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1. For functions / e L ^ O , °°) the Riemann-Liouville operator of fractional integra-
tion / " is defined by

^ \ \ t (a>0) (1)f ^
r(a)

and its adjoint operator, the Weyl operator Ka, is denned by

for functions / e LLOC(0, °°) having a suitable behaviour at infinity.
These operators and their modifications have been extensively discussed within a

framework of generalised functions by Erdelyi and McBride [3,4,7,8]. However, for our
purposes, it will be sufficient to proceed along the lines adopted by Erdelyi in his earlier
papers [1,2] and to consider fractional integrals of functions which are continuous on the
open interval (0, °°) and subject to growth conditions at zero and infinity.

The above operators satisfy the basic relations

1°/ = /, K°f = f,

and a summary of their other properties is given in [1], where it is shown that they are
related to the Erdelyi-Kober operators I^a and K^a through the formulae

A comprehensive account of the operators I^a and JK,,a and a survey of their
applications can be found in the book [14] and review article [15] by Sneddon.

In this paper a discussion of some generalisations of the operators I" and K" is
presented together with a brief account of their applications in the solution of partial
differential equations.

2. For functions / e C(0, o°) and having a suitable behaviour at zero and infinity, we
now introduce the generalised Riemann-Liouville operators I", together with their adjoint
operators, the generalised Weyl operators K", where X. = k or A = ik, fc 5= 0. These are
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defined by the formulae

Ilf(x) = 2ak1~a ru(x2-u2)(a-1) /2Gx{kV(x2-u2)}/(u)du (o>0), (3)

= 3)mIl+mf(x) (a<0), (4)

Klf(x) = 2ak1~a f u(u2-x2)(a-1)/2Gx{kV("2-x2)}/(u)du (a>0), (5)

= ( -D m § m Kr m / (x ) (a<0), (6)

where Gk(z) = /a_1(z) is the Bessel function of the first kind, Gik(z) = Ia-i(z) is the
modified Bessel function of the first kind, m is a positive integer such that 0 < a + m < 1

and 3) denotes the differential operator 2) = .
T • u 2 x d x

It is easily seen that

and other properties of I" and K" can be deduced from the corresponding properties of
the generalised Erdelyi-Kober operators SX(T|, a) and $x(ij, a) which are given in [5],
since they are related through the equations

3. We now investigate the forms that the operators take when a = 0 and, in order to
do this, we consider the expressions

Ii+12)f(x) = 2ak~a f (x2- u^JM^x2- u2)}/'(u) du,

Kl+l9bf{x) = 2ak~a f (M2-x2)a/2J0,{k7(w2-x2)}f(u) du,

where a > 0 and fc^O.
On performing an integration by parts on each of the equations, under the assump-

tions that /(0) = 0 and xa~1/2/(x)-»0 as x-»°°, the integrated parts vanish and we are left
with the results

Since the left hand sides of these equations are defined for a > - 1 they can be used
to define the operators Ik = lt and Kk = Kk to be

= 7£9/(x) = £ J0{fc7(x2- u2)}f (u) du

- u2)}/(u) du, (7)
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when /(0) = 0 and

KJ(x) = -KlSHftx) =-[ UkJiu2-x2)}f(u) du

) " * f", 2 _ 2xi " 2 - *2)}/(u) du, (8)

when x~ll2f(x)—>0 as x—»<».
In a similar way we can also define the operators

= I}k2>f(x), KtJ(x) = - Klk2)f(x), (9)

where for the last result we must require that f(x) = O(e~Sx) as x -*• » where 8 > k 2=0.
Vekua [16] has applied an operator of the form

/j=aikr7, do)
in the solution of differential equations and for this reason we can call the associated
operator

f, (ID
an operator of the Vekua-type.

Two important results connecting the operators I", K" and the singular differential
operator

r _ -2T,-1 A . r
2 ii+l _

dx dx

will now be stated without proof. They are

Ia
kLJ(x) = (^a + K2)Ilf(x), (12)

KZLjix) = (L^-a - \
2)Ktf(x), (13)

where A = k or A = ik, k 3= 0.
A relation of the type (12) has been investigated by the author [6] and both

expressions are generalisations of results obtained by Erdelyi [1, 2].
For the applications of the operators to be considered later in this paper it will only

be necessary to examine special cases of the equations (12) and (13). This is done in the
following three theorems and since their proofs follow along similar lines we shall only
give a proof of Theorem 2.

THEOREM 1. IffeC2(0,b), b>0 and /(0) = f (0) = 0, then

( ^ ) > (14)

where A = k or A = ik, k^0.
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THEOREM 2. Letfe C2(b,»), b>0 and x~mf(x) -+ 0, x1/2/'(x) -^ 0 and x~1/2/"(x) - • 0
as x —* °°; then

( | ^ ) (fc&O). (15)

Proof. We write

h(x) = KJ(x) = - x | J0(kx&f(xt) dt,

where £ = V(f2-l).
Since h(x) is differentiable we have

h'(x) = | [fac^fcxf) -J0(fa£ )]f (xr) dt

Evaluating the last term by integration by parts we find that the above equation becomes

h'(x) = f(x) - xk I r'WxtWixt) dt.

A further differentiation yields the result

h"(x) = f'(x) - xk I tClUkxZ)f'(xt) dt-xk2 | J0(kxZ)f'(xt) dt

by the definition (8) and this proves the theorem.

