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Abstract. The observational record of turbulence within the molecular gas phase of the in-
terstellar medium is summarized. We briefly review the analysis methods used to recover the
velocity structure function from spectroscopic imaging and the application of these tools on
sets of cloud data. These studies identify a near-invariant velocity structure function that is
independent of the local environment and star formation activity. Such universality accounts
for the cloud-to-cloud scaling law between the global line-width and size of molecular clouds
found by Larson (1981) and constrains the degree to which supersonic turbulence can regulate
star formation. In addition, the evidence for large scale driving sources necessary to sustain
supersonic flows is summarized.
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1. Introduction

Turbulent motions are commonly observed within several phases of the interstellar
medium (see Elmegreen & Scalo 2005). Within the molecular gas phase, turbulent gas
flows are supersonic and possibly, super-Alfvenic, and play a dual role in the dynamics and
evolution of these regions. Turbulence can provide a non-thermal, macroscopic pressure
that lends support against self-gravity. In addition, compressible, supersonic flows may
promote star formation by generating density perturbations within the shocks of colliding
gas streams that eventually evolve into self-gravitating or collapsing protostellar cores
(Padoan & Nordlund 2002; Mac Low & Klessen 2004).

Spectroscopy of molecular line emission, especially the rotational lines of CO, have
long been the primary measurement from which turbulence is defined. In fact, super-
sonic motions are inferred from the very first CO spectrum observed by Wilson, Jefferts,
& Penzias (1970) in which there is a 5 km/s wide line core in addition to the broad
100 km /s wing component that was later attributed to a luminous protostellar outflow.
The
5km/s core is significant broader than the sound speed of molecular hydrogen assuming
a temperature of 30 K.

Owing to advancing instrumentation at millimeter and submillimeter wavelengths,
our ability to measure the distribution and kinematics of the molecular gas phase of
the interstellar medium has greatly expanded since that initial CO spectrum. Sensitive,
millimeter wave interferometers routinely probe the circumstellar environments about
young stellar objects. Sensitive bolometer imaging arrays identify the sites of protostellar
and pre-protostellar cores (see André in these proceedings). Heterodyne focal plane arrays
on single dish telescopes enable the construction of high spatial dynamic range imaging of
molecular line emission (Heyer 1999). An example of such imaging is displayed in Figure 1.
It reveals the varying texture of CO line emission imprinted by the effects of gravity,
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turbulence, and magnetic fields. A diffuse, low surface brightness component extends
across the field and contains localized “streaks” of emission that are aligned along the
local magnetic field direction. The sequence of channel images show low column density
material moving toward the dense, highly structured filaments that are more apparent
in CO images and extinction maps. The challenge to the astronomer is to synthesize
the information that is resident within these data cubes with suitable analysis tools to
place these into a physical context in order to test and constrain model descriptions of
turbulence within the molecular interstellar medium.
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Figure 1. An image of '2CO J=1-0 integrated emission from the Taurus Molecular Cloud
observed with the Five College Radio Astronomy Observatory 14m telescope and SEQUOIA
focal plane array. The high spatial dynamic range reveals varying textures across the cloud and
clues to the prevailing physical processes.

2. Velocity structure function

A primary goal in the study of ISM physics is to determine the degree of spatial
correlation of velocities from observational data. The velocity structure function, S,(7),
defined as

Sq(7) = <Jo(r) —v(r +7)[* >
provides a statistical measure of the g order of velocity differences of a field as a function
of spatial displacement or lag, 7. For q=2, Sy(7), the autocorrelation function, C(7),

and the power spectrum are equivalent statistical measures of the velocity field. Sa(7) is
related to the autocorrelation function as

Sa(7) = 2(C(0) = C(7))

and C(7) is the Fourier transform of the power spectrum.
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Within the inertial range of a gas flow, the structure function is expected to vary as a
power law with spatial lag,

Sy(1) = dv(T) oc 7.

