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Abstract

In this paper our objective is to study continuous-time Markov decision processes
on a general Borel state space with both impulsive and continuous controls for the
infinite time horizon discounted cost. The continuous-time controlled process is shown
to be nonexplosive under appropriate hypotheses. The so-called Bellman equation
associated to this control problem is studied. Sufficient conditions ensuring the existence
and the uniqueness of a bounded measurable solution to this optimality equation are
provided. Moreover, it is shown that the value function of the optimization problem under
consideration satisfies this optimality equation. Sufficient conditions are also presented
to ensure on the one hand the existence of an optimal control strategy, and on the other
hand the existence of a ε-optimal control strategy. The decomposition of the state space
into two disjoint subsets is exhibited where, roughly speaking, one should apply a gradual
action or an impulsive action correspondingly to obtain an optimal or ε-optimal strategy.
An interesting consequence of our previous results is as follows: the set of strategies that
allow interventions at time t = 0 and only immediately after natural jumps is a sufficient
set for the control problem under consideration.
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1. Introduction

Continuous-time Markov decision processes (CTMDPs) form a general class of controlled
stochastic processes. These are suitable for formulating many optimization problems arising
in such applications as engineering, computer science, telecommunications, finance, etc. The
analysis of CTMDPs started in the late 1950s and the early 1960s with the pioneering works
of Bellman, Blackwell, Howard, and Veinott, to name just a few authors; see, e.g. [1] and [14].
The analysis has mostly concentrated on control problems where the actions influence the
transition rate of the process continuously in time. This is nowadays a very active area of
research from the point of view of its theoretical foundations, as well as from the applications
perspective; see, e.g. the recent books [8] and [18], and the survey [9].

Another class of models with impulsive actions, when the state of the process can be changed
instantly, received very little attention. The first attempt to study such problems was probably
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Continuous-time Markov decision processes 107

due to De Leve [6], [7]. In the 1980s, a systematic study of impulsive control of continuous-
time MDPs, including a deterministic drift between the jumps, were conducted on the one hand
by Hordijk and van der Duyn Schouten, and on the other hand by Yushkevich. Hordijk and
van der Duyn Schouten [11], [12], [13], [19] considered the case where only one impulsive
action at a time is permitted. Given an observed history, the planned time moment for the next
impulse was deterministic. In these papers, the optimization was performed within a special
class of so-called regular and conservative policies. One drawback of this approach is that
the use of the dynamic programming method becomes problematic. Yushkevich [20], [21],
[22], [23] introduced a new class of stochastic models, the so-called T-processes, which are,
roughly speaking, indexed by a parameter representing the natural current time and the number
of impulsive actions at that time moment. The introduction of this new family of processes
was motivated mainly by the fact that it allows us to consider models with multiple impulses
at the same time moment. For a general control model, Yushkevich typically studied the
value functions of such control problems in terms of the related quasivariational inequalities.
We should also mention another class of controlled models closely related to CTMDPs and
called piecewise-deterministic Markov processes for which impulsive control has also been
considered. Without attempting to present an exhaustive panorama, we refer the interested
reader to the book [5], and the references therein to get a rather complete view of this class of
processes.

It is important to point out that impulsive control models are not mentioned in the recent
monographs and surveys on CTMDPs [8], [9], [18]. However, they appear naturally in many
real-life situations.

The main difficulty in dealing with the impulsive control model is that impulsive actions
give rise to a nonstandard path for the controlled process. Indeed, the process may take several
different values at the same time moment. This important property makes the classical theory
of CTMDPs inapplicable.

In the paper our objective is to develop a new approach to CTMDPs on a general Borel state
space X with both impulsive and continuous controls. In our framework, the continuous control
influences the intensity of jumps q at all times. This is in opposition to the impulsive control
that intervenes by moving the process to a new point of the state space X at some moment
specified by the controller. In this context, continuous actions, also called gradual actions by
Yushkevich (see, e.g. [21]), take values in the space Ag and lead to natural jumps, in opposition
to an intervention of the controller on the process giving rise to an impulse. In the latter case,
at any time moment, we can apply an action from the set Ai of impulsive actions to change
instantly the state of the process according to a prescribed stochastic kernel Q on X given
X × Ai. An intervention can lead not only to one single impulse but to any finite sequence
of instantaneous impulses at the same time moment. As a result, the controlled process can
take several different values at the same time moment, the intervention epoch. In the works of
Hordijk and van der Duyn Schouten [11], [12], [13], [19], only one impulsive action at a time
was allowed. As a consequence, the trajectory of the process was really a function of time, even
if the intervention occurred immediately after a natural jump. In the works of Yushkevich [20],
[21], [22], [23], the time scale was modified and split in order to make the trajectories a function
of time. Therefore, a new theory of random processes had to be developed. In contrast, our aim
is to use the standard theory of stochastic point processes [4], [15], [16], [17]. In this context, it
is necessary to extend the state space to take into account the fact that the controlled system may
have several different values at the same time moment. Our construction is based on a point
process (�n, Yn)n∈N, where �n represents the sojourn time between two consecutive epochs
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108 F. DUFOUR AND A. B. PIUNOVSKIY

induced either by a natural jump or by an intervention. Here Yn is the new state vector of the
form (x0, a0, x1, a1, . . . , xk, ak, xk+1,�,�, . . .), where x0 corresponds to a possibly natural
jump or to the value of the process just before the intervention. The pair (aj , xj ) (for j ≥ 1)
indicates that the impulsive action aj has been applied to the system, leading to a new location
(jump) of the process denoted by xj . The special impulsive action � means that the impulses
have terminated and the artificial state � means the same. The space of all possible extended
states is denoted by Y (this set will be precisely defined in the next section). The space of
extended states resulting from interventions is denoted by Y ∗ = Y \{(x0,�,�, . . .), x0 ∈ X}.
Observe that y = (x0,�,�, . . .) means that no impulsive actions have been applied after a
natural jump to state x0.

