎ,𝑚 ≲ ℎ𝑠−𝑚∥𝑣∥𝐻𝑠(Ω0), 1 ≤ 𝑠 ≤ 𝑝 + 1, 𝑚 = 0, 1, (5.2)

where 𝜋ℎ : 𝐻𝑠(Ω0) → 𝑉ℎ,0 is the interpolation operator defined in Section 3.4
for surfaces.

When necessary for clarity, we may write 𝑠ℎ,0,𝑚, where the additional index 0
indicates that the stabilization form is associated with a surface Ω0. In this section
we only consider surfaces, and therefore we use the simplified notation 𝑠ℎ,𝑚, where
𝑚 indicates the order of derivatives that we control.

Depending on the problem, stronger control than that stated in equation (5.1)
may be required. In such cases, the stabilization form 𝑠ℎ,𝑚 may scale differently,
satisfying a modified version of (5.1). For instance, both sides of (5.1) could be
multiplied by ℎ−1, and the stabilization form may then satisfy that estimate instead.
However, the stabilization must still scale in such a way that weak consistency (5.2)
is satisfied.

As an example, in Section 2 we presented a ghost penalty stabilization form in
equation (2.70) (for 𝑖 = 0) for continuous linear elements and 𝑚 = 1. This was the
first stabilization form introduced for cut finite element discretizations of surface
PDEs; see Burman et al. (2015c). Later, Zahedi (2017) and Larson and Zahedi
(2019) incorporated normal derivatives at the interface, which, together with the
ghost penalty, could achieve a uniform bound on the condition number, even for
elements of higher order than linear. It was then demonstrated that a weaker ghost
penalty term (with an ℎ scaling) can be chosen when normal derivative control at
the interface is included. Next we provide further details of how such stabilization
forms can be constructed.
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5.2. Construction of a surface stabilization form

On a surface, we say that an element 𝑇 ∈ Tℎ is large if

𝛾 ≤ ℎ|𝑇 ∩Ω0 |
|𝑇 | , (5.3)

where the factor ℎ compensates for the fact that𝑇 ∩Ω0 is (𝑑−1)-dimensional and𝑇
is 𝑑-dimensional. We divide the elements into large and small, i.e. Tℎ = T 𝐿

ℎ
∪ T 𝑆

ℎ
.

Let
{
𝑀𝑇 : 𝑇 ∈ T 𝑃

ℎ

}
be a set of patches, where T 𝑃

ℎ
⊂ T 𝐿

ℎ
is a subset of the large

elements that enumerate the patches, such that

max
𝑇∈T 𝑃

ℎ

diam(𝑀𝑇 ) ≲ ℎ, (5.4)

and the patches cover all elements,

Ωℎ,0 ⊂ ∪𝑇∈T 𝑃
ℎ
𝑀𝑇 , 𝑚 = 0, 1. (5.5)

We define the stabilization form as

𝑠ℎ,𝑚(𝑣, 𝑤) =
∑︁

𝑇∈T 𝑃
ℎ

𝑠ℎ,𝑚,𝑀𝑇
(𝑣, 𝑤), 𝑚 = 0, 1, (5.6)

where 𝑠ℎ,𝑚,𝑀𝑇
(𝑣, 𝑤) is a stabilization form for each patch, such that

∥∇𝑚𝑣∥2
𝑀𝑇
≲ ℎ∥∇𝑚

0 𝑣∥2
𝑀𝑇∩Ω0

+ ∥𝑣∥2
𝑠ℎ,𝑚,𝑀𝑇

. (5.7)

Thus we obtain the global bounds

∥∇𝑚𝑣∥2
Ωℎ.0
≲ ℎ∥∇𝑚

0 𝑣∥2
Ω0

+ ∥𝑣∥2
𝑠ℎ,𝑚

, 𝑚 = 0, 1. (5.8)

The term ∥∇𝑚
0 𝑣∥2

Ω0
is controlled by the form associated with the partial differential

equation. For instance, for a second-order elliptic partial differential equation on
Ω0, we have

∥∇0𝑣∥2
Ω0
≲ 𝑎(𝑣, 𝑣), 𝑣 ∈ 𝐻1(Ω0), (5.9)

and for 𝑚 = 0, the operator may directly provide the 𝐿2 control. If not, we work in
𝐻1(Ω0)/R and use the Poincaré inequality

∥𝑣∥Ω0 ≲ ∥∇0𝑣∥Ω0 , 𝑣 ∈ 𝐻1(Ω0)/R. (5.10)

The patch stabilization form 𝑠ℎ,𝑚,𝑀𝑇
(𝑣, 𝑤) needs to control both the variation of

the function on the patch and the variation in the direction normal to the surface.
An example of such a stabilization form is given by (see Larson and Zahedi 2019,
2023)

𝑠ℎ,𝑚,𝑀𝑇
(𝑣, 𝑤) = 𝑠ℎ,𝑚,𝑀𝑇 ,⋆(𝑣, 𝑤) +

𝑝∑︁
𝑗=1

𝜏0, 𝑗ℎ
2( 𝑗−𝑚)+1(∇ 𝑗

𝑛𝑣,∇ 𝑗
𝑛𝑤)Ω0 , (5.11)
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where 𝑠ℎ,𝑚,𝑀𝑇 ,⋆(𝑣, 𝑤) is a form such that

∥∇𝑚(𝑣 − 𝑣𝑇 )∥𝑀𝑇
≲ ∥𝑣∥𝑠ℎ,𝑚,𝑀𝑇 ,⋆

, (5.12)

with 𝑣𝑇 = (𝑣 |𝑇 )𝑒, the canonical extension of the polynomial on the large element
𝑇 ∈ T 𝑃

ℎ
.

For simplicity we verify (5.1) for 𝑝 = 1. Adding and subtracting 𝑣𝑇 and using
the triangle inequality, we obtain for 𝑚 = 0, 1 the following estimate:

∥∇𝑚𝑣∥2
𝑀𝑇

≤ ∥∇𝑚(𝑣 − 𝑣𝑇 )∥2
𝑀𝑇

+ ∥∇𝑚𝑣𝑇 ∥2
𝑀𝑇

≲ ∥𝑣∥2
𝑠ℎ,𝑚,𝑀𝑇 ,⋆

+ ℎ3−2𝑚∥∇𝑛𝑣𝑇 ∥2
𝑇∩Ω0

+ ℎ∥∇𝑚
0 𝑣𝑇 ∥2

𝑇∩Ω0

≲ ∥𝑣∥2
𝑠ℎ,𝑚,𝑀𝑇 ,⋆

+ ℎ3−2𝑚∥∇𝑛𝑣∥2
𝑀𝑇∩Ω0

+ ℎ∥∇𝑚
0 𝑣∥2

𝑀𝑇∩Ω0
. (5.13)

Here we used the inverse inequality

∥∇𝑚𝑤𝑇 ∥2
𝑀𝑇
≲ ℎ3−2𝑚∥∇𝑛𝑤𝑇 ∥2

𝑇∩Ω0
+ ℎ∥∇𝑚

0 𝑤𝑇 ∥2
𝑇∩Ω0

, 𝑚 = 0, 1, (5.14)

which holds since 𝑤𝑇 is a polynomial and 𝑇 is a large element. Furthermore, we
assumed that the form 𝑠ℎ,𝑚,𝑀𝑇 ,⋆ provides the control in (5.12).

To achieve this, we may use the ghost penalty form

𝑠ℎ,𝑚,𝑀𝑇 ,⋆(𝑣, 𝑤) =
∑︁

𝐹∈Fℎ(𝑀𝑇 )

𝑝∑︁
𝑗=1

ℎ2( 𝑗−𝑚)+1([∇ 𝑗𝑣], [∇ 𝑗𝑤])𝐹 , (5.15)

where Fℎ(𝑀𝑇 ) is the set of internal faces in 𝑀𝑇 . Alternatively, we could use the
element-based stabilization in equation (4.15), or a patch stabilization form,

𝑠ℎ,𝑚,𝑀𝑇 ,⋆(𝑣, 𝑤) =
∑︁

𝑇 ′∈T 𝑆
ℎ
,𝑇 ′⊂𝑀𝑇

(∇𝑚(𝑣 − 𝑣𝑇 ),∇𝑚(𝑤 − 𝑤𝑇 ))𝑇 ′ , (5.16)

where we control the difference between 𝑣 and the extension 𝑣𝑇 of 𝑣 restricted to
the large element. For the latter, we directly obtain the estimate in equation (5.12).
For the face-based stabilization, we connect every element to the large element via
a chain of elements and use the control of the variation across the faces; see (4.7).

Finally, we verify the weak consistency (5.2) for the patch stabilization form.
We have

∥𝜋ℎ𝑢∥2
𝑠ℎ,𝑚,𝑀𝑇 ,⋆

=
∑︁

𝑇 ′∈T 𝑆
ℎ
,𝑇 ′⊂𝑀𝑇

∥∇𝑚(𝜋ℎ𝑢 − (𝜋ℎ𝑢)𝑇 )∥2
𝑇 ′ . (5.17)

For any polynomial 𝑤 on 𝑀𝑇 , we know that (𝜋ℎ𝑤)𝑇 = 𝑤𝑇 = 𝑤, and therefore

∥∇𝑚(𝜋ℎ𝑢 − (𝜋ℎ𝑢)𝑇 )∥𝑇 ′ = ∥∇𝑚(𝜋ℎ(𝑢 − 𝑤) − (𝜋ℎ(𝑢 − 𝑤))𝑇 )∥𝑇 ′

≤ ∥∇𝑚(𝜋ℎ(𝑢 − 𝑤))∥𝑇 ′ ≤ ℎ−𝑚∥𝑢 − 𝑤∥𝑀𝑇

≲ ℎ𝑝+1−𝑚∥𝑢∥Ω0 , (5.18)

where we used an inverse estimate to remove the gradient, the 𝐿2-stability of the
interpolation operator, and finally polynomial approximation.
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It remains to verify the consistency for the normal stabilization term. We use
the fact that ∇𝑛𝐸𝑆𝑢 = 0, where 𝐸𝑆𝑢 = 𝑢 ◦ 𝑝Ω0 is the extension of 𝑢 via the closest
point mapping 𝑝Ω0 associated with Ω0. Using the definition of the interpolation
operator and the interpolation estimate (3.35) (see Section 3.4), we obtain

ℎ3−2𝑚∥∇𝑛𝜋ℎ𝑢∥2
𝑇∩Ω0

= ℎ3−2𝑚∥∇𝑛(𝜋ℎ𝑢 − 𝐸𝑆𝑢)∥2
𝑇∩Ω0

≲ ℎ3−2𝑚ℎ2𝑝 ∥𝑢∥2
𝐻 𝑝+1(Ω0). (5.19)

This completes the verification. Note that the normal stabilization term could scale
with weaker ℎ-dependence and still satisfy the weak consistency in equation (5.2).

The stabilization forms presented here essentially follow the approach intro-
duced by Larson and Zahedi (2023), who proposed patch-based stabilization forms
involving both normal control on the surface and variation control on the patch.
Alternatively, one can use normal stabilization on the elements, as proposed by
Grande et al. (2018) and Burman et al. (2018c), and defined as

𝑠ℎ,𝑚(𝑣, 𝑤) = ℎ2−2𝑚(∇𝑛𝑒𝑣,∇𝑛𝑒𝑤)Ωℎ,0 , (5.20)

where 𝑛𝑒 = 𝑛 ◦ 𝑝Ω0 . The analysis with only this stabilization is more complicated,
but if we add a stabilization form 𝑠ℎ,𝑚,𝑀𝑇 ,⋆ satisfying (5.12), we can adopt the proof
outlined above. For linear elements, one may opt for full gradient stabilization, as
described in Burman et al. (2016b).

6. Strong stabilization
An alternative to weak stabilization is instead to strongly stabilize the finite element
space by eliminating unstable degrees of freedom so that optimal approximation
properties are preserved. The approach may also be viewed as constructing a dis-
crete extension operator, which was introduced in Johansson and Larson (2013) for
discontinuous finite element spaces and in Badia et al. (2018) for continuous finite
element spaces. Burman et al. (2022c, 2023b) have developed an abstract general
framework for constructing the extension operators, which we will follow here.
The relation between stabilized formulations and formulations using extension was
discussed in Burman, Hansbo and Larson (2022e).

6.1. Construction of a discrete extension operator

Recall that an element is considered large if

𝛾 |𝑇 | ≤ |𝑇 ∩Ω|, (6.1)

for a positive parameter 𝛾; otherwise the element is classified as small. Consider a
finite element space 𝑉ℎ with a standard locally supported basis B = {𝜑𝑖}𝑁𝑖=1. We
say that a basis function is small if its support does not contain any large element;
otherwise the basis function is large. By decomposing the basis into the set of large
and small basis functions B = B𝐿 ∪B𝑆 , we may also decompose our finite element
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space into two subspaces

𝑉ℎ = 𝑉𝐿
ℎ ⊕ 𝑉𝑆

ℎ = span(B𝐿) ⊕ span(B𝑆), (6.2)

where𝑉𝐿
ℎ

is spanned by the large basis functions and𝑉𝑆
ℎ

by the small basis functions.
For 𝑣 ∈ 𝑉ℎ, we can write 𝑣 = 𝑣𝑆 + 𝑣𝐿 , where the superscript 𝑆 denotes the

component in 𝑉𝑆
ℎ

and 𝐿 the component in 𝑉𝐿
ℎ

. We also introduce the set of indices
corresponding to large basis functions, which we denote by 𝐼𝐿 .

The extension operator will essentially use information from 𝑉𝐿
ℎ

to construct
an element in 𝑉𝐿

ℎ
⊕ 𝑉𝑆

ℎ
with proper stability and approximation properties. With

natural assumptions, the extension operator will also preserve 𝑉𝐿
ℎ

.
Recalling the mapping 𝑆ℎ(𝑇), which maps an element 𝑇 onto a large element

such that
diam(𝑆ℎ(𝑇) ∪ 𝑇) ≲ ℎ, (6.3)

we introduce a preliminary extension operator 𝐵ℎ that extends 𝑉𝐿
ℎ

into a dG-space
𝑋ℎ that contains 𝑉ℎ defined by

(𝐵ℎ𝑣)|𝑇 =

{
(𝑣 |𝑆ℎ(𝑇))𝑒 |𝑇 , 𝑇 small,
𝑣 |𝑇 , 𝑇 large.

(6.4)

Here 𝑣𝑒 denotes the canonical extension of a polynomial 𝑣 on 𝑇 to a polynomial on
R𝑑 . Next we use an interpolation operator 𝜋ℎ to map 𝑋ℎ onto 𝑉ℎ. By composing
𝐵ℎ with the interpolation operator 𝜋ℎ, we will obtain our extension operator. To
that end, let 𝜋ℎ : 𝑋ℎ → 𝑉ℎ be an interpolation operator

𝜋ℎ𝑣 =
∑︁
𝑖∈𝐼

𝜓𝑖(𝑣)𝜑𝑖 , (6.5)

such that
∥𝜋ℎ𝑣∥𝐻1(Ωℎ) ≲ ∥𝑣∥𝐻1(Ωℎ), 𝑣 ∈ 𝑋ℎ . (6.6)

Typical choices are operators of Clément type. Finally, we define the extension
operator 𝐸ℎ as the composition of 𝐵ℎ and 𝜋ℎ:

𝐸ℎ : 𝑉𝐿
ℎ ∋ 𝑣𝐿 ↦→ 𝜋ℎ𝐵ℎ𝑣

𝐿 ∈ 𝑉𝐸
ℎ ⊂ 𝑉ℎ, (6.7)

where we define the extended finite element space by

𝑉𝐸
ℎ = 𝐸ℎ(𝑉𝐿

ℎ ) ⊂ 𝑉ℎ . (6.8)

6.2. Basic properties

The extension operator 𝐸ℎ : 𝑉𝐿
ℎ

→ 𝑉ℎ is linear and injective. If the interpolation
operator is such that

𝜋ℎ𝑣 = 𝑣, 𝑣 ∈ 𝑉ℎ, (6.9)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492925000017
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 26 Jul 2025 at 10:59:45, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492925000017
https://www.cambridge.org/core


Cut finite element methods 59

and the functionals 𝜓𝑖 are chosen to preserve the finite element space and such that{
𝜓𝑖 : 𝐿2(supp(𝜑𝑖) ∩Ω𝐿

ℎ
) → R if 𝑖 ∈ 𝐼𝐿 ,

𝜓𝑖 : 𝐿2(supp(𝜑𝑖)) → R otherwise,
(6.10)

where Ω𝐿
ℎ

denotes the domain formed by the large elements (see (4.4)), then the
extension operator has the following structure:

𝐸ℎ𝑣
𝐿 = (𝐸ℎ𝑣

𝐿)𝐿 + (𝐸ℎ𝑣
𝐿)𝑆 = 𝑣𝐿 + (𝐸ℎ𝑣

𝐿)𝑆 . (6.11)

To show that (𝐸ℎ𝑣
𝐿)𝐿 = 𝑣𝐿 , we have the following identities:

(𝐸ℎ𝑣)𝐿 = (𝜋ℎ𝐵ℎ𝑣)𝐿 =
∑︁
𝑖∈𝐼𝐿

𝜓𝑖(𝐵ℎ𝑣)𝜑𝑖 =
∑︁
𝑖∈𝐼𝐿

𝜓𝑖(𝑣)𝜑𝑖 = 𝑣𝐿 . (6.12)

Here we used the identities 𝜓𝑖(𝑤) = 𝜓𝑖(𝑤 |Ω𝐿
ℎ

) for 𝑖 ∈ 𝐼𝐿 and 𝐵ℎ𝑣 = 𝑣 on Ω𝐿
ℎ

, which
are consequences of (6.10) and (6.4), respectively. These identities together imply
that 𝐸ℎ preserves 𝑉𝐿

ℎ
.

6.3. Matrix formulation

Here we summarize the basic steps in the matrix calculations involved in solving a
problem using the discrete extension operator.

• Assemble the square linear system of equations for the original method

𝐴�̂�ℎ = �̂�, (6.13)

where �̂� ∈ Rdim(𝑉ℎ) are coefficients for the full approximation space 𝑉ℎ.
• Given 𝛾 ≥ 0 and the small-to-large element association 𝑆ℎ, assemble the

discrete extension matrix 𝐸ℎ ∈ Rdim(𝑉ℎ)×dim(𝑉𝐿
ℎ

) such that

�̂�𝐸 = �𝐸ℎ𝑣
𝐿 = 𝐸ℎ �̂�

𝐿 , (6.14)

following the construction above. If 𝛾 = 0, this reduces to the identity matrix.
• Solve the reduced system

(𝐸⊤
ℎ 𝐴𝐸ℎ)�̂�𝐿ℎ = 𝐸⊤

ℎ �̂�, (6.15)

where �̂�𝐿
ℎ
∈ Rdim(𝑉𝐿

ℎ
) are coefficients for the extended space 𝑉𝐸

ℎ
.

• Expand in coefficients for 𝑉ℎ:

�̂�𝐸ℎ = 𝐸ℎ�̂�
𝐿
ℎ . (6.16)

6.4. Theoretical results

We have the following theoretical results.

• Stability. For 𝑣 ∈ 𝑉𝐸
ℎ

⊂ 𝐻1(Ωℎ),

∥∇𝑚𝑣∥Ωℎ
≲ ∥∇𝑚𝑣∥Ω, 𝑚 = 0, 1. (6.17)
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• Approximation. Let 𝜋𝐸
ℎ

= 𝐸ℎ �̃�ℎ, where �̃�ℎ is an interpolation operator
constructed as in Section 3.4. For 𝑣 ∈ 𝐻 𝑝+1(Ω),

∥𝑣 − 𝜋𝐸
ℎ 𝑣∥𝐻𝑚(Ωℎ) ≲ ℎ𝑝+1−𝑚∥𝑣∥𝐻 𝑝+1(Ω), 0 ≤ 𝑚 ≤ 𝑝 + 1. (6.18)

• Equivalence to DoFs-norm:

∥𝑣∥2
Ω ∼ ∥𝑣∥2

Ωℎ
∼ ℎ𝑑 ∥�̂�∥2

R𝑁
, 𝑣 ∈ 𝑉𝐸

ℎ . (6.19)

We refer to Burman et al. (2022c, 2023b) for proofs of these results.

6.5. The relation between weak and strong stabilization

This section explores the relationship between the strong and weak stabilization
approaches. More precisely, we show that there is a weak stabilization form such
that the strong stabilization is obtained in the limit when we let the stabilization
parameter tend to infinity.

For each small basis function, 𝜙𝑖 associates an element 𝑇𝑖 ⊂ supp(𝜙𝑖) ⊂ Ω𝑆
ℎ
, and

we define

𝑠ℎ,𝑚(𝑣, 𝑤) =
∑︁
𝑖∈𝐼𝑆

ℎ𝑑−2𝑚𝜓𝑖([𝑣]𝑇𝑖 )𝜓𝑖([𝑤]𝑇𝑖 ), (6.20)

where 𝐼𝑆 is the index set for the small basis functions and 𝜓𝑖 : 𝐿2(𝑇𝑖) → R is a
functional that provides the value of the degree of freedom such that

𝑣 =
∑︁
𝑖∈𝐼

𝜓𝑖(𝑣)𝜑𝑖 , 𝑣 ∈ 𝑉ℎ . (6.21)

For this stabilization form, we have the following stability estimate:

∥𝑣∥2
𝐻𝑚(Ωℎ) ≲ ∥𝑣 − 𝐸ℎ𝑣∥2

𝐻𝑚(Ωℎ) + ∥𝐸ℎ𝑣∥2
𝐻𝑚(Ωℎ)

≲ ℎ−2𝑚∥𝑣 − 𝐸ℎ𝑣∥2
Ωℎ

+ ∥𝐸ℎ𝑣∥2
𝐻𝑚(Ωℎ)

≲ ℎ−2𝑚
∑︁
𝑖∈𝐼

ℎ𝑑 |𝜓𝑖(𝑣 − 𝐸ℎ𝑣)|2 + ∥𝐸ℎ𝑣∥2
𝐻𝑚(Ωℎ)

≲ ∥𝑣∥2
𝑠ℎ,𝑚

+ ∥𝑣∥2
𝐻𝑚(Ω). (6.22)

Note that we can change 𝐸ℎ to 𝐵ℎ.
Next, to investigate the relationship between the strong stabilization and the

degree of freedom stabilization, we note that

𝜓𝑖([𝑣]𝑇 ) = 𝜓𝑖(𝑣) − 𝜓𝑖(𝐵ℎ𝑣) = 𝜓𝑖(𝑣) − 𝜓𝑖(𝐸ℎ𝑣
𝐿) = 𝜓𝑖(𝑣 − 𝐸ℎ𝑣

𝐿), (6.23)

since

𝜓𝑖(𝐸ℎ𝑣
𝐿) = 𝜓𝑖

(∑︁
𝑗

𝜓 𝑗(𝐵ℎ𝑣
𝐿)𝜑 𝑗

)
=
∑︁
𝑗

𝜓 𝑗(𝐵ℎ𝑣
𝐿)𝜓𝑖(𝜑 𝑗)︸ ︷︷ ︸

=𝛿𝑖 𝑗

= 𝜓𝑖(𝐵ℎ𝑣
𝐿). (6.24)
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We thus have

𝑠ℎ,𝑚(𝑣, 𝑤) =
∑︁
𝑖∈𝐼𝑆

ℎ𝑑−2𝑚𝜓𝑖([𝑣]𝑇𝑖 )𝜓𝑖([𝑤]𝑇𝑖 )

=
∑︁
𝑖∈𝐼𝑆

ℎ𝑑−2𝑚𝜓𝑖(𝑣 − 𝐸ℎ𝑣)𝜓𝑖(𝑤 − 𝐸ℎ𝑤). (6.25)

This means we control the distance between a function 𝑣 ∈ 𝑉ℎ and the stable
extension 𝐸ℎ𝑣.