Taking the q*" root of the structure function, this expression can be recast into an equiv-
alent linear form, (S,(7))"/?=<dv >, =v,7% where v, =(,/q. The power law index,
74, measures the degree of spatial correlation and is predicted by model descriptions of
turbulence (ex. y3 =1/3 for Kolmogorov flow). The normalization, v, is the amplitude
of velocity fluctuations at a fixed scale and offers a convenient measure of the energy
density of a flow.

While the expression for the structure function of a velocity field appears straight-
forward, the construction of S(7) from observational data is, in fact, quite challenging.
Observers do not measure velocity fields, v(r). Rather, the basic unit of data is a spec-
trum of line emission that represents a convolution and line of sight integration of density,
velocity, and temperature. Furthermore, the effects of chemistry, opacity, and noise can
mask or hide contributions to the line profile from features along the line of sight. Despite
these limitations, there have been several demonstrated methods to recover the spatial
statistics of GMC velocity fields from spectroscopic imaging data.

Analysis of Velocity Centroids: A spectroscopic data cube can be condensed into a
2 dimensional image of centroid velocities determined from the set of line profiles. The
spatial statistics of velocity centroids can be formally related to those of the 3 dimen-
sional velocity field (see Ossenkopf et al. 2006). With the centroid velocity image, one
can assess the power spectrum and hence structure function directly or apply a kernel to
calculate the variance of centroid velocities over varying scales (Ossenkopf et al. 2006).
This method works best under uniform density conditions (Brunt & Mac Low 2004) or
with an iterative scheme to account for density fluctuations within the measured power
of the observed signal.

Velocity Channel Analysis: Lazarian & Pogosyan (2000) demonstrate a relationship
between the power spectra of measured line emission and the respective spectra of the
density and velocity fields. The relationship depends on the width of the velocity inter-
val. By calculating the power spectra for both thick and thin velocity windows, one can
estimate the power law indices for both the density and velocity fields.

Principal Component Analysis: The spectroscopic data cube is re-ordered onto a
set of eigenvectors and eigenimages (Heyer & Schloerb 1997; Brunt & Heyer 2002). The
eigenvectors describe the velocity differences in line profiles and the eigenimages convey
where those differences occur on the sky. The structure function is constructed from the
velocity and angular scales determined from the set of respective eigenvectors and eigen-
images that are significant with respect to the noise of the data. To date, the results from
PCA have been empirically linked to the velocity structure function parameters based
on models under a broad range of physical and observational conditions (Brunt & Heyer
2002; Brunt et al. 2003).

2.1. Universality of turbulence

The three methods described in the previous section provide valuable tools to determine
the velocity structure function for a singular interstellar cloud from a set of spectroscopic
imaging data. However, for most observations, the statistical and systematic errors for
the derived power law index for a given cloud are large (o, /v ~ 10-20%) and preclude a
designation of a turbulent flow type. Moreover, given the broad diversity of environments
and physical conditions within the molecular ISM, any single measurement of a cloud is
unlikely to characterize the complete population. Therefore, it is imperative to analyze
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a large sample of molecular clouds to assess the impact of local effects and to identify
trends and differences.

For Velocity Centroid Analysis, Miesch & Bally (1994) analyzed a set of 12 clouds
or sub-regions within giant molecular clouds. They determine a mean value of v to be
0.43 £0.15. Using PCA, Heyer & Brunt (2004) studied 28 clouds in the Perseus and local
spiral arms and found v =0.49 £0.15. This mean value for « is consistent with highly
supersonic turbulence in which the velocity field is characterized by ubiquitous shocks
from converging gas streams. The observed distribution of v would exclude a Kolmogorov
description of incompressible turbulence unless the velocity fields are characterized by
strong intermittency. Moreover, they identified the surprising result that the scaling
coeflicient, v,, exhibits little variation from cloud to cloud, despite the large range in cloud
sizes and star formation activity. Effectively, when the individual structure functions are
overlayed onto a single plot, they form a nearly co-linear set of points (see Figure 2).
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Figure 2. The velocity structure functions for 29 clouds derived from PCA of 2CO J=1-0
data cubes (Heyer & Brunt 2004). The nearly co-linear set of points attest to the near-invariant
functional form of structure functions despite the large range in size and star formation activity.
The filled circles are the upper endpoints for each structure function and are equivalent to the
size and global line-width for each cloud.