We now present an informal description of the mechanism defining the controlled process
(�n, Yn)n∈N. In our framework, the interventions and gradual controls are determined through
probability distributions on the appropriate spaces Y and Ag. The initial time moment 0 is very
special. The initial state just before 0 is fixed and given by Y0 = (x0,�,�, . . .), where x0
is the initial location of the process. Moreover, the first sojourn time �1 equals 0. Then the
controller chooses a probability measure on Y , generating the random variable Y1 which is the
next state immediately after time 0. After this initial procedure, the controlled process can be
constructed iteratively. Having observed the state Yn, the controller chooses the action un with
the following components:

• a probability distribution on R̄
∗+ that generates the time of the (possible) next intervention

which happens only in the case when no natural jumps occur earlier;

• a stochastic kernel on Ag given R+ that describes the gradual control influencing the
time of the next (possible) natural jump and its associated location;

• an intervention immediately after the natural jump, in the case when it happens before
the planned intervention, that is, a probability distribution on Y ;

• a planned intervention, that is, a probability distribution on Y ∗. This last component is
absent in the event that no interventions are allowed in the current state.

If the gradual action a ∈ Ag is applied at the state x ∈ X then the cost rate is Cg(x, a); any
impulsive action a ∈ Ai results in the immediate cost ci(x, a). In the present paper we consider
the discounted model on the infinite time horizon. Note that an intervention occurs at one time
moment with a fixed value of the discounting coefficient so that it corresponds to a discrete-time
MDP with a total expected cost.

Our model is closely related to those studied by Hordijk, van der Duyn Schouten and
Yushkevich but presents important differences that we would like to emphasize. In particular, in
[20]–[23] only nonrandomized gradual controls were considered. Moreover, in [11], [12],[13],
and [19]– [23] the authors considered the times of intervention as stopping times with respect
to the filtration generated by the controlled process. In our context the times of intervention
were specified through probability distributions depending on the history of the process. In [5]
and the references therein, the control strategies were past-history independent, deterministic,
and several impulses at the same time moment were forbidden. Our framework is more general
in the sense that we allow randomized policies. Moreover, we allow an instantaneous series of
impulses which is not the case in [5], [11], [12], [13], and [19]. We would like to emphasize
that [22] is the closest reference to our work because a series of impulses is allowed. The author
studied the discounted cost control problem and showed that the value function is universally
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measurable and satisfies the Bellman equation. Moreover, the existence of a ε-optimal control
strategy was proved.

When compared to the literature, our main contributions can be summarized as follows.
Our main objective in this paper is to study the Bellman equation associated with this control
problem, and to establish the existence of optimal and ε-optimal control strategies. We first
show that, under some hypotheses, the continuous-time controlled process is nonexplosive.
We provide sufficient conditions that ensure the existence and the uniqueness of a bounded
measurable solution to the Bellman equation. It is proved that this solution can be calculated
by successive iterations of the associated Bellman operator. Moreover, we show that the value
function of our optimization problem satisfies this optimality equation. Two different sets of
sufficient conditions are presented to ensure on the one hand the existence of an optimal control
strategy, and on the other hand the existence of a ε-optimal control strategy. An interesting
consequence of our previous results is as follows: the set of strategies that allow intervention at
time t = 0 and only immediately after natural jumps is a sufficient set for the control problem
under consideration.

The rest of the paper is organized as follows. Section 2 is devoted to the construction of
CTMDPs on a general Borel state space X with both impulsive and continuous controls. In
Section 3 we introduce the infinite-horizon performance criterion and several different classes
of admissible strategies. Several preliminary results are also formulated here. The analysis of
the Bellman equation and the existence of optimal and ε-optimal control strategies are discussed
in Section 4.

2. The continuous-time Markov control process

The main goal of this section is to introduce the notation, as well as the parameters defining
the model, and to present the construction of the controlled process. In particular, a measurable
space (�,F ) consisting of the canonical sample paths of the multivariate point process (�n, Yn)
is introduced. Having defined the class of admissible strategies, we show the existence of a
probability measure P

u
x0

with respect to which the controlled process (�n, Yn) has the required
conditional distributions.

The following notation will be used in this paper: N denotes the set of natural numbers
including 0, N

∗ = N−{0}, R denotes the set of real numbers, R+ denotes the set of nonnegative
real numbers, R

∗+ = R+ − {0}, R+ = R+∪{+∞}, and R
∗
+ = R

∗+∪{+∞}. For any q ∈ N,
Nq is the set {0, 1, . . . , q}, and, for any q ∈ N

∗, N
∗
q is the set {1, . . . , q}. The term measure

will always refer to a countably additive, R+-valued set function. Let X be a Borel space,
and denote by B(X) its associated Borel σ -algebra. For any set A, 1A denotes the indicator
function of the set A. The set of measures defined on (X,B(X)) is denoted by M(X)+, the set
of probability measures defined on (X,B(X)) is denoted by P (X), and P (X | Y ) denotes the
set of stochastic kernels onX given Y,where Y denotes a Borel space. For any point x ∈ X, δx
denotes the Dirac measure defined by δx(�) = 1�(x) for any � ∈ B(X). The set of bounded,
real-valued measurable functions defined on X is denoted by B(X). Finally, the infimum over
an empty set is understood to be equal to +∞.

2.1. Parameters of the model

We will deal with a control model defined through the following elements.

• X is the state space, assumed to be a Borel space (i.e. a measurable subset of a complete
and separable metric space).
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• A is the action space, also assumed to be a Borel space. We denote by Ai ∈ B(A) and
Ag ∈ B(A) the set of impulsive and gradual actions, respectively, satisfying A = Ai∪Ag

with Ai ∩ Ag = ∅.

• The set of feasible actions in state x ∈ X is A(x), which is a nonempty measurable
subset of A. Admissible impulsive and gradual actions in the state x ∈ X are denoted
by Ai(x) = A(x) ∩ Ai and Ag(x) = A(x) ∩ Ag. We suppose that K

g = {(x, a) ∈
X × A : a ∈ Ag(x)} ∈ B(X × Ag), with this set containing the graph of a measurable
function from X to Ag (necessarily Ag(x) �= ∅ for all x ∈ X), and that K

i = {(x, a) ∈
X × Ai : a ∈ Ai(x)} ∈ B(Xi × Ai), where X

i = {x ∈ X : Ai(x) �= ∅} ∈ B(X), with
the set K

i containing the graph of a measurable function from X
i to A.