It follows that when the stabilization parameter 𝜏 tends to infinity, the solution
to the stabilized problem

𝑎ℎ(𝑢ℎ,𝜏 , 𝑣) + 𝜏𝑠ℎ,𝑚(𝑢ℎ,𝜏 , 𝑣) = 𝑙ℎ(𝑣) for all 𝑣 ∈ 𝑉ℎ (6.26)

will converge to the solution 𝑢𝐸
ℎ

of the strongly stabilized problem

𝑎ℎ
(
𝑢𝐸ℎ , 𝑣

)
= 𝑙ℎ(𝑣) for all 𝑣 ∈ 𝑉𝐸

ℎ , (6.27)

since

𝑎ℎ(𝑢ℎ,𝜏 , 𝑣) + 𝜏𝑠ℎ,𝑚(𝑢ℎ,𝜏 , 𝑣) = 𝑙ℎ(𝑣) = 𝑎ℎ
(
𝑢𝐸ℎ , 𝑣

)
, (6.28)

and thus we get

𝑎ℎ
(
𝑢ℎ,𝜏 − 𝑢𝐸ℎ , 𝑣

)
+ 𝜏𝑠ℎ,𝑚

(
𝑢ℎ,𝜏 − 𝑢𝐸ℎ , 𝑣

)
= 0 for all 𝑣 ∈ 𝑉ℎ . (6.29)

Let ||| · |||ℎ be an energy norm associated with 𝑎ℎ such that 𝑎ℎ + 𝜏𝑠ℎ,𝑚 is coercive
and 𝑎ℎ is continuous with respect to ||| · |||ℎ. Setting 𝑤 = 𝑢ℎ,𝜏 − 𝑢𝐸

ℎ
and using

stability bounds for the finite element solutions, followed by the consistency (6.29),
yields

|||𝑤 |||2ℎ + 𝜏∥𝑤∥2
𝑠ℎ,𝑚
≲ 𝑎ℎ(𝑤, 𝑤) + 𝜏𝑠ℎ,𝑚(𝑤, 𝑤)

= 𝑎ℎ
(
𝑤, 𝑢𝐸ℎ

)
+ 𝜏𝑠ℎ,𝑚

(
𝑤, 𝑢𝐸ℎ

)
= 𝑎ℎ

(
𝑤, 𝑢𝐸ℎ

)
≲ |||𝑤 |||ℎ |||𝑢𝐸ℎ |||ℎ . (6.30)

Here we used the identity 𝑠ℎ,𝑚
(
𝑤, 𝑢𝐸

ℎ

)
= 0, which follows from the definition of

𝑠ℎ,𝑚 in (6.25). We keep 𝜏 outside the norm ∥ · ∥𝑠ℎ,𝑚 for clarity.
We conclude that

𝜏∥𝑢ℎ,𝜏 − 𝑢𝐸ℎ ∥𝑠ℎ,𝑚 ≲ |||𝑢𝐸ℎ |||ℎ ≲ 1, (6.31)

and now keeping ℎ fixed and letting 𝜏 → ∞, the result follows. Indeed, since
lim𝜏→∞ ∥𝑢ℎ,𝜏 − 𝑢𝐸

ℎ
∥𝑠ℎ,𝑚 = 0, we conclude that 𝑢ℎ,𝜏 ∈ 𝑉𝐸

ℎ
and hence 𝑢ℎ,𝜏 = 𝑢𝐸

ℎ
.

We remark that this result shows that there are no locking effects for large values
of the stabilization parameter 𝜏 for weak stabilization as defined by (6.25). In
contrast, a standard ghost penalty stabilization (without the use of macro-elements)
forces the solution into the kernel of the stabilization form as the parameter 𝜏 tends
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to infinity, which typically leads to locking for large values of the stabilization
parameter. For instance, when ghost penalty stabilization penalizing derivative
jumps is applied on all faces, the kernel of the stabilization form acting on the
space of continuous piecewise polynomials of degree 𝑝 is the space of global
polynomials of degree 𝑝.

7. Lagrange multiplier methods
In the previous examples we considered Nitsche’s method for the imposition of
boundary and interface conditions. Another approach for weak imposition of
interface constraints is to use Lagrange multipliers. The use of Lagrange multipliers
for the imposition of constraints in finite element methods dates back to the seminal
works of Babuška (1972/73) and Brezzi (1974). In the case of fictitious domain
methods using finite element methods, they were introduced and analysed by Girault
and Glowinski (1995), and on cut meshes, using stabilization, by Burman and
Hansbo (2010a).

To design cut finite element methods with Lagrange multipliers, we add an ad-
ditional variable on the interface that allows us to impose boundary or interface
conditions as an additional equation. This has the disadvantage of adding addi-
tional degrees of freedom, and the linear system to solve is that of a saddle point
problem, which is more demanding than the symmetric system from Nitsche’s
method. On the other hand, the multiplier gives an independent variable for the
approximation of the flux variable, which can be advantageous in some cases. It
can enhance conservation for fluid problems, and for problems with non-linear
diffusion the interface terms of the formulation remain linear. For cut elements,
the Lagrange multiplier approach has some advantageous stability properties, and
indeed methods can be designed that do not require any stabilization for optimal
accuracy. Nevertheless, stabilization can be useful to facilitate the satisfaction of
the so-called inf-sup stability condition that appears due to the saddle point struc-
ture, and also to improve on the conditioning of the linear system. Using Lagrange
multipliers can also allow for coupling methods that are much less invasive in the
solvers of the coupled sub-problems, as we shall see in the next section.

In the context of the fictitious domain problem, below we will first discuss how to
design cut finite element methods using Lagrange multipliers that are stable without
stabilization, and then we will discuss some known stabilization techniques. In this
section we only consider the fictitious domain problem. Interface problems dis-
cretized using Lagrange multipliers will be treated in the next section on hybridized
methods.

7.1. Model problem

Let Ω be a domain in R𝑑 with piecewise smooth Lipschitz-continuous boundary
Ω0 and exterior unit normal 𝑛. More precisely, let Ω0 be defined by the union of
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smooth manifolds Ω0,𝑖 , 𝑖 = 1, . . . , 𝑁 , defined by a differentiable map 𝑥𝑖 : Ω̂0,𝑖 ⊂
R𝑑−1 → Ω0,𝑖 ⊂ R𝑑 . Collecting the 𝑥𝑖 , we define a map 𝑥Ω0 from {Ω̂0,𝑖}𝑁𝑖=1 to Ω0.
We consider the following problem: find 𝑢 : Ω → R such that

−𝛼Δ𝑢 = 𝑓 in Ω, (7.1)
𝑢 = 𝑔 on Ω0, (7.2)

where 𝑓 ∈ 𝐿2(Ω), 𝑔 ∈ 𝐻1/2(Ω0), are given functions.

7.2. Modelling using calculus of variations

In many applications the above model is obtained from an energy argument. Indeed,
the solution sought is the one minimizing a certain energy, in our case the Dirichlet
energy

J (𝑣) =
∫
Ω

(
𝛼

2
|∇𝑣 |2 − 𝑣 𝑓

)
d𝑥. (7.3)

An equivalent formulation to the one above is obtained by minimizing (7.3) over
the subset of functions in 𝐻1(Ω) for which 𝑢 = 𝑔 on Ω0.

The idea of Lagrange multipliers is to instead minimize over 𝐻1(Ω), i.e. relaxing
the optimization to the whole space, but introduce the boundary condition as a
constraint. To make this more precise, it is useful to introduce the corresponding
Lagrangian functional:

L(𝑣, 𝜇) = J (𝑣) + (𝜇, 𝑣 − 𝑔)Ω0 . (7.4)

Here 𝜇 is the Lagrange multiplier, and the second term on the right-hand side
should be interpreted as the duality pairing between 𝐻−1/2(Ω0) and 𝐻1/2(Ω0). We
recall that 𝑔 ∈ 𝐻1/2(Ω0), and if 𝑣 ∈ 𝐻1(Ω), its trace on Ω0, 𝛾𝑣 ∈ 𝐻1/2(Ω0), so
for 𝜇 ∈ 𝐻−1/2(Ω0) the form is well-defined. The solution is now obtained as the
saddle point of (7.4).

Formally deriving the Lagrangian results in the following Euler–Lagrange equa-
tions: find 𝑢 ∈ 𝐻1(Ω), 𝜆 ∈ 𝐻−1/2(Ω0) such that

𝑎(𝑢, 𝑣) + 𝑏(𝜆, 𝑣) = 𝑙(𝑣) for all 𝑣 ∈ 𝐻1(Ω), (7.5)
𝑏(𝜇, 𝑢) = 𝑏(𝜇, 𝑔) for all 𝜇 ∈ 𝐻−1/2(Ω0), (7.6)

where 𝑎(𝑢, 𝑣) = (𝛼∇𝑢,∇𝑣)Ω, 𝑏(𝜇, 𝑣) = (𝜇, 𝑣)Ω0 and 𝑙(𝑣) = ( 𝑓 , 𝑣)Ω. This is the
weak formulation for the constrained minimization problem. Observe that now the
boundary condition is enforced through an additional equation and the additional
unknown 𝜆 makes the number of equations and unknowns match. We introduce
the norms ∥ · ∥Λ and ∥ · ∥𝑉 that for the model problem would be chosen as

∥ · ∥Λ = 𝛼−1/2∥ · ∥𝐻−1/2(Ω0) and ∥ · ∥𝑉 = 𝛼1/2∥ · ∥𝐻1(Ω). (7.7)
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7.3. Existence and uniqueness of the weak solution

The forms 𝑎 and 𝑏 are bounded linear operators,

𝑎(𝑢, 𝑣) ≤ 𝑀𝑎∥𝑢∥𝑉 ∥𝑣∥𝑉 and 𝑏(𝜇, 𝑣) ≤ 𝑀𝑏∥𝜇∥Λ∥𝑣∥𝑉 , (7.8)

with 𝑀𝑎 and 𝑀𝑏 positive constants. Continuity for 𝑏 follows since by duality,
followed by a trace inequality, for all (𝑣, 𝜇) ∈ 𝐻1(Ω) × 𝐻−1/2(Ω0)

|𝑏(𝜇, 𝑣)| ≤ 𝛼−1/2∥𝜇∥𝐻−1/2(Ω0)𝛼
1/2∥𝑣∥𝐻1/2(Ω0) ≤ 𝑀𝑏∥𝜇∥Λ∥𝑣∥𝑉 , (7.9)

where we applied a global trace inequality in the second step and we see that 𝑀𝑏

coincides with the trace constant.
In this case we cannot apply the Lax–Milgram lemma immediately, since the

form 𝑏(·, ·) does not enter the framework. However, if we rewrite the solution as
𝑢 = 𝑢0 +𝑢𝑔, where 𝑢0 ∈ 𝐻1

0(Ω) and 𝑢𝑔 ∈ 𝐻1(Ω) is the harmonic extension of 𝑔, i.e.
Δ𝑢𝑔 = 0 in Ω and 𝛾𝑢𝑔 = 𝑔, we obtain the following formulation: find 𝑢0 ∈ 𝐻1

0(Ω)
such that

𝑎(𝑢0, 𝑣) = 𝑙(𝑣) − 𝑎(𝑢𝑔, 𝑣) for all 𝑣 ∈ 𝐻1
0(Ω). (7.10)

This weak formulation is well-posed by the Lax–Milgram lemma since 𝑎 is coercive
on 𝐻1

0(Ω). The form 𝑏(·, ·) vanishes here since 𝑏(·, 𝑣) = 0, for all 𝑣 ∈ 𝐻1
0(Ω), that is,

𝑎 is coercive on the kernel of 𝑏. The existence and uniqueness of the Lagrange
multiplier is a consequence of Brezzi’s theorem (Brezzi 1974). The key condition
is that the form 𝑏(·, ·) : 𝐻−1/2(Ω0) × 𝐻1(Ω) → R is a bounded linear operator and
there exists 𝑐𝑏 > 0 such that, for all 𝜇 ∈ 𝐻−1/2(Ω0),

∥𝜇∥𝐻−1/2(Ω0) ≲ sup
𝑣∈𝐻1(Ω)\{0}

𝑏(𝜇, 𝑣)
∥𝑣∥𝐻1(Ω)

. (7.11)

If this condition is satisfied, there exists a unique solution 𝜆 to (7.5). In our case
𝑏(·, ·) is simply the duality pairing between 𝐻−1/2(Ω0) and 𝐻1/2(Ω0), and since

∥𝜇∥𝐻−1/2(Ω0) = sup
𝑣∈𝐻1/2(Ω0)\{0}

(𝜇, 𝑣)Ω0

∥𝑣∥𝐻1/2(Ω0)
, (7.12)

the condition (7.11) holds, by harmonic extension. Hence there exists a unique
𝜆 ∈ 𝐻−1/2(𝜕Ω) such that

(𝜆, 𝑣)Ω0 = 𝑙(𝑣) − 𝑎(𝑢, 𝑣) for all 𝑣 ∈ 𝐻1(Ω). (7.13)

The multiplier also satisfies the stability estimate

∥𝜆∥𝐻−1/2(Ω0) = sup
𝑣∈𝐻1(Ω)\{0}

(𝜆, 𝑣)Ω0

∥𝑣∥𝐻1/2(Ω0)

= sup
𝑣∈𝐻1(Ω)\𝐻1

0 (Ω)

𝑙(𝑣) − 𝑎(𝑢, 𝑣)
∥𝑣∥𝐻1/2(Ω0)

≲ ∥ 𝑓 ∥𝐻1(Ω)′ + ∥𝑔∥𝐻1/2(Ω0). (7.14)
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If we assume 𝑓 ∈ 𝐿2(Ω), apply the divergence theorem on the right-hand side of
equation (7.13) and use that 𝑢 satisfies −𝛼Δ𝑢 = 𝑓 , we obtain

(𝜆, 𝑣)Ω0 = (−𝑛 · 𝛼∇𝑢, 𝑣)Ω0 for all 𝑣 ∈ 𝐻1(Ω). (7.15)

It follows that if 𝑢 is smooth enough that the trace of the normal gradient is
well-defined in 𝐻−1/2(Ω0), then 𝜆 = −𝑛 · 𝛼∇𝑢.

For sufficiently smooth interfaces, one may also show the following elliptic
regularity estimate:

∥𝑢∥𝐻𝑡+1(Ω) + ∥𝜆∥𝐻𝑡−1/2(Ω0) ≲ ∥ 𝑓 ∥𝐻𝑡−1(Ω) + ∥𝑔∥𝐻𝑡+1/2(Ω0), 𝑡 ≥ 1. (7.16)

7.4. Cut finite element method using Lagrange multipliers

If we assume that 𝑢 is discretized using the unfitted bulk finite element space,
such that the restriction of the functions are in 𝐻1(Ω), 𝑉ℎ |Ω ⊂ 𝐻1(Ωℎ) and 𝜆 is
discretized using a finite-dimensional subspace of 𝐻−1/2(𝜕Ω), Λℎ, we may write
the discretization of (7.5) as follows: find (𝑢ℎ, 𝜆ℎ) ∈ 𝑉ℎ × Λℎ such that

𝑎(𝑢ℎ, 𝑣) + 𝑏(𝜆ℎ, 𝑣) = 𝑙(𝑣ℎ) for all 𝑣 ∈ 𝑉ℎ, (7.17)
𝑏(𝜇, 𝑢ℎ) − 𝜏0𝑠ℎ,0(𝜆ℎ, 𝜇) = 𝑏(𝜇, 𝑔) for all 𝜇 ∈ Λℎ. (7.18)

Here 𝑠ℎ,0 is a symmetric positive semidefinite form introduced to stabilize the
formulation and 𝜏0 is a non-negative constant. We assume that 𝑠ℎ,0 is weakly
consistent; see Section 5. For 𝜏0 = 0, this is a standard Lagrange multiplier
formulation on the non-standard cut space 𝑉ℎ. As long as all elements have non-
zero intersection with the physical domain, however small, the method can be
designed so that it has optimal convergence without additional stabilizing terms.
The caveat is that, as usual for Lagrange multiplier formulations, the stability of
the formulation depends on the choice of the spaces 𝑉ℎ and Λℎ. Indeed, for the
formulation to be uniformly stable, the spaces must satisfy a discrete equivalent
to (7.11).

Satisfying the inf-sup condition on the discrete level is a bit more subtle than in
the continuous case and will be discussed below. First let us consider the question
of invertibility of the linear system associated with (7.17)–(7.18), on cut meshes.
Let us assume that 𝑉ℎ is the cut finite element space introduced in Section 2,
satisfying (3.30), and that we have a space for the multipliers Λℎ that satisfies the
following condition with respect to 𝑉ℎ:

𝑏(𝜆ℎ, 𝑣) = 0 for all 𝑣 ∈ 𝑉ℎ implies 𝜆ℎ = 0. (7.19)

This is the minimum condition needed for the linear system to be invertible. As
we shall see later, a discrete version of (7.11) will be needed for the error analysis.
If the active mesh is defined so that all elements have non-zero intersection with
the physical domain, then the resulting linear system is invertible under minimal
assumptions.
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Lemma 7.1. Assume that ∥∇𝑢ℎ∥2
Ω
≲ 𝑎(𝑢ℎ, 𝑢ℎ) and that the condition (7.19) is

satisfied. Then the linear system defined by (7.17)–(7.18) admits a unique solution.

Proof. Since (7.17)–(7.18) defines a square linear system, it is enough to show
that the solution is unique. Consider the case 𝑓 = 𝑔 = 0 and take 𝑣 = 𝑢ℎ, 𝜇 = 𝜆ℎ.
Then ∥∇𝑢ℎ∥2

Ω
+ 𝜏0𝑠ℎ,0(𝜆ℎ, 𝜆ℎ) = 0. Take 𝜇 = 1 in (7.18) to see that∫

Ω0

𝑢ℎ d𝑠 = 0. (7.20)

It then follows by Poincaré’s inequality that 𝑢ℎ = 0. It is immediate by (7.19) that
𝜆ℎ = 0.

For simplicity we consider the case without ghost penalty for the bulk discretiza-
tion below, and show that this leads to a method with optimal order of convergence.
If control of the condition number of the system is required, ghost penalty stabiliz-
ation can be added to the 𝑎 form. The extension to that case is straightforward.

Several different choices of 𝑉ℎ and Λℎ are possible in the CutFEM framework.
Observe that Λℎ and 𝑉ℎ do not have to be defined on the same meshes even if the
subscript is the same. Below, 𝑉ℎ will always be chosen to be the unfitted finite
element space defined on the active mesh. ForΛℎ we will distinguish two situations
that are both of interest for applications. The first case is when a surface mesh Σℎ

is available on Ω0. This is feasible if an explicit parametrization of the boundary is
available. Then the discrete multiplier can be approximated in a boundary element
space. The second situation is when the boundary is given implicitly. The meshing
problem of the boundary can then be almost as complex as that of the bulk, and
it may be attractive to define the discrete multiplier approximation using the bulk
mesh in the unfitted fashion, as discussed in Section 2.3. Before discussing the
different possible choices of spaces Λℎ, we consider the basic stability and error
analysis for Lagrange multiplier methods of the form (7.17)–(7.18) on unfitted bulk
meshes.

Stability and error estimates in an abstract setting. We will now adapt the frame-
work of Section 3 to the case of Lagrange multipliers.

Define the triple norm

|||(𝑣ℎ, 𝜇ℎ)|||2𝜏 = ∥𝑣ℎ∥2
𝑉 + ∥𝜇ℎ∥2

Λ + 𝜏0∥𝜇ℎ∥2
𝑠ℎ
, (7.21)

where the stabilization seminorm is defined by ∥𝜇∥𝑠ℎ = 𝑠ℎ,0(𝜇, 𝜇)1/2 for 𝜇 ∈ Λℎ

and |||(𝑣ℎ, 𝜇ℎ)|||0 denotes the triple norm with 𝜏0 = 0. When 𝜏0 > 0, the norm is
typically only well-defined on 𝑉 × Λℎ.

Consider the following compact formulation: find (𝑢ℎ, 𝜆ℎ) ∈ 𝑉ℎ × Λℎ such that

𝐴[(𝑢ℎ, 𝜆ℎ), (𝑣, 𝜇)] + 𝜏0𝑠ℎ,0(𝜆ℎ, 𝜇) = 𝐿(𝑣, 𝜇) for all (𝑣, 𝜇) ∈ 𝑉ℎ × Λℎ, (7.22)

where
𝐴[(𝑢ℎ, 𝜆ℎ), (𝑣, 𝜇)] = 𝑎(𝑢ℎ, 𝑣) + 𝑏(𝜆ℎ, 𝑣) − 𝑏(𝜇, 𝑢ℎ) (7.23)
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and
𝐿(𝑣, 𝜇) = 𝑙(𝑣) + 𝑏(𝜇, 𝑔). (7.24)

For the analysis below, we require the following assumptions to be satisfied.

A1. Consistency. By construction, for 𝑢ℎ ∈ 𝑉ℎ and 𝜆ℎ ∈ Λℎ, we have

𝐴[(𝑢ℎ, 𝜆ℎ), (𝑣, 𝜇)] = 𝐴[(𝑢, 𝜆), (𝑣, 𝜇)]−𝜏0𝑠ℎ,0(𝜆ℎ, 𝜇) for all (𝑣, 𝜇) ∈ 𝑉ℎ×Λℎ .

(7.25)

A2. Continuity. Assume the bound (7.8). Then the following continuity holds for
𝑣, 𝑦 ∈ 𝑉 , 𝜇, 𝜂 ∈ Λ:

𝐴[(𝑣, 𝜇), (𝑦, 𝜂)] ≲ |||(𝑣, 𝜇)|||0 |||(𝑦, 𝜂)|||0. (7.26)

Below we will sometimes use the individual constants of continuity 𝑀𝑎 and
𝑀𝑏 for the forms 𝑎 and 𝑏 respectively, as introduced in (7.8). For 𝜇ℎ, 𝜁ℎ ∈ Λℎ,
assume that

𝑠ℎ,0(𝜇ℎ, 𝜁ℎ) ≤ ∥𝜇ℎ∥𝑠ℎ ∥𝜁ℎ∥𝑠ℎ . (7.27)

This condition holds by the Cauchy–Schwarz inequality for the symmetric
stabilizations considered below.

A3. Stability. Assume that the following two stability conditions are satisfied for
CutFEM using Lagrange multipliers.

• Inf-sup stability of the form 𝑏. For all 𝜇ℎ ∈ Λℎ,

∥𝜇ℎ∥Λ ≲ sup
𝑣∈𝑉ℎ\{0}

𝑏(𝜇ℎ, 𝑣)
∥𝑣∥𝑉

+ 𝜏
1/2
0 𝑠ℎ,0(𝜇ℎ, 𝜇ℎ)1/2 (7.28)

for some 𝜏0 ≥ 0.
• Coercivity of the form 𝑎. For the bulk variable, on the other hand, we

assume that there exists 𝛼 > 0 such that, for all 𝑣 ∈ 𝑉ℎ, there exists
𝜇𝑣 ∈ Λℎ such that

𝑐2
𝑎∥𝑣∥2

𝑉 ≤ 𝑎(𝑣, 𝑣) + 𝑏(𝜇𝑣 , 𝑣), (7.29)

with ∥𝜇𝑣 ∥Λ ≲ ∥𝑣∥𝑉 and 𝜏
1/2
0 𝑠ℎ,0(𝜇𝑣 , 𝜇𝑣)1/2 ≤ 𝐶𝜏 ∥𝑣∥𝑉 , where 𝐶𝜏 de-

pends on 𝜏0 and can be made small by reducing this parameter. Note
that the classical condition that 𝑎 is coercive on the kernel of 𝑏 can be
misleading when working on cut meshes.