A necessary consequence of this universality is the Larson (1981) cloud-to-cloud size-
linewidth relationship. Basically, the upper endpoint of each individual structure function
corresponds to the global size and line width of a cloud (filled points in Figure 2). This
set of endpoints are correlated only by the fact that the individual velocity structure
functions are described by similar values for v and v,. If there were significant variations
of these parameters, then the scatter of points on the cloud-to-cloud relationship would
be much larger than is observed. Using Monte Carlo simulations to model the scatter of
line-width and size for GMCs in the inner Galaxy, Heyer & Brunt (2004) constrain the
variation of v and v, to be less than 10-15%.

3. Turbulent driving scales

The measurements of velocity structure functions in the molecular ISM point to su-
personic turbulent flows in which energy is dissipated in shocks. Unless this energy is
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replenished within a crossing time, the velocity field would evolve into a Kolmogorov
flow comprised exclusively of solenoidal or eddy-like motions. The fact that we observe
supersonic turbulence demonstrates that such driving sources must be present in the
molecular ISM. Miesch & Bally (1994) summarize candidate sources of energy that could
sustain the observed turbulent motions. These include sources that may be resident
within the molecular cloud such as protostellar outflows and intermediate and external
sources such as HII regions, supernova remnants, and Galactic shear. While all such
sources make some contribution, it is important to assess whether any one process is the
dominant source.

As first noted by Larson (1981), the universality of velocity structure functions imply
a common, ezternal source of energy. Otherwise, those regions with significant localized
sources would exhibit significant departures from the observed universal relationship.
However, GMCs with rich young clusters, and OB stars show the same amplitude of
velocity fluctuations as low mass star forming clouds or even those few clouds with
negligible star formation activity (Heyer, Williams, & Brunt 2006). Either there are self-
regulating processes independent of energy input scales that maintain this amplitude for
most interstellar clouds or such internal energy sources contribute only a small fraction
of the energy budget of a molecular cloud.

Large scale driving is also implied by the observation that most of the kinetic energy of
a cloud is distributed over the largest scales (Brunt 2003). This is illustrated in Figure 3,
which displays the first and second PCA eigenimages derived from '2CO J = 1-0 emission
from the NGC 7538 molecular cloud. The first eigenimage is similar to an integrated
intensity image over the full velocity range of the cloud. The second eigenimage exhibits
a dipole-like distribution that identifies the large scale shear across the cloud. All clouds
studied by Heyer & Brunt (2004) exhibit this dipole distribution in the second eigenimage.
For comparison, we show the first two eigenimages calculated from simulated observations
of velocity and density fields produced by computational models that are driven at small,
intermediate, and large scales. Using the ratio of characteristic scales determined from
each eigenimage, one can quantitatively show that the observations are best described by
a large scale driving force (Brunt 2003). Protostellar outflows can have a significant but
localized impact on a sub-volume of a cloud and can redistributed energy and momentum
to large scales (see Bally in these proceedings). However, it seems quite unlikely that an
ensemble of widely distributed outflows within the cloud’s volume, can generate the large
scale shear that is observed within all molecular clouds analyzed to date.