• The stochastic kernel Q on X given K
i describes the result of an impulsive action. In

other words, if x ∈ X
i and an impulsive action a ∈ Ai(x) is applied, then the state of the

process changes instantly according to the stochastic kernel Q.

• The signed kernel q on X given K
g is the intensity of jumps governing the dynamic of

the process between interventions. It satisfies q(X | x, a) = 0 and q(� \ {x} | x, a) ≥ 0
for any (x, a) ∈ K

g and � ∈ B(X).

In our model, an intervention consists only of a finite sequence of pairs of impulsive action
and associated jump. Actually, this finite sequence can be equivalently described by an infinite
sequence of pairs of state and action, where the pairs are set to the fictitious action and state
after a finite step. As a result, an intervention is an element of the set

Y =
⋃
k∈N

Yk with Yk = (X × Ai)k × (X × {�})× ({�} × {�})∞,

where � will play the role of the fictitious state and action. The dynamic of such sequences is
governed by the Markov decision process (MDP) Mi defined by Mi =(X�,A

i
�, (A

i
�(x))x∈X�,

Q�) where X�, Ai
�, and (Ai

�(x))x∈X� are the new state and action spaces augmented by the
fictitious state�: X� = X ∪ {�}, Ai

� = Ai ∪ {�}, and Ai
�(x) = Ai(x)∪ {�} for x ∈ X and

Ai
�(�) = {�}. The dynamic is given by Q�(· | x, a) = Q(· | x, a) for any (x, a) ∈ K

i and
Q�({�} | x, a) = 1 otherwise. For the model Mi, according to Ionescu Tulcea’s theorem (see
Proposition C.10 of [10]), there exists a unique strategic measure βb(· | x) on (X� × Ai

�)
∞

associated with the policy b and the initial distribution δx . Here and below, we use the standard
terminology for MDPs: a policy is a sequence of past-dependent distributions on the action
space; a Markov nonrandomized policy is a sequence (ϕi

j )j∈N of Ai
�-valued mappings on

X�, and so on. Observe that βb is in fact a stochastic kernel on (X� × Ai
�)

∞ given X; see
Proposition C.10 of [10]. Since we only consider intervention as an element of Y , we restrict
the admissible policies to the set � satisfying βb(Y | x) = 1 for b ∈ �. In fact, we consider
randomized interventions , consequently, an intervention is an element of

P Y = {β ∈ P (Y | X) : β(· | ·) = βb(· | ·) for some b ∈ �},
and

P Y (x) = {ρ ∈ P (Y ) : ρ(·) = βb(· | x) for some b ∈ �}
is the set of feasible interventions in state x ∈ X. Observe that if an intervention is chosen
in Y0, it actually means that the controller has not intervened on the process through impulsive

https://doi.org/10.1239/aap/1427814583 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1427814583
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actions. For technical reasons, it appears necessary to introduce the set Y ∗ of real interventions
given by Y ∗ = ⋃∞

k=1 Yk . The associated sets of real randomized interventions are defined by

P Y ∗ = {β ∈ P (Y | X) : β(· | ·) = βb(· | ·) for some b ∈ �
and βb(Y ∗ | x) = 1 for any x ∈ X

i}
and

P Y ∗
(x) = {ρ ∈ P (Y ) : ρ(·) = βb(· | x) for some b ∈ � and βb(Y ∗ | x) = 1}

for x ∈ X. Note that P Y ∗
(x) = ∅ if x /∈ X

i.
Finally, we end this subsection by introducing a projection mapping that will be used

repeatedly in the paper. If y ∈ Y then there exists a unique k ∈ N such that y ∈ Yk . The
X-valued mapping x̄ on Y is defined by

x̄(y) = xk+1.

2.2. Construction of the process

Having introduced the parameters of the model, we are now in position to construct the
Markov controlled process. Let Y∞ = Y ∪{y∞} and�n = Y × (R∗+ ×Y )n× ({∞}×{y∞})∞
for n ∈ N. The canonical space � is defined as � = ⋃∞

n=1�n ∪ (Y × (R∗+ × Y )∞) and is
endowed with its Borel σ -algebra denoted by F . For notational convenience, ω ∈ � will be
represented as

ω = (y0, θ1, y1, θ2, y2, . . .).

Here, y0 = (x0,�,�, . . .) is the initial state of the controlled point process ξ with values in Y ,
defined below; θ1 = 0 and y1 ∈ Y is the result of the initial intervention. The components
θn > 0 for n ≥ 2 denote the sojourn times; yn denotes the result of an intervention (if yn ∈ Y ∗)
or corresponds to a natural jump (if yn ∈ Y \Y ∗). In the case in which θn < ∞ and θn+1 = ∞,
the trajectory has only n jumps and we put ym = y∞ (artificial point) for all m ≥ n+ 1.

The path up to n ∈ N is denoted by hn = (y0, θ1, y1, θ2, y2, . . . , θn, yn) and the collection
of all such paths is denoted by Hn. For n ∈ N, introduce the mappings Yn : � → Y∞ by
Yn(ω) = yn and, for n ≥ 2, the mappings �n : � → R

∗
+ by �n(ω) = θn; �1(ω) = 0.

The sequence (Tn)n∈N∗ of R
∗
+-valued mappings is defined on � by Tn(ω) = ∑n

i=1�i(ω) =∑n
i=1 θi and T∞(ω) = limn→∞ Tn(ω). For notational convenience, we denote by Hn =

(Y0,�1, Y1, . . . , �n, Yn) the n-term history process taking values in Hn for n ∈ N.
The random measure μ associated with (�n, Yn)n∈N is a measure defined on R

∗+ × Y by

μ(ω; dt, dy) =
∑
n≥2

1{Tn(ω)<∞} δ(Tn(ω),Yn(ω))(dt, dy).