A4. Approximation. Let 𝑝 and 𝑙 denote the polynomial degrees of the spaces 𝑉ℎ

and Λℎ respectively. Assume that there is an 𝑉-stable interpolation operator
𝜋ℎ : 𝐻1(Ω) → 𝑉ℎ satisfying

∥𝑣 − 𝜋ℎ𝑣∥𝑉 ≲ ℎ𝑟 |𝑣 |𝐻𝑟+1(Ω), 𝑟 = min(𝑝, 𝑡𝑢 − 1), 𝑣 ∈ 𝐻𝑡𝑢(Ω), (7.30)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492925000017
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 26 Jul 2025 at 10:59:45, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492925000017
https://www.cambridge.org/core


68 E. Burman, P. Hansbo, M. G. Larson and S. Zahedi

with 𝑝 ≥ 1 and 𝑡𝑢 ≥ 1 and an interpolation operator 𝜛ℎ : Λ → Λℎ such that

∥𝜇−𝜛ℎ𝜇∥Λ+∥𝜛ℎ𝜇∥𝑠ℎ ≲ ℎ𝑟+1/2 |𝜇 |𝐻𝑟 (Ω0), 𝑟 = min(𝑙+1, 𝑡𝜇), 𝜇 ∈ 𝐻𝑡𝜇 (Ω0),
(7.31)

with 𝑙 ≥ 0 and 𝑡𝜇 ≥ 0.
The approximation assumptions on 𝑉ℎ hold using the theory of Section 3.4.
On Λℎ we typically need approximation in negative norm. On fitted meshes
this is a standard result, and in the unfitted case we will show how to achieve
(7.31) in the Section 7.6 below. The approximation result for the stabilization
norm ∥ · ∥𝑠ℎ is standard in the fitted case, and in the unfitted case it follows
from arguments similar to those in Section 5.2 for the methods introduced
below.

The stability of the form 𝐴ℎ is quantified in the global inf-sup condition.

Proposition 7.2. Assume that A2–A3 hold and that 𝜏0 is sufficiently small. Then,
for all 𝑣ℎ, 𝜇ℎ ∈ 𝑉ℎ × Λℎ,

|||(𝑣ℎ, 𝜇ℎ)|||𝜏 ≲ sup
𝑦,𝜂∈𝑉ℎ×Λℎ

𝐴[(𝑣ℎ, 𝜇ℎ), (𝑦, 𝜂)] + 𝜏0𝑠ℎ,0(𝜇ℎ, 𝜂)
|||(𝑦, 𝜂)|||𝜏

. (7.32)

Proof. First, by (7.29),

𝑐2
𝑎∥𝑣ℎ∥2

𝑉 + 𝜏0𝑠ℎ,0(𝜇ℎ, 𝜇ℎ) ≤ 𝐴[(𝑣ℎ, 𝜇ℎ), (𝑣ℎ, 𝜇ℎ − 𝜇𝑣)] + 𝜏0𝑠ℎ,0(𝜇ℎ, 𝜇ℎ). (7.33)

By the arithmetic–geometric inequality and the stability of 𝜇𝑣 , 𝜏1/2
0 𝑠ℎ,0(𝜇𝑣 , 𝜇𝑣)1/2 ≤

𝐶𝜏 ∥𝑣ℎ∥𝑉 ,

𝜏0𝑠ℎ,0(𝜇ℎ, 𝜇𝑣) ≤ 𝐶2
𝜏𝜏0/2𝑐−2

𝑎 𝑠ℎ,0(𝜇ℎ, 𝜇ℎ) + 1/2𝑐2
𝑎∥𝑣ℎ∥2

𝑉 . (7.34)

Then we see that by taking 𝜏0 small so that 𝐶2
𝜏/𝑐2

𝑎 < 1,

𝑐2
𝑎1/2∥𝑣ℎ∥2

𝑉 +1/2𝜏0𝑠ℎ,0(𝜇ℎ, 𝜇ℎ) ≤ 𝐴[(𝑣ℎ, 𝜇ℎ), (𝑣ℎ, 𝜇ℎ−𝜇𝑣)]+𝜏0𝑠ℎ,0(𝜇ℎ, 𝜇ℎ−𝜇𝑣).
(7.35)

Next (7.28) implies that there exists 𝑥ℎ ∈ 𝑉ℎ, with ∥𝑥ℎ∥𝑉 = 𝑀𝑏∥𝜇ℎ∥Λ such that,
with 𝑐−1

𝑏
the hidden constant of (7.28),

1/2𝑐2
𝑏∥𝜇ℎ∥

2
Λ ≤ 𝑏(𝜇ℎ, 𝑥ℎ) + 𝜏0𝑠ℎ,0(𝜇ℎ, 𝜇ℎ). (7.36)

To see this, take squares of both sides of (7.28):

𝑐𝑏
2∥𝜇ℎ∥2

Λ ≤
(
𝑏(𝜇ℎ, 𝑣ℎ)
∥𝑣ℎ∥𝑉

+ 𝜏
1/2
0 𝑠ℎ,0(𝜇ℎ, 𝜇ℎ)1/2

)2
, (7.37)

𝑐𝑏
2∥𝜇ℎ∥2

Λ ≤ 2
(
𝑏(𝜇ℎ, 𝑣ℎ)2

∥𝑣ℎ∥2
𝑉

+ 𝜏0𝑠ℎ,0(𝜇ℎ, 𝜇ℎ)
)
. (7.38)

Using the continuity of 𝑏, the first term on the right-hand side is bounded by(
𝑏(𝜇ℎ, 𝑣ℎ)
∥𝑣ℎ∥𝑉

)2
≤ 𝑏(𝜇ℎ, 𝑣ℎ/∥𝑣ℎ∥𝑉 )𝑀𝑏∥𝜇ℎ∥Λ. (7.39)
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Take 𝑥ℎ = 𝑀𝑏∥𝜇ℎ∥Λ𝑣ℎ/∥𝑣ℎ∥𝑉 . As a consequence,

1/2𝑐𝑏2∥𝜇ℎ∥2
Λ ≤ 𝐴[(𝑣ℎ, 𝜇ℎ), (𝑥ℎ, 0)] − 𝑎(𝑣ℎ, 𝑥ℎ) + 𝜏0𝑠ℎ,0(𝜇ℎ, 𝜇ℎ). (7.40)

Using the continuity of 𝑎, from (7.26) followed by the arithmetic–geometric in-
equality and the stability property of 𝑥ℎ, we have

𝑎(𝑣ℎ, 𝑥ℎ) ≤ 𝑐𝑏
−2𝑀2

𝑎𝑀
2
𝑏∥𝑣ℎ∥

2
𝑉 + 𝑐𝑏

2

4
∥𝜇ℎ∥2

Λ. (7.41)

It follows that

𝑐𝑏
2/4∥𝜇ℎ∥2

Λ − 𝑐𝑏
−2𝑀2

𝑎𝑀
2
𝑏∥𝑣ℎ∥

2
𝑉 ≤ 𝐴[(𝑣ℎ, 𝜇ℎ), (𝑥ℎ, 0)] + 𝜏0𝑠ℎ,0(𝜇ℎ, 𝜇ℎ). (7.42)

Adding (7.35) and (7.42) together, using a weight 𝜖 > 0 on the second relation, we
see that(

1/2 − 𝜖𝑐−2
𝑎 𝑐𝑏

−2𝑀2
𝑎𝑀

2
𝑏

)
𝑐2
𝑎∥𝑣ℎ∥2

𝑉 + (1/2 − 𝜖)𝜏0𝑠ℎ,0(𝜇ℎ, 𝜇ℎ) + 𝜖𝑐𝑏
2/4∥𝜇ℎ∥2

Λ

≤ 𝐴[(𝑣ℎ, 𝜇ℎ), (𝑣ℎ + 𝜖𝑥ℎ, 𝜇ℎ − 𝜇𝑣)] + 𝜏0𝑠ℎ,0(𝜇ℎ, 𝜇ℎ − 𝜇𝑣). (7.43)

Choosing
𝜖 < min

(
1/2, (𝑐𝑎𝑐𝑏)2/

(
2𝑀2

𝑎𝑀
2
𝑏

))
, (7.44)

we see that

|||(𝑣ℎ, 𝜇ℎ)|||2𝜏 ≲ 𝐴[(𝑣ℎ, 𝜇ℎ), (𝑣ℎ + 𝜖𝑥ℎ, 𝜇ℎ − 𝜇𝑣)] + 𝜏0𝑠ℎ,0(𝜇ℎ, 𝜇ℎ − 𝜇𝑣). (7.45)

We conclude by observing that by using a triangle inequality and the stabilities of
𝑥ℎ and 𝜇𝑣 , we obtain

|||(𝑣ℎ + 𝜖𝑥ℎ, 𝜇ℎ − 𝜇𝑣)|||𝜏 ≤ |||(𝑣ℎ, 𝜇ℎ)|||𝜏 + |||(𝜖𝑥ℎ, 𝜇𝑣)|||𝜏 ≲ |||(𝑣ℎ, 𝜇ℎ)|||𝜏 . (7.46)

We can now prove a best approximation estimate for the discretization of (7.5)–
(7.6).

Theorem 7.3. Assume that A1–A4 hold and that 𝜏0 is small so that Proposi-
tion 7.2 holds. Then

|||(𝑢 − 𝑢ℎ, 𝜆 − 𝜆ℎ)|||0 ≲ inf
(𝑣ℎ ,𝜇ℎ)∈𝑉ℎ×Λℎ

(
|||(𝑢 − 𝑣ℎ, 𝜆 − 𝜇ℎ)|||0 + 𝜏

1/2
0 ∥𝜇ℎ∥𝑠ℎ

)
, (7.47)

∥𝜆ℎ∥𝑠ℎ ≲ inf
(𝑣ℎ ,𝜇ℎ)∈𝑉ℎ×Λℎ

(
|||(𝑢 − 𝑣ℎ, 𝜆 − 𝜇ℎ)|||0 + 𝜏

1/2
0 ∥𝜇ℎ∥𝑠ℎ

)
, (7.48)

and if the regularity assumption (7.16) holds and min(𝑝, 𝑙 + 1) ≥ 𝑡 ≥ 1, then

|||(𝑢 − 𝑢ℎ, 𝜆 − 𝜆ℎ)|||0 + ∥𝜆ℎ∥𝑠ℎ ≲ ℎ𝑡
(
∥ 𝑓 ∥𝐻𝑡−1(Ω) + ∥𝑔∥𝐻𝑡+1/2(Ω0)

)
. (7.49)

Proof. Using the triangle inequality, we have

|||(𝑢 − 𝑢ℎ, 𝜆 − 𝜆ℎ)|||0 ≲ |||(𝑢 − 𝑣ℎ, 𝜆 − 𝜇ℎ)|||0 + |||(𝑣ℎ − 𝑢ℎ, 𝜇ℎ − 𝜆ℎ)|||0. (7.50)
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Recalling the consistency (7.25), we see that

𝐴[(𝑣ℎ − 𝑢ℎ, 𝜇ℎ − 𝜆ℎ), (𝑦, 𝜂)] + 𝜏0𝑠ℎ,0(𝜇ℎ − 𝜆ℎ, 𝜂)
= 𝐴[(𝑣ℎ − 𝑢, 𝜇ℎ − 𝜆), (𝑦, 𝜂)] + 𝜏0𝑠ℎ,0(𝜇ℎ, 𝜂). (7.51)

The first bound now follows by Proposition 7.2, the consistency (7.51) and the
continuity of 𝐴 and 𝑠ℎ,0, leading to

|||(𝑣ℎ − 𝑢ℎ, 𝜇ℎ − 𝜆ℎ)|||𝜏 ≲ |||(𝑢 − 𝑣ℎ, 𝜆 − 𝜇ℎ)|||0 + 𝜏
1/2
0 ∥𝜇ℎ∥𝑠ℎ . (7.52)

The second bound is an immediate consequence of the triangle inequality and
(7.52):

∥𝜆ℎ∥𝑠ℎ ≤ ∥𝜆ℎ − 𝜇ℎ∥𝑠ℎ + ∥𝜇ℎ∥𝑠ℎ ≤ 𝜏
−1/2
0 |||(𝑣ℎ − 𝑢ℎ, 𝜇ℎ − 𝜆ℎ)|||𝜏 + ∥𝜇ℎ∥𝑠ℎ .

(7.53)

The a priori error estimate is a consequence of the approximation estimates (7.30)–
(7.31).

Note that of the assumptions A1–A4 necessary for the abstract analysis, it is
only the stability (7.28) in A3 that cannot easily be shown to hold in the CutFEM
framework using the theory of the previous sections. The coercivity (7.29) follows
by taking 𝜇𝑣 = 𝛼

∫
Ω0

𝑣 d𝑠 and applying the Poincaré inequality:

∥𝑣∥𝑉 ≲ 𝛼1/2∥∇𝑣∥Ω +
����𝛼1/2

∫
Ω0

𝑣 d𝑠
����. (7.54)

Note that

∥𝜇𝑣 ∥Λ ≲ 𝛼1/2
����∫

Ω0

𝑣 d𝑠
���� ≲ ∥𝑣∥𝑉 , (7.55)

using a global trace inequality on the domain Ω. The inequality

𝜏
1/2
0 𝑠ℎ,0(𝜇𝑣 , 𝜇𝑣)1/2 ≤ 𝐶𝜏 ∥𝑣∥𝑉 (7.56)

will be satisfied by the forms introduced below, but we observe here that the scaling
of the parameter must be 𝜏0 = 𝜏0𝛼

−1, where 𝜏0 is a dimensionless parameter that
can be chosen small and𝐶𝜏 ∝ 𝜏0. For approximation error estimates in the bulk, we
refer to Section 3.4. Estimates in negative norm for unfitted surface approximations
will be derived in Section 7.6. The consistency (7.25) holds by construction, and
the continuity (7.26)–(7.27) follows using the Cauchy–Schwarz inequality for the
forms 𝑎 and 𝑠 and by using the scaling in 𝛼, the Cauchy–Schwarz inequality and a
global trace inequality for 𝑏, as in (7.9). In the following sections we will therefore
focus exclusively on assumption A3: how to obtain stable Lagrange multiplier
discretizations on cut meshes. This discussion will use the model problem of the
previous section but can easily be extended to the applications of the next section.

When working on cut meshes and using stabilization, it is inconvenient to work
directly in the 𝐻−1/2(Ω0)-norm. It is easier to prove stability in the ℎ-weighted
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𝐿2-norm in the spirit of Pitkäranta (1980). An important observation is that the
low frequencies of 𝜇ℎ can always be controlled provided that the bulk space has
approximation properties, and that therefore it is enough to prove stability in the
weighted 𝐿2-norm. Below we will work directly in the 𝐻−1/2(Ω0)- and 𝐻1(Ω)-
norms. Hence there is no 𝛼 and no 𝜏0 weight in front of the stabilization.

Lemma 7.4. For all 𝜇ℎ ∈ Λℎ,

∥𝜇ℎ∥𝐻−1/2(Ω0) ≲ ∥ℎ1/2𝜇ℎ∥Ω0 + sup
𝑣∈𝑉ℎ\{0}

𝑏(𝜇ℎ, 𝑣)
∥𝑣∥𝐻1(Ω)

. (7.57)

Proof. Since Λℎ ⊂ Λ,

∥𝜇ℎ∥𝐻−1/2(Ω0) ≲ sup
𝑣∈𝑉\{0}

𝑏(𝜇ℎ, 𝑣)
∥𝑣∥𝐻1(Ω)

. (7.58)

We must show that the right-hand side is upper-bounded by the right-hand side of
(7.57). Given 𝑣 ∈ 𝐻1(Ω), let 𝑣𝑒 = 𝐸𝐵𝑣 denote its stable extension to Ωℎ, from
Section 3.4, such that ∥𝑣𝑒∥𝐻1(Ωℎ) ≲ ∥𝑣∥𝐻1(Ω). Let 𝜋ℎ𝑣𝑒 be an 𝐻1-stable interpolant
of 𝑣𝑒 with optimal approximation. Then

𝑏(𝜇ℎ, 𝑣) = 𝑏(𝜇ℎ, 𝑣 − 𝜋ℎ𝑣
𝑒) + 𝑏(𝜇ℎ, 𝜋ℎ𝑣𝑒). (7.59)

For the first term on the right-hand side we use the Cauchy–Schwarz inequality, the
multiplicative trace inequality and approximation

𝑏(𝜇ℎ, 𝑣 − 𝜋ℎ𝑣
𝑒) ≲ ∥ℎ1/2𝜇ℎ∥Ω0ℎ

−1/2∥𝑣 − 𝜋ℎ𝑣
𝑒∥Ω0 , (7.60)

∥𝑣 − 𝜋ℎ𝑣
𝑒∥Ω0 ≲ ∥𝑣𝑒 − 𝜋ℎ𝑣

𝑒∥1/2
Ωℎ

∥∇(𝑣𝑒 − 𝜋ℎ𝑣
𝑒)∥1/2

Ωℎ
≲ ℎ1/2∥𝑣∥𝐻1(Ω). (7.61)

For the second term we use

∥𝜋ℎ𝑣𝑒∥𝐻1(Ω) ≤ ∥𝜋ℎ𝑣𝑒∥𝐻1(Ωℎ) ≲ ∥𝑣𝑒∥𝐻1(Ωℎ) ≲ ∥𝑣∥𝐻1(Ω). (7.62)

Then

𝑏(𝜇ℎ, 𝑣) ≲ ∥ℎ1/2𝜇ℎ∥Ω0 ∥𝑣∥𝐻1(Ω) +
∥𝑣∥𝐻1(Ω)

∥𝜋ℎ𝑣𝑒∥𝐻1(Ω)
𝑏(𝜇ℎ, 𝜋ℎ𝑣𝑒). (7.63)

The proof follows by dividing through by ∥𝑣∥𝐻1(Ω) and taking the sup over 𝑣 ∈
𝐻1(Ω).

A naive way of achieving control of the high-frequency part in the formulation
(7.22) is to use the stabilization term

𝑠ℎ,0(𝜇ℎ, 𝜆ℎ) = (ℎ1/2𝜇ℎ, 𝜆ℎ)Ω0 . (7.64)

This, however, results in a non-consistent method that is equivalent to the penalty
method (after elimination of the multiplier). The lack of consistency restricts the
method to 𝑂(ℎ1/2) convergence (Corti et al. 2024) and it is therefore not suitable
to use in combination with cut elements. Below we will focus on stabilization
methods that achieve stability while being weakly consistent to the right order.
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7.5. Λℎ defined on a surface mesh Σℎ̃

We let Σℎ̃ denote a decomposition of each component Ω0,𝑖 of Ω0 in shape-regular
(curved) simplices 𝐹 such that diam(𝐹) = 𝑂(ℎ̃). We let �̂� ⊂ R𝑑−1 denote a
reference element and define a differentiable map 𝑇𝐹 : �̂� → 𝐹. As before, 𝑉ℎ

is taken as the unfitted finite element space in the bulk. We may then define a
multiplier space by

Λℎ̃ =
{
𝑣ℎ ∈ 𝐿2(Ω0) | 𝑣ℎ ◦ 𝑇−1

𝐹 ∈ P𝑙(�̂�) for all 𝐹 ∈ Σℎ̃

}
. (7.65)

We will consider the formulation (7.22) with 𝜏0 = 0. It is well known that the
estimates (7.30)–(7.31) are satisfied by these spaces. The bound (7.28), on the
other hand, depends on both 𝑉ℎ and Σℎ̃. In a nutshell: if ℎ/ℎ̃ is small enough then
(7.28) is satisfied (Babuška 1972/73). To see this, observe that since Λℎ̃ ⊂ Λ, we
have

∥𝜇ℎ∥𝐻−1/2(Ω0) ≲ sup
𝑣∈𝑉\{0}

𝑏(𝜇ℎ, 𝑣)
∥𝑣∥𝐻1(Ω)

. (7.66)

Now we want to replace the sup over 𝑉 by one over 𝑉ℎ. In view of Lemma 7.4, this
follows if we can bound the term ℎ1/2∥𝜇ℎ∥Ω0 . Following Babuška (1973), for this
term we will apply an inverse inequality.

Lemma 7.5. For all 𝑞ℎ ∈ Λℎ̃,

∥𝑞ℎ∥Ω0 ≲ ℎ̃−1/2∥𝑞ℎ∥𝐻−1/2(Ω0). (7.67)

Proof. The proof of the lemma follows Lemma 3.3 of Nédélec (1976). For each
element 𝐹 ∈ Σℎ̃, let 𝜑𝐹 = �̂�(𝑇−1(𝑥)) be the function which is zero on 𝜕𝐹 and such
that �̂�(𝑥) = dist(𝑥, 𝜕�̂�). Then, by the finite-dimensionality of 𝑞ℎ,

∥𝑞ℎ∥2
Ω0
≲

∫
Ω0

𝑞ℎ

∑︁
𝐹∈Σℎ̃

𝜑𝐹𝑞ℎ d𝑠,
 ∑︁
𝐹∈Σℎ̃

𝜑𝐹𝑞ℎ

2

Ω0

≲ ∥𝑞ℎ∥2
Ω0
. (7.68)

First note that by duality

∥𝑞ℎ∥2
Ω0
≲

∫
Ω0

𝑞ℎ

∑︁
𝐹∈Σℎ̃

𝜑𝐹𝑞ℎ d𝑠 ≲ ∥𝑞ℎ∥𝐻−1/2(Ω0)

 ∑︁
𝐹∈Σℎ̃

𝜑𝐹𝑞ℎ


𝐻1/2(Ω0)

. (7.69)

Now apply the interpolation inequality (Taylor 2023, Proposition 3.1)

∥𝑣∥2
𝐻𝑠(Ω0) ≲ ∥𝑣∥𝐻𝑠−1/2(Ω0)∥𝑣∥𝐻𝑠+1/2(Ω0) (7.70)

with 𝑠 = 1/2, ∑︁
𝐹∈Σℎ̃

𝜑𝐹𝑞ℎ


𝐻1/2(Ω0)

≲

 ∑︁
𝐹∈Σℎ̃

𝜑𝐹𝑞ℎ

1/2

Ω0

 ∑︁
𝐹∈Σℎ̃

𝜑𝐹𝑞ℎ

1/2

𝐻1(Ω0)
. (7.71)
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For the last term on the right-hand side, we see that ∑︁
𝐹∈Σℎ̃

𝜑𝐹𝑞ℎ

2

𝐻1(Ω0)
=

∑︁
𝐹∈Σℎ̃

∥𝜑𝐹𝑞ℎ∥2
𝐻1(𝐹). (7.72)

Considering the 𝐻1-seminorm, we see that

|𝜑𝐹𝑞ℎ |2𝐻1(𝐹) =

∫
𝐹

|∇𝑥(�̂�(𝑇−1
𝐹 (𝑥))𝑞ℎ(𝑇−1

𝐹 (𝑥)))|2 d𝑥

=

∫
�̂�

|𝐽−1∇�̂�(�̂�(𝑥)𝑞ℎ(𝑥))|2 |𝐽 | d𝑥, (7.73)

where 𝐽−1 is the Jacobian of 𝑇−1
𝐹

and |𝐽 | is the absolute value of the determinant
of the Jacobian of the mapping 𝑇𝐹 . Then, using an inverse inequality on �̂�, we see
that since ∥𝐽−1∥𝐿∞(𝐹) ≲ ℎ−1

𝐹
and ∥𝐽−1∥𝐿∞(�̂�)∥𝐽∥𝐿∞(�̂�) = 𝑂(1), we have

|𝜑𝐹𝑞ℎ |2𝐻1(𝐹) ≲ ∥𝐽−1∥2
𝐿∞(𝐹)∥𝐽∥𝐿∞(�̂�)∥𝑞ℎ∥2

𝐿2(�̂�)

≲ ℎ−2
𝐹 ∥𝐽−1∥𝐿∞(𝐹)∥𝐽∥𝐿∞(�̂�)∥𝑞ℎ∥2

𝐿2(𝐹). (7.74)

Collecting the above bounds, we see that

∥𝑞ℎ∥2
Ω0
≲ ∥𝑞ℎ∥𝐻−1/2(Ω0)∥𝑞ℎ∥Ω0 ℎ̃

−1/2, (7.75)

which proves the claim.