THEOREM 3. Let feC2(b,<*>), b>0 and fn\x) = O(e~8*) as x-><», where n = 0,1,2
and 8>fcs»0; then

( ^ ) . (16)

Similar results to those contained in Theorem 1 have been used by Vekua [16] and in
a more general sense by the author [6] in the solution of differential equations and so
from now on we shall confine our attention to a description of some applications of
Theorems 2 and 3. If we denote the Laplacian operator in R" by

d2 v 1 a2

we can, on using Theorems 2 and 3, deduce that if u(r) is a solution of the n-dimensional
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Laplace equation

Anu(r) = 0,

then the corresponding solution of the n-dimensional "Helmholtz" equation

(An-A2)u(r) = 0,

is given by v(r) = Kxii(r), under appropriate conditions on the function u(r).

4. First of all we give two applications of Theorem 2.
(i) The function u(x, y)= —\ Iog(x2 + y2) is a fundamental solution of the equation

/ a 2 a2 \
A2u(x, y) = I—rH—5 )u = 0

V)x by )

which satisfies the conditions of Theorem 2. We find that

v(x, y) = Kku(x, y) = -

•r
where K0(z) is the modified Bessel function of the second kind, is a fundamental solution
of the equation

(A2-k
2)i>(x,y) = 0 (fc*0).

(ii) Similarly, since u(x, y, z) = r"1 = (x2 + y2+z2)~1/2 is a fundamental solution of the
equation

it follows that

u(x,y, z) = Kku(x, y, z)= f

is a fundamental solution of the equation

(A3-fc2)u(x,y,z) = 0

5. In a number of papers Meister [10,11,12,13] has considered problems concern-
ing subsonic flow past aerofoils arranged in cascades or in a wind tunnel, all of which he
reduced to mixed boundary value problems involving the Helmholtz equation. Using
integral transforms and the Wiener-Hopf technique he showed that the solutions of these
problems can be expressed in terms of the Green's functions of the corresponding
boundary value problems for the Laplace equation.
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In what follows we shall discuss two simple boundary value problems involving
Laplace's equation which are elementary analogues of Meister's problems. From the
solutions of these problems it will be shown, by using the result of Theorem 3, that the
solutions of the corresponding boundary value problems for the Helmholtz equation can
easily be obtained.

(i) First of all we examine Laplace's equation in a semi-infinite strip

(^5+^)<fr(x,y) = 0 (0<x<oo,0<y<l ) , (17)

with the boundary conditions
<1), (18)

(0<x<oo), (19)

0 (0<x<o>), (20)

where f(x) is a known function. Applying the Laplace transform in x

; dx = L[<£(x, y): x -» s],

to equation (17) and using the conditions (18) to (20), it can easily be shown that

-., x m Nsin[s(§-y)]
<5(s, y) = F(s) : — - — ,

sin s/2
where F(s) = L[/(x): x —> s].

Inverting the above equation with respect to the Laplace transform and using the
convolution theorem we can write the solution of the problem in the form

= f f(t)G(x-t,y)dt (0<x<oo,0<y<l ) , (21)

where G(x, y) is the Green's function of the problem given by

G(x,y) = L :—-—:s-»x
L sin s/2 J

= 2 X sin(2imy)e~2amx

cosh(2Trx)-cos(2iry)"

Now G(x, y) = O(e~2mc) as x ^ 0 0 and, since the series (22) is absolutely and uni-
formly convergent when x>0 , we can apply Theorem 3 to obtain

KikG(x, y) = Gk(x, y) = - f I0{fcV("2-x2)}^- G(u, y) du

= 4ir t nsin(2irny) f I0{kJ(u2-x2)}e-2mu du.
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Evaluating the integral, by using a result given in [9], we find that when

r- i \ A V nsin(2imy) _NGk(x, y) = 4v 2. r; e Nx,
n = l **

where N = J[(2im)2 - k2].
It is easily verified that the function

)= f(t)Gk(x-t,y)dt
•ID

is the corresponding solution of the Helmholtz equation

, . , . .v ,Mx, y) = 0 (0<x<°°, 0<y <1), (23)
ix dy I

when Q*sk<2n and i(/(x, y) satisfies the boundary conditions (18) to (20).
(ii) As a final example we consider the solution of Laplace's equation (17) with the

boundary conditions (18), (19) and

<f>y(x, 0) = g(x) (0<x<°o), (24)

where g(x) is a prescribed function.
Using the Laplace transform it can be shown that the solution to this problem is

x,y)= [ g(t)H(X't,y)dt (0<x<oo,0<y<l),

where H(x, y) is the Green's function given by

H(x,y) = L — :s-»x
L s cos s/2 J

= _2 f cos[(2m - l)7ry] (2m_1Wx
7Tm% ( 2 m - 1 )

= J _ rcosh(-7rx)-cos(Try)1

2TT Lcosh(7rx) + cos(Try)J"

Since H(x, y) = O(e~m) as x-^<» and the series (25) is absolutely and uniformly con-
vergent when x > 0, we can use Theorem 3 to find that

) = - 2 £ cos[(2m-l)7ry] f I0{kJ(u2-x2)}e-(2m-1)mdu
4

cos[(2m - l)Try] _Mx

— M — e

= Hk(x,y) (0^fc<7r), (26)

where M = J[(2m - 1)2TT2 - fc2].
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In this way we see that when 0 =£ k < IT the solution of the Helmholtz equation (23)
with the boundary conditions (18), (19) and (24) is given by

«Mx,y)= [ g(t)Hk(x-t,y)dt ( 0 < x < ° o , 0 < y < l ) ,

where Hk(x, y) is defined by equation (26).
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