For notational convenience, the dependence on ω will be ignored: instead of μ(ω; dt, dy) we
write μ(dt, dy). Define Ft = σ {H1} ∨ σ {μ(0, s] × B) : s ≤ t, B ∈ B(Y )} for t ∈ R+.
Finally, we define the controlled process {ξt }t∈R+ by

ξt (ω) =
{
Yn(ω) if Tn ≤ t < Tn+1 for n ∈ N

∗,
y∞ if T∞ ≤ t,

and ξ0−(ω) = Y0 = y0 with y0 = (x0,�,�, . . .). Obviously, the controlled process (ξt )t∈R+
can be equivalently described by the sequence (�n, Yn)n∈N.

https://doi.org/10.1239/aap/1427814583 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1427814583


112 F. DUFOUR AND A. B. PIUNOVSKIY

2.3. Admissible strategies and the conditional distribution of the controlled process

An admissible control strategy is a sequence u = (un)n∈N such that u0 ∈ P Y (x0) and, for
any n ∈ N

∗, un is given by
un = (ψn, πn, γ

0
n , γ

1
n ),

where ψn is a stochastic kernel on R
∗
+ given Hn satisfying ψn(· | hn) = δ+∞(·) for any

hn = (y0, θ1, . . . , θn, yn) ∈ Hn with x(yn) /∈ X
i, πn is a stochastic kernel on Ag given Hn×R

∗+
satisfying πn(Ag(x(yn)) | hn, t) = 1 for any t ∈ R

∗+,with hn = (y0, θ1, . . . , θn, yn) ∈ Hn, γ 0
n

is a stochastic kernel on Y given Hn×R
∗+×X satisfying γ 0

n (· | hn, t, ·) ∈ P Y for any hn ∈ Hn

and t ∈ R
∗+, and γ 1

n is a stochastic kernel on Y given Hn satisfying γ 1
n (· | hn) ∈ P Y ∗

(x(yn))

for any hn = (y0, θ1, . . . , θn, yn) ∈ Hn with x(yn) ∈ X
i; if x(yn) /∈ X

i then γ 1
n (· | hn) =

δ(x(yn),�,�,...)(·).
The above conditions apply when yn �= y∞; otherwise, all the values of ψn(· | hn),

πn(· | hn, t), γ 0
n (· | hn, t, ·), and γ 1

n (· | hn) may be arbitrary.
The set of admissible control strategies is denoted by U. In what follows, we use the notation

γn = (γ 0
n , γ

1
n ).

Suppose that a strategy u = (un)n∈N ∈ U is fixed with un = (ψn, πn, γ
0
n , γ

1
n ) for n ∈ N

∗.
We introduce the intensity of the natural jumps as

λn(�x, hn, t) =
∫

Ag
q(�x | x(yn), a)πn(da | hn, t),

where q(�x | x, a) = q(�x \ {x} | x, a) for (x, a) ∈ X ×Ag, and the rate of the natural jumps
as

�n(�x, hn, t) =
∫
(0,t]

λn(�x, hn, s) ds

for any n ∈ N
∗, �x ∈ B(X), and hn = (y0, θ1, y1, . . . , θn, yn) ∈ Hn. Now, for any n ∈ N

∗,
the stochastic kernel Gn on Y∞ × R

∗
+ given Hn is defined by

Gn({+∞} × {y∞} | hn) = δyn({y∞})+ δyn(Y )e
−�n(X,hn,+∞)ψn({+∞} | hn)

and

Gn(�� × �y | hn)
= δyn(Y )

[
γ 1
n (�y | hn)

∫
�θ

e−�n(X,hn,t)ψn(dt | hn)

+
∫
�θ

∫
X

ψn([t,∞] | hn)γ 0
n (�y | hn, t, x)λn(dx, hn, t)e−�n(X,hn,t) dt

]
,

(2.1)

where �y ∈ B(Y ), �� ∈ B(R∗+), and hn = (y0, θ1, y1, . . . , θn, yn) ∈ Hn. Note that the
kernel γ 1

n does not appear in the equation for Gn if x(yn) /∈ X
i.

Consider an admissible strategyu ∈ U and an initial state x0 ∈ X. From Theorem 3.6 of [15]
(or Remark 3.43 of [16]), there exists a probability P

u
x0

on (�,F ) such that the restriction of
P
u
x0

to (�,F0) is given by

P
u
x0
({Y0} × {0} × �y × (R

∗
+ × Y∞)∞) = u0(�y | x0) (2.2)
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for any �y ∈ B(Y ), and the positive random measure ν defined on R
∗+ × Y by

ν(dt, dy) =
∑
n∈N∗

Gn(dt − Tn, dy | Hn)
Gn([t − Tn,+∞] × Y∞ | Hn) 1{Tn<t≤Tn+1} (2.3)

is the predictable projection of μ with respect to P
u
x0

.

Remark 2.1. Observe that FTn is the σ -algebra generated by the random variable Hn for
n ∈ N

∗. The conditional distribution of (Yn+1,�n+1) given FTn under P
u
x0

is determined by
Gn(· | Hn), and the conditional survival function of �n+1 given FTn under P

u
x0

is given by
Gn([t,+∞] × Y∞ | Hn).

3. Optimization problem and preliminary results

The objective of this section is to introduce the infinite-horizon performance criterion we
are concerned with and several different classes of admissible strategies. Some preliminary
results are established. In particular, assuming that the process is nonexplosive, a discounted
version of the so-called Dynkin formula associated with the controlled process is derived (see
Lemma 3.2).

The first result provides a decomposition of the predictable projection ν of the process into
two parts: one part being related to the component (γ 0

n )n∈N∗ of an admissible control strategy
and the other part being related to the component (γ 1

n )n∈N∗

Lemma 3.1. The predictable projection of the random measure μ is given by ν = ν0 + ν1 with

ν0(ds, dy) =
∫

Ag

∫
X

γ 0(dy | x, s)q(dx | x(ξs−), a)π(da | s) ds,

ν1(ds, dy) =
∑
n∈N∗

γ 1
n (dy | Hn) 1{Tn<s≤Tn+1}

ψn(ds − Tn | Hn)
ψn([s − Tn,+∞] | Hn),

and

γ 0(dy | x, t) =
∑
n∈N∗

1{Tn<t≤Tn+1} γ 0
n (dy | Hn, t − Tn, x), π(da | t)

=
∑
n∈N∗

1{Tn<t≤Tn+1} πn(da | Hn, t − Tn)

for t ∈ R
∗+.