Applying Lemma 7.5 in the first term on the right-hand side of (7.57), it follows
that ℎ1/2∥𝜇ℎ∥Ω0 ≲ ℎ1/2 ℎ̃−1/2∥𝜇ℎ∥𝐻−1/2(Ω0). Therefore(

1 − 𝐶ℎ1/2 ℎ̃−1/2)∥𝜇ℎ∥𝐻−1/2(Ω0) ≲ sup
𝑣∈𝑉ℎ\{0}

𝑏(𝜇ℎ, 𝑣)
∥𝑣∥𝐻1(Ω)

. (7.76)

Here the inverse constant 𝐶 depends on the mesh geometry of Σℎ̃. Clearly, for

𝐶ℎ1/2 ℎ̃−1/2 < 1, (7.77)

the condition (7.28) is satisfied.
We conclude that for ℎ1/2 ℎ̃−1/2 sufficiently small, the spaces 𝑉ℎ and Λℎ̃ satisfy

the inequality (7.28) and hence Theorem 7.3 holds for this choice. Note that
this analysis can be made local, allowing for mesh refinement using the ideas of
Pitkäranta (1980).

Violation of the mesh condition: interior penalty stabilization. This time Λℎ is
defined by (7.65) on a shape-regular surface mesh Σℎ violating the mesh condition
(7.77). Hence it will not satisfy the inf-sup condition (7.28) with 𝑉ℎ. However,
under the a priori assumption that the space Λℎ̃ satisfying the inf-sup condition
exists, it is easy to design stabilized formulations where the distance to the space
satisfying the inf-sup condition is penalized, in the spirit of Brezzi and Fortin
(2001). Such stabilized formulations were first introduced for interface problems
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and fictitious domain problems by Burman and Hansbo (2010a,b), then further
developed by Barrenechea and Chouly (2012), Burman (2014) and Fournié and
Lozinski (2017).

Note that from Lemma 7.4 it follows that only ∥ℎ1/2𝜇ℎ∥Ω0 has to be controlled.
Let 𝜋ℎ̃ : 𝐿2(Ω0) → Λℎ̃ denote the 𝐿2-projection on the inf-sup stable space Λℎ̃,
such that 𝑏(𝜋ℎ̃𝜇, 𝜉ℎ) = 𝑏(𝜇, 𝜉ℎ) for all 𝜉ℎ ∈ Λℎ̃. Then

∥ℎ1/2𝜇ℎ∥2
Ω0

= ∥ℎ1/2(𝜇ℎ − 𝜋ℎ̃𝜇ℎ)∥2
Ω0

+ ∥ℎ1/2𝜋ℎ̃𝜇ℎ∥2
Ω0
. (7.78)

Functions in Λℎ̃ satisfy an inverse inequality and the inf-sup condition (7.28), with
𝜏0 = 0 therefore

∥ℎ1/2𝜋ℎ̃𝜇ℎ∥Ω0 ≲ ∥𝜋ℎ̃𝜇ℎ∥𝐻−1/2(Ω0) ≲ sup
𝑣∈𝑉ℎ\{0}

𝑏(𝜋ℎ̃𝜇ℎ, 𝑣)
∥𝑣∥𝐻1(Ω)

, (7.79)

and
𝑏(𝜋ℎ̃𝜇ℎ, 𝑣) = 𝑏(𝜋ℎ̃𝜇ℎ − 𝜇ℎ, 𝑣 − 𝜋ℎ̃𝑣) + 𝑏(𝜇ℎ, 𝑣). (7.80)

Using the Cauchy–Schwarz inequality and the approximation property of 𝜋ℎ̃, ∥𝑣ℎ−
𝜋ℎ̃𝑣ℎ∥Ω0 ≲ ℎ̃1/2∥𝑣ℎ∥𝐻1/2(Ω0), followed by a trace inequality, we have

𝑏(𝜋ℎ̃𝜇ℎ − 𝜇ℎ, 𝑣 − 𝜋ℎ̃𝑣) ≲ ∥ℎ1/2(𝜇ℎ − 𝜋ℎ̃𝜇ℎ)∥Ω0 ∥𝑣∥𝐻1(Ω). (7.81)

We conclude that the following proposition holds.

Proposition 7.6. Assume that ℎ̃/ℎ = 𝑂(1). Then, for all 𝜇ℎ ∈ Λℎ,

∥𝜇ℎ∥𝐻−1/2(Ω0) ≲ ∥ℎ1/2(𝜇ℎ − 𝜋ℎ̃𝜇ℎ)∥Ω0 + sup
𝑣∈𝑉ℎ\{0}

𝑏(𝜇ℎ, 𝑣)
∥𝑣∥𝐻1(Ω)

. (7.82)

It follows that for 𝑠ℎ,0(𝜇ℎ, 𝜇ℎ)1/2 equivalent to ∥ℎ1/2(𝜇ℎ − 𝜋ℎ̃𝜇ℎ)∥Ω0 , the inf-sup
condition will be satisfied. The other assumptions for the analysis are verified as in
Section 7.5. One possibility for the design of the stabilization is to decompose the
boundary in (possibly overlapping) patches of diameter ℎ̃ and penalize the differ-
ence of the multiplier and its projection on a polynomial on the patch (Barrenechea
and Chouly 2012). This approach, however, requires explicit knowledge of the
necessary size of ℎ̃/ℎ. Next we will show how to design an operator 𝑠ℎ,0 that does
not require such explicit knowledge of the space Λℎ̃. This can be achieved using
the stabilization operators discussed in Section 5.2. We will give an example using
penalties on gradient jumps, but any equivalent stabilizing form may be used such
as (5.16).

Lemma 7.7. Assume that the meshes Σℎ̃ and Σℎ are defined as unions of tessel-
lations Σ̂ℎ̃,𝑖 and Σ̂ℎ,𝑖 of Ω̂0,𝑖 . Also assume that the associated spaces Λℎ̃ and Λℎ are
defined using (7.65), with the mappings 𝑇�̃� = 𝑥 ◦𝑇�̃� for all �̃� ∈ Σℎ̃ and 𝑇𝐹 = 𝑥 ◦𝑇𝐹
for all 𝐹 ∈ Σℎ. Here 𝑇𝐹 and 𝑇�̃� are affine maps that map the reference element �̂�
to a simplex 𝐹 ∈ Σℎ and �̃� ∈ Σℎ̃, respectively.
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Assume that ℎ̃/ℎ = 𝑂(1). For all 𝜇ℎ ∈ Λℎ,

∥ℎ1/2(𝜇ℎ − 𝜋ℎ̃𝜇ℎ)∥Ω0 ≲ 𝑠ℎ,0(𝜇ℎ, 𝜇ℎ)1/2, (7.83)

with

𝑠ℎ,0(𝜇ℎ, 𝜆ℎ) =
𝑁∑︁
𝑖=1

∑︁
𝐹∈Σ̂ℎ,𝑖

∫
𝜕𝐹\𝜕Ω̂0,𝑖

(
𝑙∑︁
𝑗=0

ℎ2 𝑗+2 [𝐷 𝑗
𝑛𝜇ℎ

] [
𝐷

𝑗
𝑛𝜆ℎ

])
d𝑠, (7.84)

where 𝑙 is the polynomial degree of the space Λℎ, 𝐷
𝑗
𝑛 denotes the 𝑗 th normal

derivative on the boundary of 𝐹 in the mesh Σ̂ℎ,𝑖 in the reference plane Ω̂0,𝑖 , and
[𝐷0

𝑛𝜇ℎ] = [𝜇ℎ].
Proof. It is enough to consider one of the Σ̂ℎ,𝑖 . For each face 𝐹 ⊂ Σ̂ℎ̃,𝑖 , we let E
denote the set of edges of Σ̂ℎ,𝑖 intersecting 𝐹. We map 𝐹 to the reference element
�̂� with |�̂� | = 1. The set of scaled edges is denoted by Ê . The cardinality of Ê is
uniformly upper-bounded for all 𝐹 and ℎ by the shape regularity of the elements in
Σ̂ℎ,𝑖 and since ℎ̃/ℎ = 𝑂(1). The spaces Λℎ and Λℎ̃ use the same parametrization of
Ω̂0,𝑖 and therefore 𝜂ℎ = 𝜇ℎ − 𝜋ℎ̃𝜇ℎ is a polynomial with zero average on 𝐹 ∈ Σ̂ℎ̃,𝑖 .
Let 𝜂ℎ denote the 𝜂ℎ function after scaling to �̂�. It follows that by norm equivalence
on discrete spaces,

∥𝜂ℎ∥2
�̂�
≲
∑︁
𝑒∈Ê

𝑘∑︁
𝑗=0

∫
𝑒

([
𝐷

𝑗

�̂�
�̂�ℎ

] ��
𝑒

)2 d𝑠, (7.85)

where the hidden constant depends on the cardinality of Ê , i.e. on the shape-
regularity of the meshes Σ̂ℎ,𝑖 and Σ̂ℎ̃,𝑖 and the ratio ℎ/ℎ̃. Then note that [�̂�ℎ] |𝑒 = 0
implies that the jumps of tangential derivatives of all orders are zero too. Scaling
back to 𝐹 and summing over 𝐹 ∈ Σ̂ℎ̃,𝑖 , it follows that

∥ℎ1/2(𝜇ℎ − 𝜋ℎ̃𝜇ℎ)∥2
Ω0,𝑖
≲

∑︁
𝐹∈Σ̂ℎ,𝑖

∫
𝜕𝐹\𝜕Ω̂0,𝑖

(
𝑘∑︁
𝑗=1

ℎ2 𝑗+2 [𝐷 𝑗
𝑛𝜇ℎ

]2
)

d𝑠. (7.86)

The conclusion follows after summing over 𝑖.

Violation of the mesh condition: Barbosa–Hughes stabilization. Another approach
to stabilization of the Lagrange multiplier was introduced by Barbosa and Hughes
(1991, 1992). The idea was to circumvent the inf-sup condition by adding a least-
squares term penalizing the distance from the multiplier to the normal derivative of
the bulk variable on the boundary. In the context of unfitted finite element methods
this approach has been considered by several authors (Haslinger and Renard 2009,
Fournié and Lozinski 2017). Observe that by Lemma 7.4 the stabilization must
ensure control of ∥ℎ1/2𝜇ℎ∥Ω0 . The idea is to modify the penalty term (7.64) using
that formally 𝜆 = −𝛼𝑛 · ∇𝑢 on the boundary. Let

𝑠ℎ,0(𝑣ℎ, 𝜇ℎ, 𝑦, 𝜁) = (ℎ(𝜇ℎ + 𝑛 · 𝛼∇𝑣ℎ), 𝜁 + 𝜉𝑛 · 𝛼∇𝑦)Ω0 . (7.87)
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Clearly, then, for a sufficiently smooth exact solution (𝑢, 𝜆) the stabilization is
consistent, since 𝑠ℎ,0(𝑢, 𝜆, 𝑦, 𝜁) = 0 for all 𝑦 ∈ 𝑉ℎ and 𝜁 ∈ Λℎ. Here the parameter
𝜉 ∈ {−1, 0, 1} defines different flavours of the method. Since the stabilization
depends on both bulk and surface variables, it does not enter the framework above
directly. In particular, for the non-symmetric variants the norm |||(·, ·)||| must be
modified as well as the continuity of 𝑠ℎ,0. Most importantly, the method destroys
the advantage of the previous multiplier method, in which the bulk variable does
not need to be stabilized for accuracy. To see this, observe that

𝑠ℎ,0(𝑣ℎ, 𝜇ℎ, 𝑣ℎ, 𝜇ℎ) ≥ 3 − 𝜉

4
∥ℎ1/2𝜇ℎ∥2

Ω0
− 𝛼2∥ℎ1/2𝑛 · ∇𝑣ℎ∥2

Ω0
. (7.88)

The first term gives the necessary control of the ℎ-weighted 𝐿2-norm of the
multiplier. The second term on the right-hand side must be controlled using the
coercivity of the form 𝑎. This cannot be done without some stabilizing modification.

• Ghost penalty. Note that by the trace inequality,

∥ℎ1/2𝑛 · ∇𝑣ℎ∥2
Ω0

≤ 𝐶𝑇 ∥∇𝑣ℎ∥2
Ωℎ

. (7.89)

A ghost penalty term can be added to 𝑎, 𝑎ℎ = 𝑎 + 𝑠ℎ,0 so that

𝑎ℎ(𝑣ℎ, 𝑣ℎ) − 𝜖𝜏0𝛼
2∥ℎ1/2𝑛 · ∇𝑣ℎ∥2

Ω0
≥ 𝛼∥𝑣ℎ∥2

Ωℎ
− 𝜖𝜏0𝛼

2∥ℎ1/2𝑛 · ∇𝑣ℎ∥2
Ω0

≥ (𝛼 − 𝐶𝑇𝜖𝜏0𝛼
2)∥∇𝑣ℎ∥2

Ωℎ
. (7.90)

The stability of Proposition 7.2 is then achieved for 𝜖𝜏0 ∝ 𝛼−1 small enough.

• Local extension. On some triangle 𝑇 with a bad cut, the functions 𝑣ℎ |𝑇 , 𝑦 |𝑇
of (7.87) can be taken as extensions from elements with large intersection
with the physical domain, 𝑆ℎ𝑣ℎ |𝑇 and 𝑆ℎ𝑦 |𝑇 . Here, recall the mapping 𝑆ℎ
of Section 4.3. That is, if we let 𝑤ℎ denote a function in 𝑉ℎ then 𝑣ℎ |𝑇 =

(𝑤ℎ |𝑆ℎ(𝑇))𝑒 and similarly for the test function 𝑦. This implies the trace
inequality

∥ℎ1/2𝑛 · ∇𝑣ℎ∥2
Ω0
≲ ∥∇𝑣ℎ∥2

Ω, (7.91)

and stability is achieved without ghost penalty stabilization. This extension
approach was first considered in Haslinger and Renard (2009).

An important aspect of the Barbosa–Hughes stabilization is that it produces stable
discretizations for any spaceΛℎ. This was exploited in Stenberg (1995) to eliminate
the multiplier. Indeed, for Λℎ = 𝐿2(Ω0), on every 𝐸 = Ω0 ∩ 𝑇 we may use the
equation

(𝑢ℎ, 𝜇)Ω0 + 𝜏0𝑠ℎ,0(𝑢ℎ, 𝜆, 0, 𝜇) = (𝑔, 𝜇)Ω0 (7.92)

to deduce that
𝜆 |𝐸 = −𝑛 · 𝛼∇𝑢ℎ |𝐸 + (𝜏0ℎ)−1(𝑔 − 𝑢ℎ)|𝐸 . (7.93)
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Eliminating 𝜆 in the formulation, we get

𝑎(𝑢ℎ, 𝑣) − (𝑛 · 𝛼∇𝑢ℎ, 𝑣)Ω0 − 𝜉(𝑛 · 𝛼∇𝑣, 𝑢ℎ)Ω0 + ((𝜏0ℎ)−1𝑢ℎ, 𝑣)Ω0

= ( 𝑓 , 𝑣)Ω + (𝑔, (𝜏0ℎ)−1𝑣 − 𝜉𝑛 · 𝛼∇𝑣)Ω0 , (7.94)

and recognize Nitsche’s method, with 𝜉 leading to the different variants, symmetric
(𝜉 = 1), skew-symmetric (𝜉 = −1) and incomplete (𝜉 = 0). If, as proposed above,
the 𝑛 · ∇𝑢ℎ and 𝑛 · ∇𝑣 contributions in the boundary terms are replaced by normal
derivatives taken on extended functions 𝑆ℎ𝑢ℎ and 𝑆ℎ𝑣, the method is stable without
further stabilization. This last method, which mirrors the construction for the
Barbosa–Hughes method using extension, coincides with the approach proposed
in Buffa, Puppi and Vázquez (2020).

7.6. Λℎ defined by the trace on the bulk mesh Tℎ,0
If the geometry is given implicitly, e.g. via a level set function, it can be inconvenient
to create a surface mesh, in particular if the interface moves. It is then advantageous
to define the multiplier using an approximation space defined on the bulk mesh
but restricted to the cut elements. This type of approximation was introduced in
Burman and Hansbo (2010a) and applied to problems with a moving boundary in
von Wahl and Richter (2023). In this section assume that Ω0 is smooth. How to
handle complications due to corners will be discussed later. We recall Tℎ,0 from
equation (2.65), the collection of elements in the bulk mesh intersected by the
boundary Ω0. We assume that all elements in Tℎ,0 are connected through at least
one face with another element in Tℎ,0. If this is not the case, the set can be enriched
with some elements whose vertices are intersected by the interface. Now define Λℎ

using a finite element space defined on the elements in Tℎ,0. The simplest possible
choice is to take, for 𝑝 ≥ 2,

Λℎ = {𝜇ℎ |Ω0 ∈ 𝐻1(Ω0) | 𝜇ℎ ∈ 𝐻1(Ωℎ,0) and 𝜇ℎ |𝑇 ∈ P𝑙(𝑇) for all 𝑇 ∈ Tℎ,0}
(7.95)

for 1 ≤ 𝑙 ≤ 𝑝. That is, we let the functions in Λℎ be defined by the traces on Ω0
of functions in a bulk space of polynomial order at most 𝑝, where we recall that
𝑝 is the polynomial degree of the space 𝑉ℎ. Even though the functions in Λℎ are
constructed on the bulk mesh, we write Λℎ ⊂ Λ, here considering the restriction to
Ω0. For stabilization and in the analysis, on the other hand, it is necessary to use
the fact that the functions in Λℎ are constructed on the bulk mesh. Observe that
Λℎ |Ω0 is not a linear space but a frame in the spirit of TraceFEM. This means that
even if (7.28) should hold, the linear system may not be uniquely invertible and we
have to resort to a stabilized formulation.

Approximation estimates. Using this trace space requires special care in designing
the interpolation operator𝜛ℎ if error estimates are desired in the𝐻−1/2-norm. Error
estimates for the 𝐿2-norm can readily be derived using a standard bulk interpolant
applied to the extended function as in Section 3. We recall the interpolant 𝜋ℎ
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from (3.29) and consider the following bound for the ℎ-weighted 𝐿2-norm, for
𝜇 ∈ 𝐻𝑡𝜇 (Ω0):

∥ℎ1/2(𝜇 − 𝜋ℎ𝜇)∥Ω0 ≲ ℎ𝑟+1/2 |𝜇 |𝐻𝑟 (Ω0), 𝑟 = min(𝑙 + 1, 𝑡𝜇) ≥ 1/2. (7.96)

To obtain an interpolant that also has optimal approximation in the 𝐻−1/2(Ω0)-
norm, one may proceed as follows. Let Tℎ,0 be decomposed into 𝑁 disjoint patches
𝑃𝑖 of diameter 𝑂(ℎ) in the direction tangential to Ω0. Assume that each patch
is sufficiently large that there is a piecewise affine positive bump function 𝜑𝑖 ,
𝑖 = 1, . . . , 𝑁 , with support in the patch and

∫
𝑃𝑖∩Ω0

𝜑𝑖 = 1. We refer to Burman
et al. (2024a) for further details of this construction. Define

𝜛ℎ𝜇 = 𝜋ℎ𝜇 +
𝑁∑︁
𝑖=1

𝜉𝑖𝜑𝑖 . (7.97)

We now determine the 𝜉𝑖 so that 𝜛ℎ𝜇 satisfies a patch test on the 𝑃𝑖 ∩Ω0,∫
𝑃𝑖∩Ω0

(𝜇 −𝜛ℎ𝜇) d𝑠 = 0, that is, 𝜉𝑖 = −
(∫

𝑃𝑖∩Ω0

𝜑𝑖 d𝑠
)−1 ∫

𝑃𝑖∩Ω0

(𝜇 − 𝜋ℎ𝜇) d𝑠.

(7.98)
We then obtain the following approximation result.

Lemma 7.8. For 𝜇 ∈ 𝐻𝑡𝜇 (Ω0), 𝑡𝜇 ≥ 1/2,

∥𝜇 −𝜛ℎ𝜇∥𝐻−1/2(Ω0) ≲ ℎ𝑟+1/2 |𝜇 |𝐻𝑟 (Ω0), 𝑟 = min(𝑙 + 1, 𝑡𝜇) ≥ 1/2. (7.99)

Proof. By definition,

∥𝜇 −𝜛ℎ𝜇∥𝐻−1/2(Ω0) = sup
𝑣∈𝐻1/2(Ω0)\{0}

(𝜇 −𝜛ℎ𝜇, 𝑣)Ω0

∥𝑣∥𝐻1/2(Ω0)
. (7.100)

Using the construction of 𝜛ℎ, we have

(𝜇 −𝜛ℎ𝜇, 𝑣)Ω0 =

𝑁∑︁
𝑖=1

(𝜇 −𝜛ℎ𝜇, 𝑣 − �̄�𝑖)𝑃𝑖∩Ω0 , (7.101)

where

�̄�𝑖 = |𝑃𝑖 ∩Ω0 |−1
∫
𝑃𝑖∩Ω0

𝑣 d𝑠. (7.102)

Noting that ∥𝑣 − �̄�𝑖 ∥𝑃𝑖∩Ω0 ≲ ℎ1/2∥𝑣∥𝐻1/2(Ω0), it follows that

∥𝜇 −𝜛ℎ𝜇∥𝐻−1/2(Ω0) ≲ ∥ℎ1/2(𝜇 −𝜛ℎ𝜇)∥Ω0 . (7.103)

For the estimate in the 𝐿2-norm, we have

∥ℎ1/2(𝜇 −𝜛ℎ𝜇)∥Ω0 ≲ ∥ℎ1/2(𝜇 − 𝜋ℎ𝜇)∥Ω0 + ℎ𝑑/2
( 𝑁∑︁

𝑖=1
𝜉2
𝑖

)1/2
. (7.104)
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For the first term on the right-hand side we apply (7.96). For the second term we
observe that using Cauchy–Schwarz inequality,

|𝜉𝑖 | ≲ ℎ−(𝑑−1)
����∫

𝑃𝑖∩Ω0

(𝜇 − 𝜋ℎ𝜇) d𝑠
���� ≲ ℎ−(𝑑−1)/2∥𝜇 − 𝜋ℎ𝜇∥𝑃𝑖∩Ω0 , (7.105)

and hence

ℎ𝑑
𝑁∑︁
𝑖=1

𝜉2
𝑖 ≲ ℎ∥𝜇 − 𝜋ℎ𝜇∥2

Ω0
, (7.106)

and we conclude by applying the previously derived bound on the approximation
error in the 𝐿2-norm.

Stabilization and stability. To stabilize the trace variable, we recall the stabilization
forms of Section 5. For example, consider the normal stabilization on the bulk,

𝑠ℎ,0(𝜆ℎ, 𝜇ℎ) =
∑︁

𝑇∈Tℎ,0

∫
𝑇

ℎ2∇𝜆ℎ · 𝑛𝑒Ω0
∇𝜇ℎ · 𝑛𝑒Ω0

d𝑥, (7.107)

for which the following stability estimate holds:

∥𝜇ℎ∥2
Ωℎ,0
≲ ∥ℎ1/2𝜇ℎ∥2

Ω0
+ 𝑠ℎ,0(𝜇ℎ, 𝜇ℎ). (7.108)

In this case we directly prove a discrete inf-sup condition in the ℎ-weighted 𝐿2-
norm exploiting the fact that traces of functions in 𝑉ℎ are in Λℎ. This allows us to
conclude that (7.28) holds by applying Lemma 7.4.