4. Conclusions

Our understanding of turbulence in the molecular interstellar medium has greatly
advanced over the last 10 years owing to more sophisticated computational simulations
and ever improving observations. However, there are more critical questions to address
to improve these descriptions of turbulence and the role it plays in the star formation
process.

e Does the shape of the velocity structure function for a given region change at spatial
scales smaller than current resolution limits?

e Does the universality of velocity structure functions extend to the extreme environ-
ment of the Galactic Center?

e Are velocity fields of interstellar clouds anisotropic as predicted by the theory of
strong, MHD turbulence (Goldreich & Sridhar 1995)?

New telescopes, instrumentation, and analysis methods will be required to address
these questions. ALMA will provide both sensitivity and angular resolution to investigate
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NGC 7538 Small Intermediate Large

Figure 3. The first two eigenimages derived from ?CO J=1-0 emission from the NGC 7538
molecular cloud and model spectra from computation simulations driven at small, intermedi-
ate, and large scales (Mac Low 1999). Most observations of molecular clouds exhibit a dipole
distribution in the second eigenimage that places most of the kinetic energy within the largest
scales of a cloud. The observations are more congruent with computational simulations driven
at scales larger than or equal to the size of the cloud.

velocity structure functions at the smallest scales and for distant GMCs. The Large Mil-
limeter Telescope will offer the capability to study the low surface brightness component
of the molecular ISM to trace the transition from turbulent diffuse material to the dense
proto-stellar and proto-cluster cores. These instruments, and others, offer exciting, sci-
entific opportunities to advance our knowledge of interstellar turbulence.
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Discussion

BLriTz: Have you looked at Maddalena’s cloud and the high latitude molecular clouds,
both of which have no internal energy sources, and for high latitude clouds, which have
a small input scales.

HEYER: Maddalena’s cloud is in the sample. Adding the HLCs or diffuse clouds would
be interesting in assessing any departure from universality.

Mac Low: Please amplify on your conclusion that large-scale driving rules out turbulent
fragmentation as a control of star formation.

HEYER: It is not large scale driving that rules out turbulent fragmentation. Rather
it is the universality of the velocity structure function parameters. In particular, the
scaling coefficient is near-invariant. For 2 clouds with extremely different star formation
efficiencies, one would expect different turbulent properties to have set these respective
star formation properties.

VAZQUEZ-SEMADENI: I don’t see the connection between the universality of the turbu-
lence and whether turbulent fragmentation regulates star formation.

HEYER: The universality of structure function parameters excludes turbulent fragmen-
tation as the exclusive agent that regulates star formation. Otherwise, I would expect
different turbulent properties for regions with different star formation properties.

RICHARDS: The apparent observable scales of turbulence can be affected by other fluc-
tuations, e.g., chemical, outflows, cloud collision - variations are seen on some scales in
outer galaxy

HEYER: I agree that there are many ISM processes that can affect turbulent scales and
properties. However, the observations demonstrate that the velocity structure function
is nearly invariant over the range of resolution of current data (0.1 pc to 50 pc).

CLARK: Is it not possible that the clouds (Rosette, Maddelena) are simply at different
stages in their evolution?

HEYER: It is possible! However, we don’t rely on single objects within any ‘1 region of
star formation. One would hope that our multiple objects span a range of evolution. Also,
the structure functions should also evolve with time - yet, these are nearly invariant.

ELMEGREEN: I think what you are seeing on large scales is a near-uniformity in structure
function because of a near-uniformity in ambient pressure. Star formation occurs at the
bottom of the spectrum at very small scales. If turbulence triggers star formation in one
region and not another, then presumably the structure in the triggered region goes down
to stellar mass scales and the clumps are self-gravitating there, whereas in the quiescent
clouds, the cascade ends where the clumps are gravitationally stable. So there is another
variable that determines whether stars form, and you don’t observe that yet because is
it at too small a scale.
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HEYER: Our scales extend from 0.1 pc to 50 pc that should encompass many of the pro-
cesses that are forming dense cores. Certainly, turbulent fragmentation promotes density
fluctuations in these regime but cannot account for the wide range of star forming prop-

erties with our sample of clouds.
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