Proof. First observe that by using integration by parts we obtain

Gn([t,+∞] × Y∞ | hn) = δyn({y∞})+ δyn(Y )e
−�n(X,hn,t)ψn([t,+∞] | hn).

Now, recalling the definition of ν (see (2.3)) in terms of G (see (2.1)), a straightforward
calculation gives the result.

The cost rate Cg associated with a gradual action is a real-valued mapping defined on
K

g. The cost associated with an intervention y = (x0, a0, x1, a1, . . .) ∈ Y is given by Ci(y) =∑
k∈N

ci(xk, ak), where ci is a real-valued mapping defined on X�×Ai
� satisfying ci(x, a) = 0

if (x, a) /∈ K
i. For any (x, a) ∈ K

i, ci(x, a) corresponds to the cost associated with a single
jump at x ∈ X resulting from the impulsive action a ∈ Ai(x). The cost associated with a
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randomized intervention β ∈ P Y (x) for x ∈ X is given by
∫
Y C

i(y)β(dy | x). Therefore,
the infinite-horizon discounted performance criterion corresponding to an admissible control
strategy u ∈ U is defined by

V(u, x0) =
∫

Y

Ci(y)u0(dy | x0)+ E
u
x0

[∫ +∞

0
e−ηs

∫
Ag
Cg(x(ξs−), a)π(da | s) ds

]
+ E

u
x0

[∫
(0,∞)×Y

e−ηsCi(y)μ(ds, dy)

]
. (3.1)

In the previous expression, where η > 0 is the discount factor, V(u, x0) is understood to be
equal to +∞ if the integrals of both the positive and negative parts of the integrand are infinite.
Note that, for any control strategy u ∈ U, the function V(u, ·) is measurable. The optimization
problem under consideration is to minimize V(u, x0) within the class of admissible strategies
u ∈ U, where x0 is the initial state. In the following a control strategy u ∈ U is called

• nonrandomized stationary, if ψn(· | hn) = δψs(x(yn))(·), πn(· | hn, t) = δϕs(x(yn))(·),
γ 0
n (· | hn, t, ·) = βb0(· | ·), and γ 1

n (· | hn) = βb1(· | x(yn)), where ψs and ϕs are mea-
surable maps from X to R

∗
+ and X to Ag, respectively, and b0 and b1 are nonrandomized

stationary policies in Mi;

• nonrandomized almost stationary when b0 and b1 in the above definition are Markov
nonrandomized policies;

• uniformly or persistently optimal (respectively ε-optimal for ε > 0), if V(u, x0) =
infv∈U V(v, x0) (respectively V(u, x0) ≤ V(v, x0) + ε for any v ∈ U) simultaneously
for all x0 ∈ X and, hence, for any initial distribution.

The following lemma provides a discounted version of the so-called Dynkin formula asso-
ciated with the controlled process (ξt )t∈R+

Lemma 3.2. Suppose that a strategy u = (un)n∈N ∈ U is fixed with un = (ψn, πn, γ
0
n , γ

1
n )

for n ∈ N
∗ satisfying P

u
x0
(T∞ = +∞) = 1. Then we have

E
u
x0

[e−ηtW(x(ξt ))]
=

∫
Y

W(x(y))u0(dy | x0)

+ E
u
x0

[∫ t

0

∫
Ag

e−ηs
[
−ηW(x(ξs))+

∫
X

∫
Y

W(x(y))γ 0(dy | x, s)q(dx | x(ξs), a)

−W(x(ξs))q(X | x(ξs), a)
]
π(da | s) ds

]
+ E

u
x0

[ ∑
n∈N∗

∫
(Tn∧t,Tn+1∧t]

∫
Y

e−ηs[W(x(y))−W(x(ξs−))]

× γ 1
n (dy | Hn) ψn(ds − Tn | Hn)

ψn([s − Tn,+∞] | Hn)
]
,

for any bounded, real-valued measurable function W defined on X.

Proof. Recalling that ν is the predictable projection of μ and that P
u
x0
(T∞ = +∞) = 1, it

follows by using the product formula for functions of bounded variation (see, e.g. TheoremA.4.6
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of [17]) that

E
u
x0

[e−ηtW(x(ξt ))]
= E

u
x0

[W(x(y1))] − E
u
x0

[∫ t

0
ηe−ηsW(x(ξs)) ds

]
+ E

u
x0

[∫
(0,t]

∫
Y

e−ηs[W(x(y))−W(x(ξs−))]γ 0(dy | x, s)

×
∫

Ag

∫
X

q(dx | x(ξs−), a)π(da | s) ds

]
+ E

u
x0

[ ∑
n∈N∗

∫
(Tn∧t,Tn+1∧t]

∫
Y

e−ηs[W(x(y))−W(x(ξs−))]

× γ 1
n (dy | Hn) ψn(ds − Tn | Hn)

ψn([s − Tn,+∞] | Hn)
]
.

Now, from (2.2), it follows that E
u
x0

[W(x(y1))] = ∫
Y W(x(y))u0(dy | x0), showing the result.