Proposition 7.9. For all 𝜇ℎ ∈ Λℎ,

∥ℎ1/2𝜇ℎ∥Ω0 ≲ sup
𝑣∈𝑉ℎ\{0}

𝑏(𝜇ℎ, 𝑣)
∥𝑣∥𝐻1(Ω)

+ 𝑠ℎ,0(𝜇ℎ, 𝜇ℎ)1/2. (7.109)

Proof. First let 𝑣𝜇 be defined to be equal to ℎ𝜇ℎ in Tℎ,0, with all the nodal degrees
of freedom in Tℎ \ Tℎ,0 set to zero. Then it is easy to see that

∥𝑣𝜇∥Ωℎ
≲ ∥ℎ𝜇ℎ∥Ωℎ,0 and ∥𝑣𝜇∥𝐻1(Ωℎ) ≲ ∥𝜇ℎ∥Ωℎ,0 . (7.110)

In the second inequality we applied a standard inverse inequality. It then follows
by (7.110) and the bound (7.108) that

∥𝑣𝜇∥𝐻1(Ωℎ) ≲ ∥𝜇ℎ∥Ωℎ,0 ≲ ∥ℎ1/2𝜇ℎ∥Ω0 + 𝑠ℎ,0(𝜇ℎ, 𝜇ℎ)1/2. (7.111)

Using this inequality and the construction of 𝑣𝜇, we see that

∥𝑣𝜇∥𝐻1(Ωℎ)∥ℎ1/2𝜇ℎ∥Ω0 ≲ ∥ℎ1/2𝜇ℎ∥2
Ω0

+ 𝑠ℎ,0(𝜇ℎ, 𝜇ℎ) = 𝑏(𝜇ℎ, 𝑣𝜇) + 𝑠ℎ,0(𝜇ℎ, 𝜇ℎ).
(7.112)

Dividing through by ∥𝑣𝜇∥𝐻1(Ωℎ) and noting that

𝑏(𝜇ℎ, 𝑣𝜇)
∥𝑣𝜇∥𝐻1(Ωℎ)

≤
𝑏(𝜇ℎ, 𝑣𝜇)
∥𝑣𝜇∥𝐻1(Ω)

, (7.113)
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it only remains to bound the term
𝑠ℎ,0(𝜇ℎ, 𝜇ℎ)
∥𝑣𝜇∥𝐻1(Ωℎ)

. (7.114)

Noting that by construction

𝑠ℎ,0(𝜇ℎ, 𝜇ℎ)1/2 ≲ ∥ℎ𝜇ℎ∥𝐻1(Ωℎ,0) ≲ ∥𝑣𝜇∥𝐻1(Ωℎ), (7.115)

we obtain
𝑠ℎ,0(𝜇ℎ, 𝜇ℎ)
∥𝑣𝜇∥𝐻1(Ωℎ)

≲ 𝑠ℎ,0(𝜇ℎ, 𝜇ℎ)1/2. (7.116)

Discontinuous multiplier space. One can also consider the case of a discontinuous
multiplier defined on the bulk mesh. For 0 ≤ 𝑙 ≤ 𝑘 , let

Λ𝐷,ℎ = {𝜇ℎ |Ω0 ∈ 𝐿2(Ω0) | 𝜇ℎ ∈ 𝐿2(Ωℎ,0) and 𝜇ℎ |𝑇 ∈ P𝑙(𝑇) for all 𝑇 ∈ Tℎ,0}.
(7.117)

Methods using discontinuous multipliers on the bulk mesh can be analysed by
combining the arguments of Sections 7.5 and 7.6. The key idea is to exploit the inf-
sup stability of the continuous bulk space approximation space, Λℎ, and penalize
the distance from a function in Λ𝐷,ℎ to Λℎ. Let 𝐼𝐶 : Λ𝐷,ℎ → Λℎ (where Λℎ is the
bulk-based space defined in (7.95)) denote the discrete quasi-interpolant defined by
taking nodal averages in the nodes of Tℎ,0 of the functions in Λ𝐷,ℎ. It then follows
by discrete interpolation that

∥𝜇ℎ − 𝐼𝐶𝜇ℎ∥2
Ωℎ,0
≲ 𝑠𝐽 (𝜇ℎ, 𝜇ℎ), (7.118)

with the jump penalty defined by

𝑠𝐽 (𝜇ℎ, 𝜆ℎ) =
∑︁

𝐹∈Fℎ,0

ℎ([𝜇ℎ], [𝜆ℎ])𝐹 , (7.119)

where Fℎ,0 denotes the set of interior faces 𝐹 in Tℎ,0, i.e. faces such that for some
𝑇,𝑇 ′ ∈ Tℎ,0, 𝐹 = 𝑇 ∩ 𝑇 ′. Then let 𝐼𝐶 : Λ𝐷,ℎ → Λℎ be defined by taking 𝐼𝐶 and
adding local bubbles to the interpolant, as in the construction of the interpolant of
Lemma 7.8. It is straightforward to show (7.118) for 𝐼𝐶 . One may then show a
discrete approximation result in the 𝐻−1/2-norm.

Lemma 7.10. For all 𝜇 ∈ Λ𝐷,ℎ,

∥𝜇ℎ − 𝐼𝐶𝜇ℎ∥2
𝐻−1/2(Ω0) ≲ ∥𝜇ℎ − 𝐼𝐶𝜇ℎ∥2

Ωℎ,0
≲ 𝑠𝐽 (𝜇ℎ, 𝜇ℎ). (7.120)

Proof. The proof is similar to that of Lemma 7.8, using (7.118) instead of ap-
proximation. By definition,

∥𝜇ℎ − 𝐼𝐶𝜇ℎ∥𝐻−1/2(Ω0) = sup
𝑣∈𝐻1/2(Ω0)\{0}

(𝜇ℎ − 𝐼𝐶𝜇ℎ, 𝑣)Ω0

∥𝑣∥𝐻1/2(Ω0)
. (7.121)
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Cut finite element methods 81

Using the construction of 𝐼𝐶 , we have

(𝜇ℎ − 𝐼𝐶𝜇ℎ, 𝑣)Ω0 =

𝑁∑︁
𝑖=1

(𝜇 − 𝐼𝐶𝜇, 𝑣 − �̄�𝑖)𝑃𝑖∩Ω0 ≲ ∥ℎ1/2(𝜇ℎ − 𝐼𝐶𝜇ℎ)∥Ω0 ∥𝑣∥𝐻1/2(Ω0).

(7.122)
Observing that, by the arguments of Lemma 7.8,

∥ℎ1/2(𝜇ℎ − 𝐼𝐶𝜇ℎ)∥Ω0 ≲ ∥𝜇ℎ − 𝐼𝐶𝜇ℎ∥Ωℎ,0 , (7.123)

we conclude by applying (7.118).

Proposition 7.11. For all 𝜇ℎ ∈ Λ𝐷,ℎ,

∥ℎ1/2𝜇ℎ∥Ω0 ≲ sup
𝑣∈𝑉ℎ\{0}

𝑏(𝜇ℎ, 𝑣)
∥𝑣∥𝐻1(Ω)

+ 𝑠𝐷(𝜇ℎ, 𝜇ℎ)1/2, (7.124)

where 𝑠𝐷 = 𝑠ℎ,0 + 𝑠𝐽 , with 𝑠ℎ,0 defined in equation (7.107).

Proof. By the triangle inequality,

∥ℎ1/2𝜇ℎ∥Ω0 ≤ ∥ℎ1/2𝐼𝐶𝜇ℎ∥Ω0 + ∥ℎ1/2(𝜇ℎ − 𝐼𝐶𝜇ℎ)∥Ω0 . (7.125)

By Proposition 7.9,

∥ℎ1/2𝐼𝐶𝜇ℎ∥Ω0 ≲ sup
𝑣∈𝑉ℎ\{0}

𝑏(𝐼𝐶𝜇ℎ, 𝑣)
∥𝑣∥𝐻1(Ω)

+ 𝑠ℎ,0(𝐼𝐶𝜇ℎ, 𝐼𝐶𝜇ℎ)1/2. (7.126)

Adding and subtracting 𝜇ℎ and using the duality in 𝑏,

𝑏(𝐼𝐶𝜇ℎ, 𝑣) ≲ 𝑏(𝜇ℎ, 𝑣) + ∥𝜇ℎ − 𝐼𝐶𝜇ℎ∥𝐻−1/2(Ω0)∥𝑣∥𝐻1/2(Ω0), (7.127)

and since 𝑠ℎ,0(𝜇ℎ − 𝐼𝐶𝜇ℎ, 𝜇ℎ − 𝐼𝐶𝜇ℎ) ≲ ∥𝜇ℎ − 𝐼𝐶𝜇ℎ∥2
Ωℎ,0

,

𝑠ℎ,0(𝐼𝐶𝜇ℎ, 𝐼𝐶𝜇ℎ)1/2 ≲ 𝑠ℎ,0(𝜇ℎ, 𝜇ℎ)1/2 + ∥𝜇ℎ − 𝐼𝐶𝜇ℎ∥Ωℎ,0 . (7.128)

Collecting the bounds, using ∥𝑣∥𝐻1/2(Ω0) ≲ ∥𝑣∥𝐻1(Ω) and applying Lemma 7.10,
we conclude that

∥ℎ1/2𝜇ℎ∥Ω0 ≲ sup
𝑣∈𝑉ℎ\{0}

𝑏(𝜇ℎ, 𝑣)
∥𝑣∥𝐻1(Ω)

+ 𝑠ℎ,0(𝜇ℎ, 𝜇ℎ)1/2 + 𝑠𝐽 (𝜇ℎ, 𝜇ℎ)1/2. (7.129)

Numerical illustration. We consider a problem with discontinuous multiplier space
defined as piecewise constant functions on the elements cut by the boundary, and
the field variable is approximated by 𝐶0-continuous 𝑃1-elements. The penalty
operator 𝑠𝐽 defined in (7.119) is applied. For constant multipliers the stabilizer
(7.107) is zero. The mesh domain is shown in Figure 7.1, meshing a circle of radius
𝑟0 = 1/2 with centre at (0.1, 0). On this domain we pose a problem with 𝛼 = 1
and right-hand side and boundary conditions corresponding to the exact solution
𝑢 = 9(𝑟3

0 − 𝑧3), where 𝑧 =
√︁

(𝑥 − 1/10)2 + (2𝑦/3)2.
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Figure 7.1. The mesh domain for the numerical illustration.

(a) (b)

Figure 7.2. The numerical solution of the field variable (a) and multiplier (b) with
𝜏0 = 10−1.

In Figure 7.2 we show the solution for a stable choice of 𝜏0, and in Figure 7.3
with a 𝜏0 chosen too small. We note the effect on the accuracy of the multiplier,
whereas the field variable is not affected. Finally, in Figure 7.4 we show the field
variable obtained without stabilization; the lack of stability is then affecting the
field variable as well.
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Cut finite element methods 83

(a) (b)

Figure 7.3. The numerical solution of the field variable (a) and multiplier (b) with
𝜏0 = 10−4.

Figure 7.4. The numerical solution of the field variable with 𝜏0 = 0.

7.7. Domains with corners

To get an optimally convergent method in the case where the domain has corners, the
multiplier must be allowed to jump across the corner. The arguments of Section 7.5,
where the boundary is meshed, carry over to this case without modification. Note
that for the inf-sup stable case of Section 7.5, special care must be taken to satisfy
the inf-sup condition also when corners are present. The stabilized methods do not
have this concern.
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In the case where the multiplier is defined on the bulk mesh, the situation is more
delicate. Define Tℎ,0,𝑖 = {𝑇 ∈ T̃ℎ | 𝑇 ∩ Ω0,𝑖 ≠ ∅} and Ωℎ,0,𝑖 = ∪𝑇∈Tℎ,0,𝑖𝑇 . The
multiplier space must be defined as the union of the spaces

Λℎ,𝑖 = {𝑣ℎ |Ω0,𝑖 ∈ 𝐻1(Ω0,𝑖) | 𝑣ℎ ∈ 𝐻1(Ωℎ,0,𝑖) and 𝑣ℎ |𝑇 ∈ P𝑙(𝑇) for all 𝑇 ∈ Tℎ,0,𝑖},
(7.130)

0 ≤ 𝑙 ≤ 𝑝 − 1, 𝑖 = 1, . . . , 𝑁 , i.e. Λℎ = ∪𝑁
𝑖=1Λℎ,𝑖 . The previous argument can then

only be used to obtain control of the multiplier in the interior of each Ω0,𝑖 . As in
the bulk fictitious domain problem, full control of the multiplier over

∑𝑁
𝑖=1 ∥ · ∥2

Ωℎ,0,𝑖
is obtained by adding a ghost penalty term to the multiplier, extending the stability
obtained by the inf-sup argument up to the boundary 𝜕Ω0,𝑖 of Ω0,𝑖 . We will sketch
this in the case of the continuous multiplier and for 𝑝 ≥ 2; for the case 𝑝 = 1 and
discontinuous multiplier with 𝑙 = 0, we refer to Burman and Hansbo (2010a). It
is enough to show stability on one of the Ω0,𝑖 . We assume that the stabilization
𝑠ℎ,0 consists of terms defined independently on each Ω0,𝑖 that do not couple the
different Λℎ,𝑖 . Let 𝜉𝑖 ∈ 𝑉ℎ be a piecewise affine function such that 𝜉𝑖 |𝑇 = 0 for
𝑇 ∈ Tℎ,0,𝑖 with 𝑇 ∩ 𝜕Ω0,𝑖 ≠ ∅ and set 𝜉𝑖 = 1 in the remaining nodes in Tℎ,0,𝑖 .
𝜉𝑖 is extended to a function in 𝑉ℎ by setting 𝜉𝑖 to zero in all remaining nodes in
Tℎ \ T ℎ,0,𝑖 . It follows that 𝑣𝜇 = 𝜉𝑖𝜇

𝑒
ℎ
∈ 𝑉ℎ, where 𝜇ℎ ∈ Λℎ,𝑖 and 𝜇𝑒

ℎ
denotes the

canonical extension to Ωℎ setting internal degrees of freedom to zero. We then
have

∥ℎ1/2𝜇ℎ𝜉
1/2
𝑖

∥2
Ω0,𝑖

= (𝜇ℎ, ℎ𝜇ℎ𝜉𝑖)Ω0,𝑖 . (7.131)

Hence, using the same argument as in Section 7.6, we obtain for all 𝜇ℎ ∈ Λℎ,
𝑁∑︁
𝑖=1

∥ℎ1/2𝜇ℎ𝜉
1/2
𝑖

∥Ω0,𝑖 ≲ sup
𝑣∈𝑉ℎ\{0}

𝑏(𝜇ℎ, 𝑣)
∥𝑣∥𝐻1(Ω)

+ 𝑠ℎ,0(𝜇ℎ, 𝜇ℎ)1/2. (7.132)

We then recall from Section 4 that there exists a stabilization 𝑠0,𝑖 with the property
that

∥ℎ1/2𝜇ℎ∥Ωℎ,0,𝑖 ≲ ∥ℎ1/2𝜇ℎ𝜉
1/2
𝑖

∥Ω0,𝑖 + 𝑠0,𝑖(𝜇ℎ, 𝜇ℎ)1/2, (7.133)

and we have the stability:

∥ℎ1/2𝜇ℎ∥Ω0 ≲ sup
𝑣∈𝑉ℎ\{0}

𝑏(𝜇ℎ, 𝑣)
∥𝑣∥𝐻1(Ω)

+ 𝑠ℎ,0(𝜇ℎ, 𝜇ℎ)1/2 + 𝑠0,𝑖(𝜇ℎ, 𝜇ℎ)1/2. (7.134)

Note that, as in the bulk case, the ghost penalty is used here to extend the stability
of an 𝑂(ℎ) layer close to the boundary of the Ω0,𝑖 , where it would otherwise fail.
To summarize, in the presence of corners the stabilizer acts to counter two different
sources of instability. First it ensures the inf-sup condition (7.28), but only in the
interior of each Ω0,𝑖 . Then another stabilizing form of ghost penalty type must be
applied to ensure stability up to the boundary of Ω0,𝑖 . In particular, for low-order
elements a stabilizing form can be designed that serves both purposes.
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8. Further examples and hybridization
In this section we illustrate how the cut finite element Lagrange multiplier method
can be applied to the model problems of Section 2. First we consider the two-
domain problem with discontinuous diffusivity using a Neumann–Dirichlet coup-
ling, then a bulk–surface problem. Finally we will show how the Lagrange mul-
tiplier approach can be used to create a method for multi-domain problems using
Dirichlet–Neumann coupling when a cut finite element solver for the fictitious
domain boundary value problem is available.

8.1. Example: elliptic problem with discontinuous coefficient

We consider the interface model problem discussed in Section 2.2. There are two
coupling conditions, (2.19), [𝑢] = 𝑔0, and (2.20), [𝑛 · 𝛼∇𝑢] = 𝑓0, that have to be
expressed in the form of a multiplier and a constraint equation. We have some
liberty in doing this, depending on which one of the conditions (2.19) and (2.20) is
built into boundary conditions imposed by the PDE in the bulk in each subdomain.
If the condition (2.19) is imposed weakly we say that it is a Dirichlet coupling, and
if (2.20) is imposed weakly we say that it is a Neumann coupling. This reflects the
fact that the local problems to be solved in a domain decomposition approach are
Dirichlet problems in the former case and Neumann problems in the latter.

Neumann coupling. The classical way is to introduce an equation imposing the
condition (2.19) on the primal variable:

(𝑢1 − 𝑢2, 𝜇)Ω0 = (𝑔0, 𝜇)Ω0 . (8.1)

This leads to the Lagrange multiplier formulation (2.33)–(2.34) derived in Sec-
tion 2.2. We recall it here for the readers’ convenience: find (𝑢1, 𝑢2, 𝜆) ∈ 𝑉1×𝑉2×Λ
such that

2∑︁
𝑖=1

(𝛼𝑖∇𝑢𝑖 ,∇𝑣𝑖)Ω𝑖
, +(𝜆, 𝑣1 − 𝑣2)Ω0 =

2∑︁
𝑖=1

( 𝑓𝑖 , 𝑣𝑖)Ω𝑖
+ ( 𝑓0, ⟨𝑣⟩∗)Ω0 , (8.2)

(𝑢1 − 𝑢2, 𝜇)Ω0 = (𝑔0, 𝜇)Ω0 , (8.3)

for all (𝑣1, 𝑣2, 𝜇) ∈ 𝑉1 × 𝑉2 × Λ, where 𝑉1, 𝑉2 were defined in (2.23) and Λ =

𝐻−1/2(Ω0).
We see that by (2.20) we can set

𝜆 = −𝑛1 · 𝛼1∇𝑢1 |Ω0 + 𝜂2 𝑓0 = 𝑛2 · 𝛼2∇𝑢2 |Ω0 − 𝜂1 𝑓0, (8.4)

and with this notation

(−𝛼𝑖Δ𝑢𝑖 , 𝑣𝑖)Ω𝑖
= (𝛼𝑖∇𝑢𝑖 ,∇𝑣𝑖)Ω𝑖︸            ︷︷            ︸

𝑎𝑖(𝑢𝑖 ,𝑣𝑖)

+ ((−1)𝑖+1𝜆, 𝑣𝑖)Ω0︸             ︷︷             ︸
𝑏𝑖(𝜆,𝑣𝑖)

− (𝜂(3−𝑖) 𝑓0, 𝑣𝑖)Ω0 . (8.5)

This defines the following local Neumann problem: find 𝑢𝑖 ∈ 𝑉𝑖 such that

𝑎𝑖(𝑢𝑖 , 𝑣𝑖) = −𝑏𝑖(𝜆, 𝑣𝑖) + ( 𝑓𝑖 , 𝑣𝑖)Ω𝑖
+ (𝜂3−𝑖 𝑓0, 𝑣𝑖)Ω0 for all 𝑣𝑖 ∈ 𝑉𝑖 . (8.6)
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To connect with the earlier derivation, observe that we also have

𝜆 = 𝜂1𝜆 + 𝜂2𝜆 = −𝜂1𝑛1 · 𝛼1∇𝑢1 |Ω0 + 𝜂2𝑛2 · 𝛼2∇𝑢2 |Ω0 = −⟨𝑛 · 𝛼∇𝑢⟩. (8.7)

This immediately leads to a formulation of the form (2.33)–(2.34) by defining

𝑎(𝑢, 𝑣) =
2∑︁
𝑖=1

(𝛼𝑖∇𝑢𝑖 ,∇𝑣𝑖)Ω𝑖
and 𝑏(𝜇, 𝑣) = (𝜇, 𝑣1 − 𝑣2)Ω0 . (8.8)

The right-hand side for each subdomain Ω𝑖 is defined by

𝑙𝑖(𝑣𝑖) = ( 𝑓𝑖 , 𝑣𝑖)Ω𝑖
+ (𝜂3−𝑖 𝑓0, 𝑣𝑖)Ω0 . (8.9)

This is the classical mortar coupling where the equation (2.19) is imposed through
the added constraint equation and (2.20) is imposed weakly. Well-posedness in the
spaces 𝑉𝑖 , 𝑖 = 1, 2 and Λ follows using the arguments of the previous section.

CutFEM formulation of the Neumann coupling. For the discretization of (8.2)–
(8.3), we recall the space𝑊ℎ defined by (2.39) for the approximation of 𝑢𝑖 , 𝑖 = 1, 2.
For a multiplier space Λℎ and a stabilizing form satisfying the approximation
assumption (7.31), the formulation is now given as follows: find 𝑢ℎ = (𝑢ℎ,1, 𝑢ℎ,2) ∈
𝑊ℎ and 𝜆ℎ ∈ Λℎ such that

𝑎(𝑢ℎ, 𝑣) + 𝑏(𝜆ℎ, 𝑣) = 𝑙(𝑣) for all 𝑣 = (𝑣1, 𝑣2) ∈ 𝑊ℎ, (8.10)
𝑏(𝜇, 𝑢ℎ) − 𝜏𝑠,0𝑠ℎ,0(𝜆ℎ, 𝜇) = (𝑔0, 𝜇)Ω0 for all 𝜇 ∈ Λℎ, (8.11)

where the forms 𝑎, 𝑏 and 𝑙 are defined above. For the analysis we introduce the
norms

∥𝑣∥2
𝑉 =

2∑︁
𝑖=1

𝛼𝑖 ∥𝑣𝑖 ∥2
𝐻1(Ω𝑖)

, (8.12)

∥𝜇∥2
Λ = 𝛼−1

min∥𝜇∥
2
𝐻−1/2(Ω0), 𝛼min = min(𝛼1, 𝛼2). (8.13)

The coercivity of 𝑎 holds by choosing 𝜇𝑣 = 𝛼min
∫
Ω0
[𝑣ℎ] d𝑠 and proceeding as for

the fictitious domain case. To see that the continuity (7.26) holds, we apply the
Cauchy–Schwarz inequality to 𝑎, and for 𝑏 we observe that

𝑏(𝜇, 𝑣) = (𝜇, [𝑣])Ω0

≤ 𝛼
−1/2
min ∥𝜇∥𝐻−1/2(Ω0)𝛼

1/2
min

2∑︁
𝑖=1

∥𝑣𝑖 ∥𝐻1(Ω𝑖)

≲ ∥𝜇∥Λ∥𝑣∥𝑉 . (8.14)

If the multiplier space Λℎ and the stabilization 𝑠ℎ,0 are chosen so that the condi-
tion (7.28) is satisfied for the space 𝑉ℎ,𝑖 , such that 𝛼𝑖 = 𝛼min and the parameter
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𝜏𝑠,0 = 𝜏0𝛼
−1
min, then Theorem 7.3 holds. If robustness with respect to the contrast is

not necessary, either side can be used to satisfy the inf-sup condition. If the spaces
satisfy the inf-sup condition without stabilization, optimal preconditioners can be
derived using the framework of Bertoluzza and Burman (2023). The design of
efficient preconditioners for the stabilized system is an open problem.

8.2. Example: bulk–surface coupling

We now revisit a model for the interaction of concentrations in the bulk and on the
surface, with a prescribed jump between the two similar to (2.55)–(2.57). This time,
to simplify the problem setting, the surface PDE acts on the boundary as a non-
local boundary condition. This is a model for proton transport in cell membranes
introduced in Georgievskii, Medvedev and Stuchebrukhov (2002), with absorption
in the bulk. Below we will apply a Neumann-type coupling for this problem. For
simplicity, we let Ω be a smooth subset of R3 with boundary Ω0 and outward-
pointing normal 𝑛. The model we consider takes the form

−∇ · (𝛼𝐵∇𝑢𝐵) + 𝑢𝐵 = 𝑓𝐵 in Ω, (8.15)
−∇0 · (𝛼𝑆∇0𝑢𝑆) + 𝑛 · 𝛼𝐵∇𝑢𝐵 = 𝑓𝑆 on Ω0, (8.16)
𝜍𝑛 · 𝛼𝐵∇𝑢𝐵 + 𝑏𝐵𝑢𝐵 − 𝑏𝑆𝑢𝑆 = 0 on Ω0. (8.17)

Here ∇ is the R3 gradient and ∇0 is the tangent gradient associated with Ω0 defined
by

∇0 = 𝑃0∇, (8.18)

with 𝑃0 = 𝑃0(𝑥) the projection of R3 onto the tangent plane of Ω0 at 𝑥 ∈ Ω0,
defined by

𝑃0 = 𝐼 − 𝑛 ⊗ 𝑛. (8.19)

Further, 𝑏𝐵, 𝑏𝑆 , 𝛼𝐵 and𝛼𝑆 are positive constants, and 𝑓𝐵 : Ω → R and 𝑓𝑆 : Ω0 → R
are given square-integrable functions. To see how the problem can be cast in
the abstract framework, we define the spaces 𝑉𝑆 = 𝐻1(Ω0), 𝑉𝐵 = 𝐻1(Ω) and
Λ = 𝐻−1/2(Ω0) (the dual of the space of traces on Ω0 of functions in 𝑉𝐵). Then we
multiply (8.15) by a test function 𝑣𝐵 ∈ 𝑉𝐵 and (8.16) by a test function 𝑣𝑆 ∈ 𝑉𝑆 , to
obtain

(−∇ · (𝛼𝐵∇𝑢𝐵) + 𝑢𝐵, 𝑣𝐵)Ω
= (𝛼𝐵∇𝑢𝐵,∇𝑣𝐵)Ω + (𝑢𝐵, 𝑣𝐵)Ω − (𝑛 · (𝛼𝐵∇𝑢𝐵), 𝑣𝐵)Ω0 (8.20)

and, noting that the surface Ω0 is closed,

(−∇0 · (𝛼𝑆∇0𝑢𝑆), 𝑣𝑆)Ω + (𝑛 · (𝛼𝐵∇𝑢𝐵), 𝑣𝑆)Ω0

= (𝛼𝑆∇0𝑢𝑆 ,∇0𝑣𝑆)Ω0 + (𝑛 · (𝛼𝐵∇𝑢𝐵), 𝑣𝑆)Ω0 . (8.21)
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It follows that the last term in the above equations couples the two systems, so we
define 𝜆 = −𝑛 · (𝛼𝐵∇𝑢𝐵). Then we introduce the weak forms 𝑎𝐵 : 𝑉𝐵 × 𝑉𝐵 → R
and 𝑎𝑆 : 𝑉𝑆 ×𝑉𝑆 → R,

𝑎𝐵(𝑢𝐵, 𝑣𝐵) = 𝑏𝐵((𝛼𝐵∇𝑢𝐵,∇𝑣𝐵)Ω + (𝑢𝐵, 𝑣𝐵)Ω), (8.22)
𝑎𝑆(𝑢𝑆 , 𝑣𝑆) = 𝑏𝑆(𝛼𝑆∇0𝑢𝑆 ,∇0𝑣𝑆)Ω0 , (8.23)

and the coupling form

𝑏(𝑣, 𝜇) = (𝜇, 𝑏𝐵𝑣𝐵 − 𝑏𝑆𝑣𝑆)Ω0 . (8.24)

We let 𝑏(𝑣𝐵, 𝜇) = (𝜇, 𝑏𝐵𝑣𝐵)Ω0 and 𝑏(𝑣𝑆 , 𝜇) = −(𝜇, 𝑏𝑆𝑣𝑆)Ω0 . The weak formulation
may then be written as follows: find {𝑢𝐵, 𝑢𝑆 , 𝜆} ∈ 𝑉𝐵 ×𝑉𝑆 × Λ such that

𝑎𝐵(𝑢𝐵, 𝑣𝐵) + 𝑏(𝑣𝐵, 𝜆) = (𝑏𝐵 𝑓𝐵, 𝑣𝐵)Ω for all 𝑣𝐵 ∈ 𝑉𝐵, (8.25)
𝑎𝑆(𝑢𝑆 , 𝑣𝑆) + 𝑏(𝑣𝑆 , 𝜆) = (𝑏𝑆 𝑓𝑆 , 𝑣𝑆)Ω0 for all 𝑣𝑆 ∈ 𝑉𝑆 , (8.26)
−𝜍(𝜆, 𝜇)Ω0 + 𝑏(𝑢, 𝜇) = 0 for all 𝜇 ∈ Λ. (8.27)

Consider the norms

∥𝑣∥2
𝑉 = 𝑏𝐵𝛼𝐵∥𝑣𝐵∥2

Ω + 𝑏𝑆𝛼𝑆 ∥𝑣𝑆 ∥2
Ω0
, ∥𝜇∥2

Λ = (𝑏𝐵𝛼𝐵)−1∥𝜇∥2
𝐻−1/2(Ω0). (8.28)

The Poincaré inequality for 𝑢𝑆 can be shown using arguments similar to those
in Section 3.8. This formulation is well-posed in the indicated spaces using the
arguments of the previous section. By using equation (8.27) one may, however,
eliminate the multiplier to arrive at a formulation similar to that of equation (2.62).
The advantage of keeping the multiplier is that the formulation is robust for all
𝜍 → 0. In applications, typically 𝜍 may be very small.

CutFEM formulation of the bulk–surface coupling. A discretization for the bulk–
surface problem is most easily achieved by choosing the spaces 𝑉ℎ,𝐵 and Λℎ

together with a possible stabilization 𝑠ℎ,0 so that an optimal unfitted fictitious
domain method of the type discussed in Section 7 is obtained, using these spaces in
a formulation similar to (7.17)–(7.18). For the approximation space of 𝑢𝑆 and the
form 𝑎𝑆 , it is convenient to use a discretization of a surface PDE, with stabilization
similar to that proposed in Sections 2.3 and 5. Together this leads to a formulation
that will satisfy the error estimate of Theorem 7.3.

Observe that it is not possible to choose the multiplier space to be inf-sup stable
with the space used for discretization of the PDE on the surface, (8.26). Such
a choice will lead to inf-sup stability in the weaker 𝐻−1(Ω0)-norm instead of
𝐻−1/2(Ω0) and suboptimal estimates.

8.3. Combining local Dirichlet solvers to solve multidomain problems

Assume now that we have at our disposal solvers for the fictitious domain problem,
using either a Lagrange multiplier approach or Nitsche’s method (see Sections 2.1
and 7.4), and we want to use these codes as building blocks in a multidomain solver.
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Since a Dirichlet condition is imposed by the local solvers the coupling will instead
become of Dirichlet–Neumann type. Then (2.20) is imposed through the added
constraint and (2.19) is imposed weakly. This leads to the following bilinear form
for the local solver if Lagrange multipliers are used:

𝐴𝑖(𝑢𝑖 , 𝜙𝑖 , 𝑣𝑖 , 𝜓𝑖) = (𝛼𝑖∇𝑢𝑖 ,∇𝑣𝑖)Ω𝑖︸            ︷︷            ︸
𝑎𝑖(𝑢𝑖 ,𝑣𝑖)

+ (𝜙𝑖 , 𝑣𝑖)Ω0 − (𝜓𝑖 , 𝑢𝑖)Ω0 , (8.29)

where 𝑢𝑖 , 𝑣𝑖 ∈ 𝑉𝑖 = 𝐻1(Ω𝑖) and 𝜙𝑖 , 𝜓𝑖 ∈ Λ𝑖 = 𝐻−1/2(𝜕Ω𝑖 ∩ Ω0). Since by (2.19)
we may define 𝜆 = 𝑢1 − 𝜂1𝑔0 = 𝑢2 + 𝜂2𝑔0 = 𝜂2𝑢1 + 𝜂1𝑢2 = ⟨𝑢⟩∗ on Ω0, where 𝜆 is
in the space Λ = 𝐻1/2(Ω0), consisting of traces of functions in 𝑉𝑖 on Ω0, with 𝑖 = 1
or 2, we must have, for 𝑖 = 1, 2,

𝐴𝑖(𝑢𝑖 , 𝜙𝑖 , 𝑣𝑖 , 𝜓𝑖)
= ( 𝑓𝑖 , 𝑣𝑖)Ω − (𝜆, 𝜓𝑖)Ω0 + (𝜂𝑖(−1)𝑖𝑔0, 𝜓𝑖)Ω0 for all (𝑣𝑖 , 𝜓𝑖) ∈ 𝑉𝑖 × Λ𝑖 . (8.30)

Observe that this coincides with the formulation (7.5)–(7.6) for the imposition of
the Dirichlet boundary data 𝜆 − 𝜂𝑖(−1)𝑖𝑔0. In this case, the spaces 𝑉𝑖 and Λ𝑖

must satisfy the inf-sup condition (7.11) separately on the two subdomains. To
close the system we add the equation for the constraint (2.20). Since in this case
𝜙𝑖 = −𝑛𝑖 ·𝛼𝑖∇𝑢𝑖 , the constraint equation can be written (𝜙1+𝜙2, 𝜇)Ω0 = −( 𝑓0, 𝜇)Ω0 ,
for all 𝜇 ∈ Λ.

We see that the resulting method can be interpreted as a coupling scheme of the
form (2.33)–(2.34) if 𝑢 = {(𝑢𝑖 , 𝜙𝑖)}2

𝑖=1, 𝑣 = {(𝑣𝑖 , 𝜓𝑖)}2
𝑖=1 and where the 𝑎(𝑢, 𝑣) =∑2

𝑖=1 𝐴𝑖(𝑢𝑖 , 𝜙𝑖 , 𝑣𝑖 , 𝜓𝑖), with 𝐴𝑖 defined by (8.29) and 𝑏(𝜆, 𝜓) = (𝜆, 𝜓1 + 𝜓2)Ω0 . We
write the scheme as follows: find (𝑢𝑖 , 𝜙𝑖) ∈ (𝑉𝑖 × Λ𝑖), 𝜆 ∈ Λ such that for 𝑖 = 1, 2

𝐴𝑖(𝑢𝑖 , 𝜙𝑖 , 𝑣𝑖 , 𝜓𝑖) + (𝜆, 𝜓𝑖)Ω0 = 𝑙𝑖(𝑣𝑖 , 𝜓𝑖) for all 𝑣𝑖 , 𝜓𝑖 ∈ 𝑉𝑖 × Λ𝑖 , (8.31)

where 𝑙𝑖(𝑣𝑖 , 𝜓𝑖) = ( 𝑓𝑖 , 𝑣𝑖)Ω + (𝑔0, 𝜂𝑖(−1)𝑖𝜓𝑖)Ω0 , and

(𝜙1 + 𝜙2, 𝜇)Ω0 = −( 𝑓0, 𝜇)Ω0 for all 𝜇 ∈ Λ. (8.32)

The spaces 𝑉𝑖 , Λ𝑖 must satisfy the inf-sup condition (7.11) for 𝑖 = 1, 2. The space
Λ must also satisfy an inf-sup condition with either Λ1 or Λ2.

This Dirichlet coupling is what is sometimes known as the three fields formula-
tion (Brezzi and Marini 1994, Bertoluzza 2003, 2016). The analysis of the previous
section cannot be immediately applied to this case, but the results still follow using
similar arguments and we refer to the above works for details. The formulation
(8.31)–(8.32) may appear significantly more complicated than (8.2)–(8.3), but the
objectives of the two formulations are different. Assume that a method for the
approximation of a boundary value problem with Dirichlet data is available. Then
this solver serves as a building block for the local problem (8.31) of the coupled
problem. In (8.2)–(8.3), local solvers use Neumann boundary conditions.
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CutFEM formulation of the Dirichlet coupling. To discretize (8.31)–(8.32), we
replace the spaces 𝑉𝑖 ,Λ𝑖 , 𝑖 = 1, 2 and Λ by their discrete unfitted counterparts
𝑊ℎ, Λℎ,𝑖 , 𝑖 = 1, 2 and Λℎ as before. We arrive at the following formulation: find
(𝑢ℎ,𝑖 , 𝜙ℎ,𝑖) ∈ (𝑉ℎ,𝑖 × Λℎ,𝑖) and 𝜆ℎ ∈ Λℎ such that for 𝑖 = 1, 2

𝐴ℎ,𝑖(𝑢ℎ,𝑖 , 𝜙ℎ,𝑖 , 𝑣𝑖 , 𝜓𝑖) + (𝜆ℎ, 𝜓𝑖)Ω0 = 𝑙𝑖(𝑣ℎ,𝑖 , 𝜓𝑖), (8.33)

for all 𝑣𝑖 , 𝜓𝑖 ∈ 𝑉ℎ,𝑖 × Λℎ,𝑖 , and where

𝐴ℎ,𝑖(𝑢ℎ,𝑖 , 𝜙ℎ,𝑖 , 𝑣𝑖 , 𝜓𝑖) = 𝐴𝑖(𝑢ℎ,𝑖 , 𝜙ℎ,𝑖 , 𝑣𝑖 , 𝜓𝑖) + 𝜏𝑠,0,𝑖𝑠ℎ,0,𝑖(𝜙ℎ,𝑖 , 𝜓𝑖) (8.34)

with 𝐴𝑖 defined in (8.29), and

(𝜙ℎ,1 + 𝜙ℎ,2, 𝜇)Ω0 − 𝜏𝑠,0𝑠ℎ,0(𝜆ℎ, 𝜇) = −( 𝑓0, 𝜇)Ω0 for all 𝜇 ∈ Λℎ . (8.35)

Then, assuming that the pairs 𝑉ℎ,𝑖 ,Λℎ,𝑖 and the stabilizer 𝑠ℎ,0 are chosen to satisfy
the inf-sup condition (7.28) for the local solvers, and that Λℎ together with one of
the Λℎ,𝑖 satisfies the inf-sup condition (7.28), we obtain a result similar to that of
Theorem 7.3.

Clearly the above approach is attractive only if two unfitted solvers using multi-
pliers are already available for the two local problems. Otherwise the accumulation
of inf-sup conditions may be intimidating. To reduce the number of multipliers on
the discrete level, one may proceed by formal elimination on the discrete level in
the spirit of Stenberg (1995).

For the spaces Λ𝑖 , instead of introducing additional variables we then use 𝜙𝑖 =

−𝑛𝑖 · 𝛼𝑖∇𝑢𝑖 to substitute 𝜙𝑖 in the discrete approximation for some approximation
of the flux −𝑛𝑖 · 𝛼𝑖∇𝑢𝑖 . Any stabilization associated with the 𝜙𝑖 is omitted. We
propose two substitutions that result in different hybridized Nitsche methods.

• The simplest approach is to make the direct substitution 𝜙ℎ,𝑖 = −𝑛𝑖 · 𝛼𝑖∇𝑢ℎ,𝑖
and 𝜓𝑖 = −𝑛𝑖 · 𝛼𝑖∇𝑣𝑖 , where 𝑢ℎ,𝑖 and 𝑣ℎ,𝑖 are functions in 𝑉ℎ,𝑖 . This leads
to a hybridized version of the penalty-free skew-symmetric Nitsche method
first analysed in Burman (2012) and in the unfitted framework in Boiveau,
Burman, Claus and Larson (2018), which takes the following form: find
{(𝑢ℎ,1, 𝑢ℎ,2), 𝜆ℎ} ∈ 𝑊ℎ × Λℎ such that

𝐴𝑖(𝑢ℎ,𝑖 ,−𝑛𝑖 · 𝛼𝑖∇𝑢ℎ,𝑖 , 𝑣𝑖 ,−𝑛𝑖 · 𝛼𝑖∇𝑣𝑖) − (𝜆ℎ, 𝑛𝑖 · 𝛼𝑖∇𝑣𝑖)Ω0

+ 𝜏𝑠,𝑖𝑠ℎ,𝑖(𝑢ℎ,𝑖 , 𝑣𝑖) = 𝑙𝑖(𝑣𝑖 ,−𝑛𝑖 · 𝛼𝑖∇𝑣𝑖) for 𝑖 = 1, 2, (8.36)
2∑︁
𝑖=1

(𝜇, 𝑛𝑖 · 𝛼𝑖∇𝑢ℎ,𝑖)Ω0 + 𝜏𝑠,0𝑠ℎ,0(𝜆ℎ, 𝜇) = ( 𝑓0, 𝜇)Ω0 , (8.37)

for all {(𝑣1, 𝑣2), 𝜇} ∈ 𝑊ℎ × Λℎ. Now only Λℎ and one of the sides need to
satisfy the inf-sup condition using the flux functions 𝑛𝑖 · 𝛼𝑖∇𝑣ℎ,𝑖 . On unfitted
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meshes the inf-sup stability only holds together with a ghost penalty (Boiveau
et al. 2018). Then an unfitted method that is stable with optimal approximation
estimates in the 𝐻1-norm is obtained, as was shown in Boiveau, Burman and
Claus (2017) and Boiveau et al. (2018). Writing out the terms in 𝐴𝑖 , this
formulation can be written as

2∑︁
𝑖=1

(
𝑎𝑖(𝑢ℎ,𝑖 , 𝑣𝑖) − (𝑛𝑖 · 𝛼𝑖∇𝑢ℎ,𝑖 , 𝑣𝑖 − 𝜇)Ω0 + (𝑛𝑖 · 𝛼𝑖∇𝑣𝑖 , 𝑢ℎ,𝑖 − 𝜆ℎ)Ω0

+ 𝜏𝑠,𝑖𝑠ℎ,𝑖(𝑢ℎ,𝑖 , 𝑣𝑖)
)
+ 𝜏𝑠,0𝑠ℎ,0(𝜆ℎ, 𝜇)

=

2∑︁
𝑖=1

𝑙𝑖(𝑣𝑖 ,−𝑛𝑖 · 𝛼𝑖∇𝑣𝑖) + ( 𝑓0, 𝜇)Ω0 . (8.38)

• Approximating 𝜙ℎ,𝑖 ≈ 𝜙ℎ,𝑖(𝑢ℎ,𝑖 , 𝜆ℎ) = −𝑛𝑖 · 𝛼𝑖∇𝑢ℎ,𝑖 + 𝛽0/2𝛼𝑖ℎ
−1(𝑢ℎ,𝑖 − 𝜆ℎ)

for some positive real dimensionless parameter 𝛽0 > 0, and for �̂�𝑖(𝑣𝑖 , 𝜇) =

𝑛𝑖 · 𝛼𝑖∇𝑣𝑖 − 𝛽0/2𝛼𝑖ℎ
−1(𝑣𝑖 − 𝜇), leads to the hybridized Nitsche method

originally introduced in Egger (2009) and applied as proposed here in the
framework of CutFEM in Burman et al. (2019a). It takes the following form:
find {(𝑢ℎ,1, 𝑢ℎ,2), 𝜆ℎ} ∈ 𝑊ℎ × Λℎ such that, for 𝑖 = 1, 2,

𝐴𝑖(𝑢ℎ,𝑖 , 𝜙ℎ,𝑖 , 𝑣𝑖 , �̂�𝑖) + 𝜏𝑠,𝑖𝑠ℎ,𝑖(𝑢ℎ,𝑖 , 𝑣𝑖) + (𝜆ℎ, �̂�𝑖)Ω0 = 𝑙𝑖(𝑣𝑖 , �̂�𝑖), (8.39)
(𝜇, 𝜙ℎ,1 + 𝜙ℎ,2)Ω0 − 𝜏𝑠,0𝑠ℎ,0(𝜆ℎ, 𝜇) = −( 𝑓0, 𝜇)Ω0 , (8.40)

for all {(𝑣1, 𝑣2), 𝜇} ∈ 𝑊ℎ × Λℎ. Writing out the terms in 𝐴𝑖 , this formulation
can be written as

2∑︁
𝑖=1

(
𝑎𝑖(𝑢ℎ,𝑖 , 𝑣𝑖) − (𝑛𝑖 · 𝛼𝑖∇𝑢ℎ,𝑖 , 𝑣𝑖 − 𝜇)Ω0 − (𝑛𝑖 · 𝛼𝑖∇𝑣𝑖 , 𝑢ℎ,𝑖 − 𝜆ℎ)Ω0

+ (𝛽0/ℎ𝛼𝑖(𝑢ℎ,𝑖 − 𝜆ℎ), 𝑣𝑖 − 𝜇)Ω0 + 𝜏𝑠,𝑖𝑠ℎ,𝑖(𝑢ℎ,𝑖 , 𝑣𝑖)
)

+ 𝜏𝑠,0𝑠ℎ,0(𝜆ℎ, 𝜇))

=

2∑︁
𝑖=1

𝑙𝑖(𝑣𝑖 , �̂�𝑖) + ( 𝑓0, 𝜇)Ω0 . (8.41)

For results on stability and optimal error estimates we refer to Burman et al.
(2019b). The conditioning of the Schur complement (i.e. when the bulk de-
grees of freedom have been eliminated) was shown to be optimal irrespective
of the mesh interface intersection in the unfitted case too.

We have now derived both the Neumann and the Dirichlet coupling with Lagrange
multipliers and two hybridized Nitsche methods. Finally, we can eliminate the
hybridization variable in the hybridized Nitsche method. Using the definition of
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Ω1

Ω2

Ω3

Ω0

Figure 8.1. Illustration of the model problem geometry. The unit square [0, 1]2

is divided into three subdomains, Ω1, Ω2 and Ω3, according to the figure with
material coefficients 𝛼1 = 1, 𝛼2 = 2 and 𝛼3 = 3.

the trace variable we can also eliminate 𝜆ℎ. Recall the weighted average ⟨𝑣⟩∗ =

𝜂2𝑣1 + 𝜂1𝑣2. Now replace 𝜆ℎ with ⟨𝑢ℎ⟩∗ and the associated test function 𝜇 with
⟨𝑣⟩∗ in (8.41), and take 𝜏𝑠,0 = 0. Writing out the resulting method, we arrive at our
original formulation of Nitsche’s method (2.40).

Numerical example hybridization: three subdomains. To illustrate the performance
of the hybridized methods, we will reproduce a numerical example from Burman
et al. (2019b, Section 5.2). The method (8.41) is applied to an interface problem,
with 𝑓 = 1, 𝑓0 = 𝑔0 = 0, coupling three different subdomains. The unit square is
partitioned into three subdomains Ω𝑖 , 𝑖 = 1, 2, 3 with a different constant material
coefficient 𝛼𝑖 in each subdomain; see Figure 8.1. In this problem we have three
interface subdomains. We consider the following two unfitted mesh constructions
(for details see Burman et al. 2019b, Section 5.1).

• Global background grid. Here active meshes associated with each subdomain
are extracted from the same background grid; see Figure 8.2. We use 𝑄2-
elements on each mesh. Note that all subdomains have cut elements and
that some skeleton subdomains are curved within elements. In this setting
there are no locking effects due to non-matching approximation spaces when
choosing the penalty parameter 𝛽 large. A sample solution and the magnitude
of its gradient are presented in Figure 8.3.

• Single element interfaces. Here the mesh and the space on each subdomain is
constructed independently, some as quadrilateral meshes with 𝑄2-elements
and some as triangular meshes with 𝑃2-elements. On each skeleton sub-
domain we use a single 𝑄4-element. Sample meshes in this set-up are visu-
alized in Figure 8.4 and the corresponding numerical solution is presented in
Figure 8.5.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492925000017
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 26 Jul 2025 at 10:59:45, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492925000017
https://www.cambridge.org/core


Cut finite element methods 93

(a) subdomain meshes (b) skeleton subdomain meshes

Figure 8.2. Meshes in the three subdomain example extracted from a global
background grid. (a) Unfitted meshes with 𝑄2-elements. (b) Skeleton subdomain
meshes also with 𝑄2-elements.