4. Main results

This section is devoted to the analysis of the so-called Bellman equation associated with
the control problem described in the previous section, and to the existence of optimal and
ε-optimal control strategies. The first result (Proposition 4.1) ensures that the continuous-time
controlled process is nonexplosive under some hypotheses. Then we provide two different sets
of conditions (Assumption (C.1) and (C.2)) ensuring the existence of a bounded measurable
solution to the Bellman equation. More precisely, in Propositions 4.2 and 4.3 we prove that this
solution can be calculated by the successive iteration of the associated Bellman operator, leading
either to an upper-semicontinuous or to a lower-semicontinuous solution. Moreover, we show
in Theorem 4.1 and Corollary 4.1, on the one hand, the existence of an optimal control strategy
and, on the other hand, the existence of a ε-optimal control strategy. We also prove that the value
function of the optimization problem under consideration satisfies this optimality equation and,
as a consequence, the bounded solution of the Bellman equation is unique. We exhibit the
decomposition of the state space into two disjoint subsets Xi and Xg,where, roughly speaking,
one should apply a gradual action if the current state is in Xg, and an impulsive action if the
current state is in Xi, to obtain an optimal or a ε-optimal strategy, depending on the assumptions
under consideration. Another important and interesting consequence of our previous results
is as follows: the set of strategies that allow intervention at time t = 0 and only immediately
after natural jumps is a sufficient set for the control problem under study. (See Theorem 4.1
and Corollary 4.1.)

The Bellman equation reads as follows:

inf
a∈Ag(x)

{
−ηV (x)+

∫
X

V (x̃)q(dx̃ | x, a)− V (x)q(X | x, a)+ Cg(x, a)

}
∧ inf
a∈Ai(x)

{
−V (x)+

∫
X

V (x̃)Q(dx̃ | x, a)+ ci(x, a)

}
= 0 (4.1)
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for any x ∈ X. If V is a solution to (4.1), we introduce the following subsets of X:

Xg =
{
x ∈ X : ηV (x) = inf

a∈Ag(x)

{∫
X

V (x̃)q(dx̃ | x, a)− V (x)q(X | x, a)+ Cg(x, a)

}}
,

and

Xi = X \ Xg ⊂
{
x ∈ X : V (x) = inf

a∈Ai(x)

{∫
X

V (x̃)Q(dx̃ | x, a)+ ci(x, a)

}}
.

These sets will be used to construct an optimal or a ε-optimal strategy in the proof of Theo-
rem 4.1. Below, we provide conditions under which there exists a measurable bounded solution
to the Bellman equation. These conditions also guarantee that the setsXg andXi are measurable.

Assumption A. There exists a constant K ∈ R such that, for any x ∈ X, ag ∈ Ag(x), and
ai ∈ Ai(x),

(A.1) q(X | x, ag) ≤ K ,

(A.2) |Cg(x, ag)| ≤ K ,

(A.3) ci(x, ai) ≥ 0.

Assumption B. There exists c > 0 such that ci(x, a) ≥ c for any (x, a) ∈ K
i.

The following proposition gives a sufficient condition for nonexplosion.

Proposition 4.1. Suppose that Assumptions A and B hold. If u ∈ U and V(u, x0) < ∞, then
P
u
x0
(T∞ < ∞) = 0.

Proof. From Assumption A and the definition of the cost (3.1), we have

V(u, x0) ≥ −K
η

+ E
u
x0

[∫
(0,∞[×Y

e−ηsCi(y)μ(ds, dy)

]
≥ −K

η
+ E

u
x0

[ ∑
n∈N∗

∫
(Tn,Tn+1]×Y

e−ηsCi(y)γ 1
n ( dy | Hn) ψn(ds − Tn | Hn)

ψn([s − Tn,+∞] | Hn)
]
.

Now, observe that if x(Yn) /∈ X
i then the measure

e−ηsγ 1
n (dy | Hn) ψn(ds − Tn | Hn)

ψn([s − Tn,+∞] | Hn)
is 0 on the set (Tn, Tn+1] × Y and if x(Yn) ∈ X

i then γ 1
n (· | Hn) ∈ P Y ∗

(x(Yn)), and that
Ci(y) ≥ c for any y ∈ Y ∗ by Assumption B. Consequently,

V(u, x0) ≥ −K
η

+ cEux0

[ ∑
n∈N∗

∫
(Tn,Tn+1]×Y

e−ηsγ 1
n (dy | Hn) ψn(ds − Tn | Hn)

ψn([s − Tn,+∞] | Hn)
]
.

(4.2)

Moreover, from Assumption (A.1) we obtain

E
u
x0

[∫ +∞

0

∫
Ag

e−ηs
∫

X

∫
Y

γ 0(dy | x, s)q(dx | x(ξs), a)π(da | s) ds

]
≤ K

η
. (4.3)
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Combining (4.2) and (4.3), we have

E
u
x0

[∫ +∞

0

∫
Y

e−ηsμ(ds, dz)

]
= E

u
x0

[∫ +∞

0

∫
Y

e−ηsν(ds, dz)

]
≤ 1

c

[
V(u, x0)+ K

η

]
+ K

η
.

(4.4)
However, if P

u
x0
(T∞ < ∞) > 0 then

E
u
x0

[∫ +∞

0

∫
Y

e−ηsμ(ds, dz)

]
≥ E

u
x0

[e−ηT∞μ(R∗+,Y ) 1{T∞<∞}] = +∞. (4.5)

From (4.4) and (4.5), it follows that if u ∈ U satisfies V(u, x0) < ∞ then P
u
x0
(T∞ < ∞) = 0,

showing the result.

In Assumption C below, we assume that metrizable topologies in the spaces X and A are
fixed.

Assumption C. (C.1) The sets K
g and K

i are open in X×Ag and X
i×Ai, respectively. For any

continuous bounded function F on X, the functions
∫
XF(z)q(dz | x, a) and

∫
XF(z)Q(dz | x,

a) are continuous on K
g and K

i, respectively. The functionsCg and ci are upper semicontinuous
on K

g and K
i, respectively.

(C.2) The sets Ag and Ai are compact, and the sets K
g and K

i are closed in X×Ag and X
i ×Ai,

respectively. For any continuous bounded function F on X, the functions
∫
XF(z)q(dz | x, a)

and
∫
XF(z)Q(dz | x, a) are continuous on K

g and K
i, respectively. The functions Cg and ci

are lower semicontinuous on K
g and K

i, respectively.