(a) solution (b) gradient magnitude

Figure 8.3. Approximate solution (a) and the gradient magnitude (b) in the three
subdomains using the construction illustrated in Figure 8.2.
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(a) subdomain meshes (b) skeleton subdomain meshes

Figure 8.4. Meshes are constructed independently for each subdomain in the three
subdomain example: (a) 𝑄2-elements on quadrilateral meshes for subdomain Ω2
and Ω3, and 𝑃2-elements on triangular meshes for the subdomain Ω1. (b) Each
skeleton subdomain is embedded in a single 𝑄4-element.

(a) solution (b) gradient magnitude

Figure 8.5. Approximate solution (a) and the gradient magnitude (b) in the three
subdomains using the construction illustrated in Figure 8.4.
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9. CutFEM in time-dependent domains

For time-dependent PDEs in evolving domains in R𝑑 , three main strategies have
been proposed in connection with cut finite element discretizations.

The first strategy approximates the material derivative by following the char-
acteristics, allowing information from previous time steps to be retrieved. This
approach is combined with cut finite element discretizations in space by Hansbo
et al. (2015a), where a convection–diffusion equation on a moving interface is
considered. The method in Hansbo et al. (2015a) uses backward Euler, and the
unfitted scheme is proved to be first-order accurate in the 𝐿2-norm. More recently,
this strategy has been extended to a fourth-order backward differentiation formula
(BDF) and applied to convection–diffusion equations in a moving bulk domain in
Ma, Zhang and Zheng (2022). In this extension, the moving boundary is expli-
citly represented using cubic spline interpolation, and integrals on cut elements are
subdivided, with high-order Gauss–Legendre quadrature applied. The resulting
scheme is fourth-order accurate in the energy norm, as demonstrated in Ma et al.
(2022).

The second strategy involves approximating the time-dependent PDE in an unfit-
ted space–time domain. The discontinuous Galerkin (DG) method is used in time,
combined with an unfitted spatial discretization, allowing the space–time domain
to be partitioned into space–time slabs. Approximations can then be computed one
time slab at a time. Space–time unfitted finite element methods have been presen-
ted in Chessa and Belytschko (2004) and Lehrenfeld and Reusken (2013) for bulk
problems and in Grande (2014), Olshanskii and Reusken (2014) and Olshanskii,
Reusken and Xu (2014) for PDEs on evolving surfaces. For both bulk and sur-
face problems, first-order accuracy is shown in the energy norm, and second-order
convergence is demonstrated in a weaker norm than the 𝐿2-norm.

Implementing these unfitted space–time methods requires integration overR𝑑+1-
dimensional space–time elements, which may have complex shapes due to the
unfitted evolving boundary; see e.g. Lehrenfeld (2015) for an implementation in
three space dimensions for a bulk problem. It is important to note that these
methods use approximation spaces defined by restrictions of finite element spaces
from a space–time unfitted mesh to the space–time domain where the PDE is
defined. This differs slightly from cut finite element discretizations, where the
approximation spaces are defined on the entire active mesh, not just where the PDE
is defined.

To simplify the implementation of space–time methods and avoid integration over
R𝑑+1-dimensional space–time elements, a time-stepping strategy can be used. In
the framework of CutFEM, Hansbo et al. (2016) and Zahedi (2017) demonstrate that
space–time integrals can be approximated by first applying a quadrature rule in time,
provided that appropriate stabilization terms are included in the weak formulation.
These terms help to extend and control the solution across all the elements of a
suitably defined active mesh. The method extends CutFEM, originally developed
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for stationary domains, to time-dependent domains by approximating the solution
over an active mesh that encompasses the time-dependent domain over a small time
interval. Numerical studies have shown that this scheme is stable and robust with
respect to the position of the boundary relative to the mesh. It has been successfully
applied to multiphase flow problems in Frachon and Zahedi (2019, 2023). In
Zahedi (2017), high-order discretizations for surface PDEs are presented, using an
explicit representation of the interface via spline interpolation and the introduction
of appropriate stabilization terms. For high-order discretization of bulk problems
in a moving domain represented by a level set function, Heimann et al. (2023)
propose a method based on isoparametric mapping for integration on cut elements.
They also introduce adaptive quadrature rules for time integration that adjust to the
evolution of the moving domain. In Frachon and Zahedi (2023), Reynolds’ transport
theorem is applied to achieve mass conservation for surface PDEs. Additionally,
Myrbäck and Zahedi (2024) propose mass-conservative high-order discretizations
for both bulk and surface PDEs, also leveraging Reynolds’ transport theorem to
derive a weak formulation that inherently ensures mass conservation. To ensure
convergence and robustness, especially for high-order elements and independent of
the cut configuration, this weak formulation must be efficiently stabilized (Myrbäck
and Zahedi 2024). For integration on cut elements, represented by the level set
method, Gaussian quadrature rules based on the algorithm of Saye (2015) are used.
The third strategy also includes methods based on the method of lines, where time
derivatives are replaced by finite difference schemes. Lehrenfeld and Olshanskii
(2019) proposed an unfitted discretization, where the time derivative is discretized
using BDF1, combined with a cut finite element method in space. This method
utilizes an active mesh that covers the time-dependent domain from the previous
time step. For BDF1, which is an implicit Euler discretization in time, optimal
error estimates are derived for the solution in the 𝐻1-norm in space, as detailed
in Lehrenfeld and Olshanskii (2019). We show here that when BDF1 is used,
the scheme is identical to the one presented in Hansbo et al. (2016) when the
lowest-order elements in time (i.e. piecewise constant polynomials) and a first-
order quadrature rule are used. See also Remark 3.2 in Frachon and Zahedi (2019).
In Lou and Lehrenfeld (2022), the focus is on high-order BDF schemes and the use
of isoparametric mapping for integration on cut elements.

To illustrate this third strategy based on time-stepping, we first consider a bulk
problem, followed by a coupled bulk–surface problem.

9.1. A space–time method using time-stepping by quadrature

Let us first consider the following bulk problem: given Ω(𝑡) with boundary Ω0(𝑡),
evolving with velocity 𝜷Ω0 for 𝑡 ∈ [0, 𝑇], find 𝑢 : [0, 𝑇] ×Ω(𝑡) → R such that

𝜕𝑡𝑢 + ∇ · (𝜷𝑢 − 𝛼∇𝑢) = 𝑓 in Ω(𝑡), (9.1)
𝒏 · 𝛼∇𝑢 = 0 on Ω0(𝑡), (9.2)
𝑢(0, 𝒙) = 𝑢0(𝒙) in Ω(0). (9.3)
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Here, 𝜷 is the fluid velocity, and we assume 𝜷 · 𝒏 = 𝜷Ω0 · 𝒏 on Ω0(𝑡), and that Ω0(𝑡)
is a closed, smooth surface.

Recall Reynolds’ transport theorem:

d
d𝑡

∫
Ω(𝑡)

𝑢 d𝒙 =

∫
Ω(𝑡)

𝜕𝑡𝑢 d𝒙 +
∫
Ω0(𝑡)

𝒏 · 𝜷Ω0𝑢 d𝑠. (9.4)

Combining (9.4) with the given PDE (9.1), using the divergence theorem, and the
condition 𝜷 · 𝒏 = 𝜷Ω0 · 𝒏 on Ω0(𝑡), applying the boundary condition (9.2), and
finally integrating in time yields the mass conservation law:∫

Ω(𝑇)
𝑢 d𝒙 −

∫
Ω(0)

𝑢 d𝒙 =

∫ 𝑇

0

∫
Ω(𝑡)

𝑓 d𝒙 d𝑡. (9.5)

We now present the methods introduced in Hansbo et al. (2016) and Myrbäck
and Zahedi (2024), followed by a discussion of the methods in Lehrenfeld and
Olshanskii (2019) and Olshanskii and von Wahl (2024), which are based on finite
difference approximations of the time derivative using BDF1, and how they are
related.

Let 𝐼𝑛 = [𝑡𝑛−1, 𝑡𝑛] ⊂ [0, 𝑇] be a time interval and let 𝑉 = 𝐻1(∪𝑡∈𝐼𝑛{𝑡} × Ω(𝑡)).
By multiplying the PDE by 𝑣 ∈ 𝑉 , integrating in space and time, and applying
integration by parts in space, we obtain the weak formulation:∫

𝐼𝑛

(𝜕𝑡𝑢 + ∇ · (𝜷𝑢), 𝑣)Ω(𝑡) d𝑡 +
∫
𝐼𝑛

(𝛼∇𝑢,∇𝑣)Ω(𝑡) d𝑡 =
∫
𝐼𝑛

( 𝑓 , 𝑣)Ω(𝑡) d𝑡. (9.6)

Next, applying Reynolds’ transport theorem to the product 𝑢𝑣 and integrating over
𝐼𝑛, we obtain

(𝑢, 𝑣)Ω(𝑡𝑛) − (𝑢, 𝑣)Ω(𝑡𝑛−1)

=

∫
𝐼𝑛

(𝜕𝑡𝑢 + ∇ · (𝜷𝑢), 𝑣)Ω(𝑡) d𝑡 +
∫
𝐼𝑛

(𝑢, 𝜕𝑡𝑣 + 𝜷 · ∇𝑣)Ω(𝑡) d𝑡. (9.7)

By combining (9.7) with the weak formulation (9.6), we arrive at

(𝑢, 𝑣)Ω(𝑡𝑛) − (𝑢, 𝑣)Ω(𝑡𝑛−1)

−
∫
𝐼𝑛

(𝑢, 𝜕𝑡𝑣 + 𝜷 · ∇𝑣)Ω(𝑡) d𝑡 +
∫
𝐼𝑛

(𝛼∇𝑢,∇𝑣)Ω(𝑡) d𝑡 =
∫
𝐼𝑛

( 𝑓 , 𝑣)Ω(𝑡) d𝑡. (9.8)

We now define two cut finite element discretizations, one based on the weak
formulation (9.6), as presented in the works of Hansbo et al. (2016) and Zahedi
(2017), and the other based on the weak formulation (9.8), as introduced in Myrbäck
(2022) and Myrbäck and Zahedi (2024).

We will demonstrate that the advantage of the cut finite element discretization
based on the weak formulation (9.8) is that it inherently ensures mass conservation.
However, this approach requires efficient stabilization to maintain robustness and
accuracy.
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Mesh and finite element spaces. To define a cut finite element discretization, we
need to specify the active mesh, the finite element space and the weak formulation.
We use discontinuous elements in time, meaning that the approximate solution will
be computed one time slab at a time, with each solution depending on the solution
from the previous time slab. This approach avoids the need to solve a fully coupled
problem over the entire time interval [0, 𝑇].

Let 0 = 𝑡0 < 𝑡1 < · · · < 𝑡𝑁 = 𝑇 be a partition of 𝐼 = [0, 𝑇] into time
intervals (𝑡𝑛−1, 𝑡𝑛], each of length Δ𝑡𝑛 = 𝑡𝑛 − 𝑡𝑛−1 for 𝑛 = 1, . . . , 𝑁 . Let Ω̃ be
the computational domain, which is assumed to be easy to mesh and such that
Ω(𝑡) ⊂ Ω̃ for all 𝑡 ∈ 𝐼. Let T̃ℎ denote the background mesh of Ω̃, which is unfitted
with respect to the boundary Ω0(𝑡).

For simplicity, we assume that the background mesh T̃ℎ is time-independent
and generated independently of the position of Ω0(𝑡). However, depending on
the specific application, a time-dependent background mesh may be required for
efficiency. For instance, the mesh diameter ℎ near Ω0(𝑡) may need to be smaller
than that of elements farther away from the boundary.

For 𝑡 ∈ 𝐼, the mesh associated with Ω(𝑡) and Ω0(𝑡) is defined as

Tℎ(𝑡) = {𝑇 ∈ T̃ℎ : 𝑇 ∩Ω(𝑡) ≠ ∅}, Tℎ,0(𝑡) = {𝑇 ∈ T̃ℎ : 𝑇 ∩Ω0(𝑡) ≠ ∅}. (9.9)

We define active meshes associated with each domain and each time interval
𝐼𝑛 = [𝑡𝑛−1, 𝑡𝑛], as

T 𝑛
ℎ =

⋃
𝑡∈𝐼𝑛

{Tℎ(𝑡)} = {𝑇 ∈ T̃ℎ : 𝑇 ∩Ω(𝑡) ≠ ∅ for some 𝑡 ∈ 𝐼𝑛}, (9.10)

T 𝑛
ℎ,0 =

⋃
𝑡∈𝐼𝑛

{Tℎ,0(𝑡)} = {𝑇 ∈ T̃ℎ : 𝑇 ∩Ω0(𝑡) ≠ ∅ for some 𝑡 ∈ 𝐼𝑛}. (9.11)

Each active mesh constitutes an active domain:

Ω𝑛
ℎ =

⋃
𝑇∈T 𝑛

ℎ

𝑇, Ω𝑛
ℎ,0 =

⋃
𝑇∈T 𝑛

ℎ,0

𝑇. (9.12)

For a visualization of the active meshes T 𝑛
ℎ

and T 𝑛+1
ℎ

, along with the corres-
ponding active domains associated with the time intervals 𝐼𝑛 and 𝐼𝑛+1, refer to
Figure 9.1. Note that Ω(𝑡𝑛) is a subset of both the active domain Ω𝑛

ℎ
and the active

domain Ω𝑛+1
ℎ

.
Let 𝑉ℎ,𝑝𝑠

(
T 𝑛
ℎ

)
be the finite element space with basis functions of order 𝑝𝑠 (in

space), defined on the active mesh T 𝑛
ℎ

. For example, this could be the space
spanned by Lagrange basis functions of order 𝑝𝑠. On a Cartesian mesh, one can
use the tensor product space of Lagrange basis functions of order 𝑝𝑠 in each spatial
direction. Let 𝑃𝑘(𝐼𝑛) denote the space of polynomials of degree 𝑘 in 𝐼𝑛. The
space–time cut finite element space is then defined as

𝑊𝑛
ℎ = 𝑃𝑝𝑡 (𝐼𝑛) ⊗ 𝑉ℎ,𝑝𝑠

(
T 𝑛
ℎ

)
. (9.13)
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(a) (b) (c)

Figure 9.1. (a) The initial configuration, i.e. Ω(0), embedded in the computational
domain Ω̃. (b) The elements in the active mesh for the time interval 𝐼𝑛. The grey
domain is Ω𝑛

ℎ
and the grey triangles belong to the set T 𝑛

ℎ
. Marked faces (in yellow)

belong to elements in T 𝑛
ℎ,0 that are involved in the stabilization process. The blue

curves represent Ω0(𝑡𝑛−1) and Ω0(𝑡𝑛). (c) Similar illustration for the time interval
𝐼𝑛+1, where the blue curves show the boundaries Ω0(𝑡𝑛) and Ω0(𝑡𝑛+1). The grey
domain is Ω𝑛+1

ℎ
and the grey triangles are the elements of the active mesh T 𝑛+1

ℎ
.

A function 𝑣 ∈ 𝑊𝑛
ℎ

has the form

𝑣(𝑡, 𝒙) =
𝑝𝑡∑︁
𝑗=0

𝑣ℎ, 𝑗(𝒙)
(
𝑡 − 𝑡𝑛−1
Δ𝑡𝑛

) 𝑗

, 𝑣ℎ, 𝑗 ∈ 𝑉ℎ,𝑝𝑠

(
T 𝑛
ℎ

)
, 𝑡 ∈ 𝐼𝑛, 𝒙 ∈ Ω𝑛

ℎ . (9.14)

Here,

𝑣ℎ, 𝑗(𝒙) =
𝑁𝑠∑︁
𝑙=1

𝑐𝑙, 𝑗𝜑𝑙(𝒙), (9.15)

where 𝑐𝑙, 𝑗 ∈ R and 𝑁𝑠 is the number of degrees of freedom of𝑉ℎ,𝑝𝑠

(
T 𝑛
ℎ

)
for which

{𝜑𝑙}𝑁𝑠

𝑙=1 is a basis.

The weak formulation. For each 𝑛 = 1, . . . , 𝑁 , given the solution from the previous
time slab at Ωℎ(𝑡𝑛−1), denoted by 𝑢−

ℎ
(𝑡𝑛−1, 𝒙) (with 𝑢−

ℎ
(𝑡0, 𝒙) = 𝑢ℎ,0(𝒙) for 𝒙 ∈

Ωℎ(0)), and a quadrature rule with weights and nodes
{(
𝜔𝑞, 𝑡

𝑛
𝑞

)}𝑁𝑞

𝑞=1, we seek
𝑢ℎ ∈ 𝑊𝑛

ℎ
such that

𝐴𝑛
ℎ(𝑢ℎ, 𝑣ℎ) + 𝑆𝑛ℎ(𝑢ℎ, 𝑣ℎ) = 𝐿𝑛

ℎ(𝑣ℎ) for all 𝑣ℎ ∈ 𝑊𝑛
ℎ . (9.16)

Following Hansbo et al. (2016) and Zahedi (2017), the weak formulation is derived
from (9.6), and the solution 𝑢−

ℎ
defined on the active mesh from the previous time

slab is imposed onto the new active mesh T 𝑛
ℎ

at Ω(𝑡𝑛−1). Stabilization is then used
to extend the solution 𝑢ℎ to the entire active mesh Ω𝑛

ℎ
. Thus the weak formulation
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is given by the forms

𝐴𝑛
ℎ(𝑢, 𝑣) = (𝑢, 𝑣)Ω(𝑡𝑛−1) +

𝑁𝑞∑︁
𝑞=1

𝜔𝑞𝑎
(
𝑡𝑛𝑞 , 𝑢, 𝑣

)
, (9.17)

𝑎(𝑡, 𝑢, 𝑣) = (𝜕𝑡𝑢 + 𝜷 · ∇𝑢, 𝑣)Ω(𝑡) + (∇ · 𝜷𝑢, 𝑣)Ω(𝑡) + (𝛼∇𝑢,∇𝑣)Ω(𝑡), (9.18)

𝐿𝑛(𝑣) = (𝑢−ℎ , 𝑣)Ω(𝑡𝑛−1) +
𝑁𝑞∑︁
𝑞=1

𝜔𝑞( 𝑓 , 𝑣)Ω(𝑡𝑛𝑞 ), (9.19)

𝑆𝑛ℎ(𝑢, 𝑣) =
∫
𝐼𝑛

𝜏𝑠𝑛ℎ(𝑢, 𝑣) d𝑡 =
𝑁𝑞∑︁
𝑞=1

𝜔𝑞𝜏𝑠
𝑛
ℎ

(
𝑢
(
𝑡𝑛𝑞
)
, 𝑣
(
𝑡𝑛𝑞
))
. (9.20)

Here, 𝜏 > 0 is a sufficiently large constant. The stabilization form can take the
form of either the face-based or the element-based stabilization, defined in (4.5)
and (4.15) respectively (with 𝑚 = 1). In the case of full stabilization, all the faces
in the mesh T 𝑛

ℎ,0 that are shared by two elements in T 𝑛
ℎ

belong to the set Fℎ, as
shown in Figure 9.1. Within a given time interval 𝐼𝑛, both the active mesh and the
subset where stabilization is applied are time-independent. The quadrature rule is
chosen to ensure that the integral in (9.20) can be computed exactly. For instance,
when 𝑠ℎ is the element-based stabilization form, the quadrature rule must integrate
polynomials of degree 2𝑝𝑡 exactly. In practice, higher-order quadrature rules are
often chosen to ensure the accuracy of the other integrals in the weak formulation,
which involve time-dependent domains. In the numerical examples we have used
Lobatto quadrature.

Lowest-order elements in time. When using the lowest-order elements in time, i.e.
𝑝𝑡 = 0, we have for 𝑣 ∈ 𝑊𝑛

ℎ
that

𝑣(𝑡, 𝒙) = 𝑣ℎ,0(𝒙), 𝑡 ∈ 𝐼𝑛, 𝒙 ∈ Ω𝑛
ℎ, 𝑣ℎ,0(𝒙) ∈ 𝑉ℎ,𝑝𝑠

(
T 𝑛
ℎ

)
, (9.21)

and thus 𝜕𝑡𝑣 = 0. We will show that using the one-point quadrature rule (𝜔1, 𝑡
𝑛
1 ) =

(Δ𝑡, 𝑡𝑛−1) in (9.16) yields the backward Euler discretization. For simplicity, let
us take 𝑓 = 0. The method from Hansbo et al. (2016) is then as follows: for
each 𝑛 = 1, . . . , 𝑁 , given the solution from the previous time slab 𝑢−

ℎ
(𝒙) (with

𝑢−
ℎ

(𝒙) = 𝑢ℎ,0(𝒙), for 𝑛 = 1), find 𝑢ℎ ∈ 𝑊𝑛
ℎ

such that

(𝑢ℎ, 𝑣ℎ)Ω(𝑡𝑛−1) + Δ𝑡𝑎(𝑡𝑛−1, 𝑢ℎ, 𝑣ℎ) + 𝜏Δ𝑡𝑠𝑛ℎ(𝑢ℎ, 𝑣ℎ) = (𝑢−ℎ , 𝑣ℎ)Ω(𝑡𝑛−1), (9.22)

for all 𝑣ℎ ∈ 𝑉ℎ,𝑝𝑠

(
T 𝑛
ℎ

)
, where

𝑎(𝑡, 𝑢, 𝑣) = (𝜷 · ∇𝑢, 𝑣)Ω(𝑡) + (𝛼∇𝑢,∇𝑣)Ω(𝑡) + (∇ · 𝜷𝑢, 𝑣)Ω(𝑡). (9.23)

Since discontinuous elements are used in time, the approximate solution is
double-valued at each time instance 𝑡 = 𝑡𝑛, with one solution from the left (from
the time slab 𝐼𝑛) and one from the right (from 𝐼𝑛+1). Let 𝑢𝑛

ℎ
(𝒙) denote the solution
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associated with the time slab 𝐼𝑛+1, and 𝑢𝑛−1
ℎ

(𝒙) = 𝑢−
ℎ

(𝒙) (with 𝑢0
ℎ
(𝒙) = 𝑢ℎ,0(𝒙)

given). The solution 𝑢𝑛
ℎ

lies in 𝑊𝑛+1
ℎ

for 𝑛 = 1, . . . , 𝑁 , and satisfies(
𝑢𝑛
ℎ
, 𝑣ℎ
)
Ωℎ(𝑡𝑛) −

(
𝑢𝑛−1
ℎ

, 𝑣ℎ
)
Ωℎ(𝑡𝑛)

Δ𝑡
+ 𝑎
(
𝑡𝑛, 𝑢

𝑛
ℎ, 𝑣ℎ

)
+ 𝜏𝑠𝑛+1

ℎ

(
𝑢𝑛ℎ, 𝑣ℎ

)
= 0, (9.24)

for all 𝑣ℎ ∈ 𝑉ℎ,𝑝𝑠

(
T 𝑛+1
ℎ

)
, which corresponds to the scheme proposed and analysed

by Lehrenfeld and Olshanskii (2019) based on the BDF1 discretization in time.
Note that 𝑢𝑛

ℎ
is defined on the active mesh T 𝑛+1

ℎ
, which includes both Ω(𝑡𝑛) and

Ω(𝑡𝑛+1). Similarly 𝑢𝑛−1
ℎ

is well-defined on the entire active mesh T 𝑛
ℎ

and hence on
Ω(𝑡𝑛). The active mesh, as defined in Lehrenfeld and Olshanskii (2019), is

T 𝑛
ℎ = {𝑇 ∈ T̃ℎ : dist(𝒙,Ω(𝑡𝑛−1)) ≤ 𝛿 for some 𝒙 ∈ 𝑇}, Ω𝑛

ℎ =
⋃

𝑇∈T 𝑛
ℎ

𝑇, (9.25)

where 𝛿 is proportional to Δ𝑡 but chosen sufficiently large that Ω(𝑡𝑛) ⊂ Ω𝑛
ℎ
. This

definition of the active mesh should be compared with that in (9.10) (from Hansbo
et al. 2016), as the two definitions differ. However, the key point in both cases is
that Ω(𝑡𝑛) ⊂ Ω𝑛

ℎ
, and the stabilization term controls the approximate solution over

the entire active mesh.
Under the condition of a sufficiently small time step Δ𝑡, the following stability

estimate (in the case 𝑓 = 0) is derived by Lehrenfeld and Olshanskii (2019) (see
Theorem 5.1):

∥𝑢𝑁
ℎ ∥2

Ωℎ(𝑡𝑁 ) + Δ𝑡

𝑁∑︁
𝑛=1

(
𝛼/2∥∇𝑢𝑛ℎ∥

2
Ωℎ(𝑡𝑛) + 𝜏𝑠𝑛+1

ℎ

(
𝑢𝑛ℎ, 𝑢

𝑛
ℎ

))
≤ exp(𝑐𝑇 𝑡𝑁 )|||𝑢0

ℎ |||
2
0,

(9.26)
where 𝑐𝑇 is independent of ℎ and Δ𝑡, and

|||𝑢ℎ |||20 = ∥𝑢ℎ∥2
Ωℎ(𝑡0) + 𝛼/2∥∇𝑢ℎ∥2

Ωℎ(𝑡0) + 𝜏𝑠1
ℎ(𝑢ℎ, 𝑢ℎ). (9.27)

Here, Ωℎ(𝑡) is an approximation of Ω(𝑡) such that dist(Ω(𝑡𝑛),Ωℎ(𝑡𝑛)) ≲ ℎ𝑝𝑠+1.
To derive this stability estimate, Lehrenfeld and Olshanskii (2019) rely on the
stabilization form and also a strictly positive diffusion coefficient 𝛼 (see Lehrenfeld
and Olshanskii 2019, Lemma 5.4).

The conservative formulation. Following the weak form in (9.8), the bilinear form
𝐴𝑛
ℎ

in (9.16) can be defined as

𝐴𝑛
ℎ(𝑢, 𝑣) = (𝑢, 𝑣)Ω(𝑡𝑛) +

𝑁𝑞∑︁
𝑞=1

𝜔𝑞𝑎𝑐
(
𝑡𝑛𝑞 , 𝑢, 𝑣

)
, (9.28)

𝑎𝑐(𝑡, 𝑢, 𝑣) = −(𝑢, 𝜕𝑡𝑣 + 𝜷 · ∇𝑣)Ω(𝑡𝑛𝑞 ) + (𝛼∇𝑢,∇𝑣)Ω(𝑡𝑛𝑞 ). (9.29)

The stabilization form is chosen such that 𝑆𝑛
ℎ
(𝑢, 1) = 0. Thus, by taking 𝑣ℎ = 1 in

the cut finite element discretization (9.16) with the bilinear form 𝐴𝑛
ℎ

as defined in
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(9.28), we obtain∫
Ω(𝑡𝑛)

𝑢ℎ d𝒙 −
∫
Ω(𝑡𝑛−1)

𝑢−ℎ d𝒙 =

𝑁𝑞∑︁
𝑞=1

𝜔𝑞

∫
Ω(𝑡𝑛𝑞 )

𝑓 d𝒙. (9.30)

Summing over all time intervals, we obtain the following discrete mass conserva-
tion: ∫

Ω(𝑇)
𝑢ℎ d𝒙 −

∫
Ω(0)

𝑢0 d𝒙 =

𝑁∑︁
𝑛=1

𝑁𝑞∑︁
𝑞=1

𝜔𝑞

∫
Ω(𝑡𝑛𝑞 )

𝑓 d𝒙. (9.31)

Thus the cut finite element discretization based on the weak form in (9.8), which
utilizes Reynolds’ transport theorem, ensures mass conservation. In contrast, the
discretization based on the weak form in (9.6) and the bilinear form 𝐴𝑛

ℎ
in (9.17) does

not naturally conserve mass. However, the discrete mass conservation condition
(9.30) can be imposed using a Lagrange multiplier, as done in Hansbo et al. (2016),
Zahedi (2017).

Numerical simulations have shown that this conservative formulation is more
sensitive to the position of the boundary relative to the computational mesh. As a
result, stronger stabilization, smaller time steps or more quadrature points are often
required, particularly when using higher-order elements beyond linear elements. To
address this, the formulation is combined with macro-element stabilization. This
approach enables efficient stabilization of both bulk and surface problems, applying
more stabilization where needed without increasing the overall error. Macro-
element stabilization was introduced in Larson and Zahedi (2023) and extended to
time-dependent problems in Myrbäck and Zahedi (2024).

Next, we extend these discretizations to coupled bulk–surface problems.

9.2. Coupled bulk–surface problems

The same strategy can be used to solve coupled bulk–surface problems in evolving
domains. Consider the following problem modelling the dynamics of soluble
surfactants: find 𝑢𝐵 : 𝐼 ×Ω(𝑡) → R𝑑 and 𝑢𝑆 : 𝐼 ×Ω0(𝑡) → R𝑑−1 such that

𝜕𝑡𝑢𝐵 + ∇ · (𝜷𝑢𝐵) − ∇ · (𝛼∇𝑢𝐵) = 𝑓𝐵 in 𝐼 ×Ω(𝑡), (9.32)
𝜕𝑡𝑢𝑆 + 𝜷 · ∇𝑢𝑆 + (∇0 · 𝜷)𝑢𝑆 − ∇0 · (𝛼0∇0𝑢𝑆) = 𝑓𝑆 + 𝑓𝐶 on 𝐼 ×Ω0(𝑡), (9.33)

−𝒏 · (𝛼∇𝑢𝐵) = 𝑓𝐶 on 𝐼 ×Ω0(𝑡), (9.34)
𝑢𝐵(0, 𝒙) = 𝑢𝐵,0(𝒙) in Ω(0), (9.35)
𝑢𝑆(0, 𝒙) = 𝑢𝑆,0(𝒙) on Ω0(0). (9.36)

Here, 𝛼 and 𝛼0 are the bulk and surface diffusion coefficients, respectively, and
𝑓𝐵 and 𝑓𝑆 are source terms. The operator ∇0 denotes the tangential gradient. The
coupling term 𝑓𝐶 describes the exchange of surfactants between the bulk and the
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surface. An example is the Langmuir isotherm,

𝑓𝐶 = 𝑏𝐵𝑢𝐵 − 𝑏𝑆𝑢𝑆 − 𝑏𝐵𝑆𝑢𝐵𝑢𝑆 , (9.37)

where 𝑏𝐵, 𝑏𝑆 and 𝑏𝐵𝑆 are physical constants related to the adsorption and de-
sorption of the surfactant. The case of 𝑏𝐵𝑆 = 0 gives the linear Henry coupling
model.

As before, we define active meshes corresponding to the evolution of each
subdomain in a small time slab. On these active meshes, we define finite element
spaces consisting of discontinuous elements in time and continuous elements in
space. One may also use discontinuous elements in space. Recall the definitions
of T 𝑛

ℎ
and T 𝑛

ℎ,0 from (9.10) and (9.11), respectively. Let 𝑉ℎ,𝑝𝑠

(
T 𝑛
ℎ

)
be as before,

i.e. the finite element space with basis functions of order 𝑝𝑠 (in space), defined
on the active mesh T 𝑛

ℎ
. Similarly, define 𝑉ℎ,𝑝𝑠

(
T 𝑛
ℎ,0
)

as the finite element space
with basis functions of order 𝑝𝑠 (in space), defined on the active mesh T 𝑛

ℎ,0. On
a Cartesian mesh, we use the tensor product space of Lagrange basis functions of
order 𝑝𝑠 in each spatial direction.

Recall the space 𝑃𝑝(𝐼𝑛); we now define the space–time cut finite element space
for the coupled problem as

𝑊𝑛
ℎ =

(
𝑃𝑝𝑡 (𝐼𝑛) ⊗ 𝑉ℎ,𝑝𝑠

(
T 𝑛
ℎ

))
×
(
𝑃𝑝𝑡 (𝐼𝑛) ⊗ 𝑉ℎ,𝑝𝑠

(
T 𝑛
ℎ,0
))
, (9.38)

where 𝒗 ∈ 𝑊𝑛
ℎ

is of the form 𝒗 = (𝑣𝐵, 𝑣𝑆).
The cut finite element method reads as follows: for each 𝑛 = 1, . . . , 𝑁 , given

the solution from the previous time slab at Ωℎ(𝑡𝑛−1) and Ωℎ,0(𝑡𝑛−1), which is
𝒖−
ℎ
=
(
𝑢−
ℎ,𝐵

, 𝑢−
ℎ,𝑆

)
(with 𝒖−

ℎ
= (𝑢𝐵,0, 𝑢𝑆,0) for 𝑛 = 1), and a quadrature rule with

weights and nodes
{(
𝜔𝑞, 𝑡

𝑛
𝑞

)}𝑁𝑞

𝑞=1, find 𝑢ℎ ∈ 𝑊𝑛
ℎ

such that

𝐴𝑛
ℎ(𝒖ℎ, 𝒗) + 𝑆𝑛ℎ(𝒖ℎ, 𝒗) = 𝐿𝑛

ℎ(𝒗) for all 𝒗ℎ ∈ 𝑊𝑛
ℎ . (9.39)

Here, as before, we have

𝐿𝑛(𝒗) = 𝑏𝐵(𝑢−𝐵,ℎ, 𝑣𝐵)Ω(𝑡𝑛−1) + 𝑏𝑆(𝑢−𝑆,ℎ, 𝑣𝑆)Ω0(𝑡𝑛−1)

+
𝑁𝑞∑︁
𝑞=1

𝜔𝑞𝑏𝐵( 𝑓𝐵, 𝑣𝐵)Ω(𝑡) +
𝑁𝑞∑︁
𝑞=1

𝜔𝑞𝑏𝑆( 𝑓𝑆 , 𝑣𝑆)Ω0(𝑡), (9.40)

𝑆𝑛ℎ(𝒘, 𝒗) =
𝑁𝑞∑︁
𝑞=1

𝜔𝑞

(
𝑏𝐵𝑠

𝑛
ℎ

(
𝑤𝐵

(
𝑡𝑛𝑞
)
, 𝑣𝐵
(
𝑡𝑛𝑞
))

+ 𝑏𝑆𝑠
𝑛
ℎ,0
(
𝑤𝑆

(
𝑡𝑛𝑞
)
, 𝑣𝑆
(
𝑡𝑛𝑞
)))

, (9.41)

and we can have a non-conservative formulation with the bilinear form 𝐴 and 𝑎,
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similar to equations (9.17) and (9.18), but including the surface terms

𝐴𝑛
ℎ(𝒘, 𝒗) = 𝑏𝐵(𝑤𝐵, 𝑣𝐵)Ω(𝑡𝑛−1) + 𝑏𝑆(𝑤𝑆 , 𝑣𝑆)Ω0(𝑡𝑛−1) +

𝑁𝑞∑︁
𝑞=1

𝜔𝑞𝑎
(
𝑡𝑛𝑞 , 𝒖, 𝒗

)
, (9.42)

𝑎(𝑡, 𝒘, 𝒗) = 𝑏𝐵(𝜕𝑡𝑤𝐵 + 𝜷 · ∇𝑤𝐵, 𝑣𝐵)Ω(𝑡) + 𝑏𝑆(𝜕𝑡𝑤𝑆 + 𝜷 · ∇𝑤𝑆 , 𝑣𝑆)Ω0(𝑡)

+ 𝑏𝐵(𝛼∇𝑤𝐵,∇𝑣𝐵)Ω(𝑡) + 𝑏𝑆(𝛼0∇0𝑤𝑆 ,∇𝑣𝑆)Ω0(𝑡)

+ (𝑏𝐵𝑤𝐵 − 𝑏𝑆𝑤𝑆 − 𝑏𝐵𝑆𝑤𝐵𝑤𝑆 , 𝑏𝐵𝑣𝐵 − 𝑏𝑆𝑣𝑆)Ω0(𝑡), (9.43)

or a conservative formulation with 𝐴 and 𝑎 similar to equations (9.28) and (9.29):

𝐴𝑛
ℎ(𝒘, 𝒗) = 𝑏𝐵(𝑤𝐵, 𝑣𝐵)Ω(𝑡𝑛) + 𝑏𝑆(𝑤𝑆 , 𝑣𝑆)Ω0(𝑡𝑛) +

𝑁𝑞∑︁
𝑞=1

𝜔𝑞𝑎
(
𝑡𝑛𝑞 , 𝒖, 𝒗

)
, (9.44)

𝑎(𝑡, 𝒘, 𝒗) = −𝑏𝐵(𝑤𝐵, 𝜕𝑡𝑣𝐵 + 𝜷 · ∇𝑣𝐵)Ω(𝑡) − 𝑏𝑆(𝑤𝑆 , 𝜕𝑡𝑣𝑆 + 𝜷 · ∇𝑣𝑆)Ω0(𝑡)

+ 𝑏𝐵(𝛼∇𝑤𝐵,∇𝑣𝐵)Ω(𝑡) + 𝑏𝑆(𝛼0∇0𝑤𝑆 ,∇0𝑣𝑆)Ω0(𝑡)

+ (𝑏𝐵𝑤𝐵 − 𝑏𝑆𝑤𝑆 − 𝑏𝐵𝑆𝑤𝐵𝑤𝑆 , 𝑏𝐵𝑣𝐵 − 𝑏𝑆𝑣𝑆)Ω0(𝑡). (9.45)

Thus we have two different methods for discretizing the problem: a non-conservative
and a conservative cut finite element discretization. Stabilization is associated with
each subdomain. Examples of stabilization forms 𝑠𝑛

ℎ
for the bulk are as before.

For the numerical examples of this bulk–surface problem, we will use (4.15) (with
𝑚 = 1 and 𝜏 > 0 a sufficiently large constant). A macro-element stabilization
with 𝛾 = 0.7 is used to classify elements as large (see Section 4). Examples of
stabilization terms for the surface problem are given in Section 5. We choose the
following stabilization term:

𝑠𝑛ℎ,0(𝑣(𝑡), 𝑤(𝑡)) =
∑︁
𝐹∈Fℎ

𝜏0,𝐹ℎ
−3([𝑣], [𝑤])𝑃(𝐹) +

𝑝𝑠∑︁
𝑗=1

𝜏0ℎ
2( 𝑗−1)(∇ 𝑗

𝑛𝑣,∇ 𝑗
𝑛𝑤
)
Ω0(𝑡).

(9.46)
Here, 𝜏0,𝐹 > 0 and 𝜏0 > 0 are sufficiently large constants, and compared to the
bulk stabilization, Fℎ now contains only the interior faces in T 𝑛

ℎ,0 in the case of full
stabilization.

Due to (9.37), we have a linear problem if 𝑏𝐵𝑆 = 0 and a non-linear problem if
𝑏𝐵𝑆 ≠ 0, which can be solved using Newton’s method, as described in Hansbo et al.
(2016) for the non-conservative scheme and Myrbäck and Zahedi (2024) for the
conservative scheme. Myrbäck and Zahedi (2024) have shown that in every Newton
iteration, mass conservation holds for the linearized solution of the conservative
scheme.

Next, we consider numerical examples to illustrate the conservation error and
the convergence order of the two methods.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492925000017
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 26 Jul 2025 at 10:59:45, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492925000017
https://www.cambridge.org/core


Cut finite element methods 105

9.3. Numerical example

We consider two numerical examples in this section. The first example involves the
bulk problem defined by equations (9.1)–(9.3), and the second example involves
the coupled bulk–surface problem defined by equations (9.33)–(9.36). The code
used to generate the numerical results in this section is available in Frachon and
Myrbäck (2024).

Bulk problem. We consider an example of two colliding spheres from Olshanskii
and von Wahl (2024). The two spheres have radius 0.5 and are centred at (0, 0, 𝑡 −
3/4) and (0, 0, 3/4 − 𝑡), respectively. The velocity field is defined as

𝜷 =

{
(0, 0,−1) if (𝑧 > 0 and 𝑡 ≤ 0.75) or (𝑧 ≤ 0 and 𝑡 > 0.75),
(0, 0, 1) if (𝑧 ≤ 0 and 𝑡 ≤ 0.75) or (𝑧 > 0 and 𝑡 > 0.75),

(9.47)

and the diffusion coefficient 𝛼 = 0.1. The initial solution is 𝑢0 = sign(𝑧), and the
source term 𝑓 = 0 in equation (9.1).

We discretize equation (9.1)–(9.3) over time 𝑡 in 𝐼 = [0, 1.5] using the method
from equation (9.16) with 𝑝𝑡 = 𝑝𝑠 = 1 and Simpson’s rule for quadrature. Recall
that for 𝑝𝑡 = 0 and using a one-point quadrature rule, the method is equivalent
to backward Euler time-stepping. Therefore, in the lowest-order case, the non-
conservative method from Hansbo et al. (2016), i.e. with 𝐴𝑛

ℎ
as in equation (9.17),

is equivalent to the method proposed in Lehrenfeld and Olshanskii (2019), while
the conservative method from Myrbäck (2022) and Myrbäck and Zahedi (2024), i.e.
using 𝐴𝑛

ℎ
as in equation (9.28), is equivalent to the method proposed in Olshanskii

and von Wahl (2024).
The computational domain is Ω̃ = [−0.6, 0.6] × [−0.6, 0.6] × [−1.35, 1.35],

and we generate a uniform background mesh of tetrahedra with ℎ = 0.5625.
We choose Δ𝑡 = ℎ/3 and 𝜏 = 0.1. The two spheres and the solution 𝑢ℎ at times
𝑡 = 0, 0.25, 0.75, 1.5 are shown in Figure 9.2. The conservation error is measured as

𝑒𝑐(𝑡𝑛) =
����∫

Ω(𝑡𝑛)
𝑢ℎ d𝒙 −

∫
Ω(0)

𝑢0 d𝒙
����, (9.48)

and shown for 𝑡𝑛, the endpoint of each time interval 𝐼𝑛 = [𝑡𝑛−1, 𝑡𝑛], in Figure 9.3.
The conservation error for the conservative method is of the order of machine
epsilon, while the error for the non-conservative method increases rapidly as the
two spheres approach and merge. In the non-conservative method, a Lagrange
multiplier can be used to set

∫
Ω(𝑡𝑛) 𝑢ℎ at each time instance 𝑡𝑛, as in Hansbo et al.

(2016), in order to prevent this mass loss.

Coupled bulk–surface problem. Consider the coupled bulk–surface problem given
by equations (9.33)–(9.36), with the following parameters: the initial surface Ω0(0)
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Figure 9.2. Bulk problem: two colliding spheres. The solution 𝑢ℎ using the
conservative method (equation (9.16) with 𝐴𝑛

ℎ
as in (9.29)) with linear elements in

time and space, i.e. 𝑝𝑡 = 𝑝𝑠 = 1, and Simpson’s quadrature rule.

0.00 0.25 0.50 0.75 1.00 1.25 1.50t10−1510−1310−1110−910−710−510−310−1

| | |∫ Ω(t)u
ℎ−∫ Ω(

0)u 0| | |

Non-conservative scheme Conservative scheme

Figure 9.3. Bulk problem: two colliding spheres. The conservation error as a
function of time.

is a circle centred at (0, 0) with radius 1, the velocity field is 𝜷 = (0, 1−𝑥2), 𝛼 = 0.01,
𝛼0 = 1, 𝑏𝐵 = 𝑏𝑆 = 𝑏𝐵𝑆 = 1. The domain Ω(𝑡) is defined by

Ω(𝑡) = {(𝑥, 𝑦) | 𝜙(𝑥, 𝑦) < 0}, where 𝜙(𝑥, 𝑦) = 𝑥2 + (𝑦 − (1 − 𝑥2)𝑡)2 − 1. (9.49)

We choose the source terms so that the exact solution in the bulk is

𝑢𝐵 = 0.5 + 0.4 cos(𝜋𝑥) cos(𝜋𝑦) cos(2𝜋𝑡), (9.50)

and 𝑢𝑆 is chosen to satisfy the coupling condition (9.34). The problem is solved
for 𝑡 ∈ [0, 1], with the computational domain Ω̃ = [−1.5, 1.5] × [−3.5, 3.5], and
we use a uniform Cartesian mesh. The time step is chosen as Δ𝑡 = ℎ/3, and a
tolerance of 10−10 is used in Newton’s method to solve the nonlinear problem.
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Cut finite element methods 107

Figure 9.4. Coupled bulk–surface problem. The initial solution and the approxim-
ate solution (𝑢ℎ,𝐵, 𝑢ℎ,𝑆) at the final time 𝑡 = 1, using the space–time method defined
in equation (9.39) with 𝑎 as in (9.45), 𝑝𝑡 = 𝑝𝑠 = 1, and Simpson’s quadrature rule.

For 𝑝𝑡 = 𝑝𝑠 = 1 we apply Simpson’s quadrature rule and set 𝜏 = 𝜏0,𝐹 = 𝜏0 = 1.
The approximate solutions for the bulk and surface, as well as the background mesh
and the active meshes, are shown at the initial and final times for the mesh size
ℎ = 0.1 in Figure 9.4.

In Figure 9.5 we show the convergence order of the non-conservative and con-
servative schemes. Both the bulk and surface solutions show optimal convergence
order. For 𝑝𝑡 = 𝑝𝑠 = 2 we use a five-point Lobatto quadrature rule in time for the
non-conservative scheme and a nine-point Lobatto quadrature for the conservative
method. For the conservative scheme we also use higher stabilization constants
(𝜏0,𝐹 = 10). To prevent an increase in the 𝐿2-error due to the large stabilization
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Figure 9.5. Coupled bulk–surface problem. The 𝐿2-error at the final time 𝑇 = 1 as
a function of mesh size ℎ, illustrating the convergence order of the bulk solution
(left), where 𝑢 = 𝑢𝐵, and the surface solution (right), where 𝑢 = 𝑢𝑆 . Results for (a)
the non-conservative method, and (b) the conservative method. Circles represent
results with 𝑝 = 𝑝𝑡 = 𝑝𝑠 = 1, and squares represent results with 𝑝 = 𝑝𝑡 = 𝑝𝑠 = 2.

parameter, we apply macro-element stabilization, ensuring that strong stabilization
is only applied where necessary.

The conservation error is measured as

𝑒𝑐(𝑡𝑛) =
����∫

Ω(𝑡𝑛)
𝑢𝐵,ℎ d𝒙 −

∫
Ω(0)

𝑢𝐵,0 d𝒙 +
∫
Ω0(𝑡𝑛)

𝑢ℎ,𝑆 d𝑠 −
∫
Ω0(0)

𝑢𝑆,0 d𝑠

−
𝑁𝑡∑︁
𝑛=1

𝑁𝑞∑︁
𝑞=1

𝜔𝑞

(∫
Ω(𝑡𝑛𝑞 )

𝑓𝐵 d𝒙 −
∫
Ω0(𝑡𝑛𝑞 )

𝑓𝑆 d𝑠
)����. (9.51)
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Figure 9.6. Coupled bulk–surface problem: the conservation error as a function of
time. Circles represent results with 𝑝 = 𝑝𝑡 = 𝑝𝑠 = 1, and squares represent results
with 𝑝 = 𝑝𝑡 = 𝑝𝑠 = 2.

Here 𝑁𝑡 is such that 𝑁𝑡Δ𝑡 = 𝑡𝑛, where 𝑡𝑛 is the endpoint of each time interval
𝐼𝑛 = [𝑡𝑛−1, 𝑡𝑛]. The conservation error is shown in Figure 9.6. The conservation
error for the conservative method is of the order of machine epsilon, while the error
for the non-conservative method depends on the mesh size and the polynomial
order used in the approximation space.
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M. Fournié and A. Lozinski (2017), Stability and optimal convergence of unfitted extended
finite element methods with Lagrange multipliers for the Stokes equations, in Geomet-
rically Unfitted Finite Element Methods and Applications, Vol. 121 of Lecture Notes in
Computational Science and Engineering, Springer, pp. 143–182.
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