Introduce the stochastic kernel P̃ on X given K
g P̃ (� | x, a) = (1/K)[q(� | x, a) +

δx(�)[K − q(X | x, a)]] for any � ∈ B(X) and (x, a) ∈ K
g, and consider the mapping B

defined on B(X) by

BF(x) = inf
a∈Ag(x)

{
K

K + η

∫
X

F (̃x)P̃ (dx̃ | x, a)+ 1

K + η
Cg(x, a)

}
∧ inf
a∈Ai(x)

{∫
X

F (̃x)Q(dx̃ | x, a)+ ci(x, a)

}
(4.6)

for any F ∈ B(X). The mapping B will be called the Bellman operator for further reference.
The next two propositions ensure, under two different sets of conditions, the existence of

an upper-semicontinuous or a lower-semicontinuous solution of the Bellman equation, the
measurability of the corresponding sets Xg and Xi, and the existence of Borel-measurable
mappings ϕi : Xi → Ai and ϕg : Xg → Ag that will be used to construct optimal strategies.

Proposition 4.2. Suppose that Assumptions A and (C.1) hold. Then the decreasing sequence
of functions (Vi)i∈N defined iteratively by Vi+1 = BVi with V0 = K/η belongs to B(X)

and converges to a bounded upper-semicontinuous function V on X satisfying the Bellman
equation (4.1). Moreover, the corresponding sets Xg and Xi are measurable and, for any
ε > 0, there exist Borel-measurable mappings ϕi : Xi → Ai and ϕg : Xg → Ag, such that

ϕi(z) ∈
{
a ∈ Ai(z) :

∫
X

V (̃x)Q(dx̃ | z, a)+ ci(z, a) ≤ V (z)+ ε

}
, (4.7)
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for any z ∈ Xi and

ϕg(z) ∈
{
a ∈ Ag(z) :

∫
X

V (̃x)q(dx̃ | z, a)− V (z)q(X | z, a)+ Cg(z, a) ≤ ηV (z)+ ε

}
(4.8)

for any z ∈ Xg.

Proof. By using simple algebraic manipulations and (A.1)–(A.2), it is easy to show that
V ∈ B(X) is a solution of the Bellman equation (4.1) if and only if V ∈ B(X) and V = BV
holds. Let us denote by U(X) the set of upper-semicontinuous functions defined on X. Clearly,
from Proposition 7.34 of [2] and (C.1), the operator B maps U(X) into U(X). Consider the
sequence (Vi)i∈N defined by Vi+1 = BVi with V0 = K/η. We will show that Vi ∈ B(X) for
any i ∈ N. By the definition of B and (A.1)–(A.2), we have

V1(x) ≤ inf
a∈Ag(x)

{
K

K + η

∫
X

V0(̃x)P̃ ( dx̃ | x, a)+ 1

K + η
Cg(x, a)

}
≤ K

K + η

K

η
+ K

K + η

= K

η

= V0(x).

From the previous inequality and since the operator B is monotone, it can be easily shown by
induction that the sequence (Vi)i∈N belongs to U(X) and satisfies

Vi+1 = BVi ≤ Vi (4.9)

for any i ∈ N. Moreover, it follows that supx∈X |Vi(x)| ≤ K/η. Indeed, from (4.9), it follows
easily that Vi(x) ≤ K/η. Let us show by induction that Vi(x) ≥ −K/η. Clearly, we have
V0(x) ≥ −K/η. Assume that Vi(x) ≥ −K/η for i ∈ N. From the definition of B (see (4.6)),
we have, on the one hand,

inf
a∈Ag(x)

{
K

K + η

∫
X

Vi (̃x)P̃ (dx̃ | x, a)+ 1

K + η
Cg(x, a)

}
≥ − K

K + η

K

η
− K

K + η
= −K

η
,

and, on the other hand,

inf
a∈Ai(x)

{∫
X

Vi (̃x)Q(dx̃ | x, a)+ ci(x, a)

}
≥ inf
a∈Ai(x)

{∫
X

Vi (̃x)Q(dx̃ | x, a)
}

≥ −K
η
,

since ci is nonnegative (recalling (A.3)). Finally, combining the two previous equations, we
obtain −K/η ≤ Vi+1. Therefore, it follows that there exists a bounded function V∞ such that
Vi(x) ↓ V∞(x) as i → ∞ for any x ∈ X, and so V∞ ∈ U(X) (see [3, Theorem 4, Section 6,
Chapter 4]). Now, by using (4.9), we obtain BV∞ ≤ BVn ≤ Vn for any n ∈ N since the
operator B is monotone. This implies that BV∞ ≤ V∞. Again, from (4.9), it follows that
V∞ ≤ BVi for any i ∈ N. Consequently, for x ∈ X

i and any ag ∈ Ag(x) and ai ∈ Ai(x), we
have

V∞(x) ≤
{

K

K + η

∫
X

Vi(y)P̃ (dy | x, ag)+ 1

K + η
Cg(x, ag)

}
∧

{∫
X

Vi(y)Q(dy | x, ai)+ ci(x, ai)

}
.
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Now, by taking the limit as i → ∞ in the previous equation and using the bounded convergence
theorem, we obtain

V∞(x) ≤
{

K

K + η

∫
X

V∞(y)P̃ (dy | x, ag)+ 1

K + η
Cg(x, ag)

}
∧

{∫
X

V∞(y)Q(dy | x, ai)+ ci(x, ai)

}
,

showing that V∞(x) ≤ BV∞(x). By using similar arguments, it is easy to show that the case in
which x /∈ X

i leads to the same conclusion, that is, V∞(x) ≤ BV∞(x) for all x ∈ X. Finally,
we have shown that V∞ = BV∞ and so the function V defined by V∞ solves (4.1).

The set Xg coincides with{
x ∈ X : V (x) = inf

a∈Ag(x)

{
K

K + η

∫
X

V (̃x)P̃ (dx̃ | x, a)+ 1

K + η
Cg(x, a)

}}
and, hence, is Borel measurable, as is Xi.

According to Proposition 7.34 of [2], for any ε > 0, there is a measurable map ϕ̃g from X
to Ag such that, for all z ∈ X,

ϕ̃g(z) ∈
{
ã ∈ Ag(z) : K

K + η

∫
X

V (̃x)P̃ (dx̃ | x, ã)+ 1

K + η
Cg(x, ã)

≤ inf
a∈Ag(x)

{
K

K + η

∫
X

V (̃x)P̃ (dx̃ | x, a)+ 1

K + η
Cg(x, a)

}
+ ε

K + η

}
.

The restriction of ϕ̃g to Xg provides the mapping ϕg as required. The mapping ϕi is built in a
similar way, working in the space X

i and passing to Xi. This completes the proof.

Proposition 4.3. Suppose that Assumptions A and (C.2) hold. Then the increasing sequence
of functions (Vi)i∈N defined iteratively by Vi+1 = BVi with V0 = −K/η belongs to B(X)

and converges to a bounded lower-semicontinuous function V on X satisfying the Bellman
equation (4.1). Moreover, the corresponding sets Xg and Xi are measurable, and, for any
ε ≥ 0, there exist Borel-measurable mappings ϕi : Xi → Ai and ϕg : Xg → Ag respectively
satisfying (4.7) and (4.8).

Proof. According to Proposition 7.33 of [2] and by considering the sequence (Vi)i∈N defined
by Vi+1 = BVi with V0 = −K/η, it can be shown using the same arguments as those used in
the proof of Proposition 4.2 that |Vi(x)| ≤ K/η, Vi+1 ≥ Vi, and Vi is lower semicontinuous
for any i ∈ N. Consequently, (Vi)i∈N converges pointwise to a limit denoted by V∞ which is
lower semicontinuous.

Clearly, BV∞ ≥ BVn ≥ Vn for any n ∈ N, so BV∞ ≥ V∞. To show the reverse
inequality, consider a sequence (ai)i∈N of measurable mappings from X to A satisfying ai(x) ∈
Ag(x) ∪ Ai(x) and reaching the infimum in

BVi(x) = inf
a∈Ag(x)

{
K

K + η

∫
X

Vi (̃x)P̃ (dx̃ | x, a)+ 1

K + η
Cg(x, a)

}
∧ inf
a∈Ai(x)

{∫
X

Vi (̃x)Q(dx̃ | x, a)+ ci(x, a)

}
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for any x ∈ X. Fix an arbitrary x ∈ X. There exists a subsequence (aij (x))j∈N of (ai(x))i∈N

that belongs either to Ag(x) or Ai(x). Consider aij (x) ∈ Ag(x) for any j ∈ N (the other
possibility can be dealt with by using the same arguments). Moreover, there is no loss of
generality to assume that this subsequence converges to some a ∈ Ag(x) since Ag(x) is
compact. For n ∈ N and j ∈ N such that n ≤ ij , we have

K

K + η

∫
X

Vn(̃x)P̃ (dx̃ | x, aij )+ 1

K + η
Cg(x, aij )

≤ K

K + η

∫
X

Vij (̃x)P̃ (dx̃ | x, aij )+ 1

K + η
Cg(x, aij )

= BVij (x)

= Vij+1(x)

≤ V∞(x), (4.10)

where the first inequality follows from the fact thatVij ≥ Vn. The real-valued mapping on Ag(x)

defined by (K/(K + η))
∫
X Vn(̃x)P̃ (dx̃ | x, ·)+(1/(K + η))Cg(x, ·) is lower semicontinuous.

Consequently, it yields (K/(K + η))
∫
X Vn(̃x)P̃ (dx̃ | x, a)+ (1/(K + η))Cg(x, a) ≤ V∞(x)

by taking the limit as j tends to ∞ in (4.10). Finally, by using the bounded convergence theorem,
(K/(K + η))

∫
X V∞(̃x)P̃ (dx̃ | x, a) + (1/(K + η))Cg(x, a) ≤ V∞(x), and so BV∞(x) ≤

V∞(x), and, hence, BV∞ = V∞. This shows that the lower-semicontinuous bounded function
V∞ solves (4.1). The rest of the proof is similar to that of Proposition 4.2, but is now based on
Proposition 7.33 of [2] and on the fact that V is lower semicontinuous.

The next two technical lemmas are needed to construct optimal and ε-optimal control
strategies in Theorem 4.1.

Lemma 4.1. Suppose that Assumption A and either (C.1) or (C.2) hold. Let V be a bounded
measurable solution of the Bellman equation (4.1). Then the following assertions hold.

(a) For any x ∈ X and b ∈ �,
∫
Y [Ci(y)+ V (x(y)]βb(dy | x) ≥ V (x).

(b) If, additionally, Assumption B holds then, for any ε > 0, there is a Markov nonrandomized
policy b∗ ∈ � for the controlled model Mi such that, for any x ∈ X,∫

Y

[Ci(y)+ V (x(y)]βb∗
(dy | x) ≤ V (x)+ ε

and

βb
∗
({y ∈ Y : x(y) ∈ Xg} | x) = 1. (4.11)

Moreover, under Assumption A, B, and (C.2), the statement of (b) can be strengthened. Indeed,
it holds for ε = 0 for a stationary nonrandomized policy b∗ ∈ �.

Proof. Associated with the discrete-time MDP Mi, consider the cost per stage function
defined on X� × Ai

� by D = ci + 1X×{�} V . Let x ∈ X, and let b be an arbitrary policy
for Mi generating the process (̃xj , ãj )j∈N with initial distribution δx and the corresponding
strategic measure βb(· | x) on (X� × Ai

�)
∞. Let E

b
x[·] represent the expectation with respect

to this strategic measure βb(· | x). Let τ = inf{j ∈ N : ãj = �}. Then, using the bounded
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convergence theorem and the definition of Q�,

lim
m→∞ E

b
x

[ m∑
j=0

1X×{�}(̃xj , ãj )V (̃xj )
]

= E
b
x

[ ∞∑
j=0

1X×{�}(̃xj , ãj )V (̃xj )
]

= E
b
x[V (̃xτ ) 1{τ<∞}]. (4.12)

Moreover, since ci is nonnegative,

lim
m→∞ E

b
x

[ m∑
j=0

ci(̃xj , ãj )

]
= E

b
x

[ ∞∑
j=0

ci(̃xj , ãj )

]
, (4.13)

by the monotone convergence theorem. Therefore, (4.12) and (4.13) yield

lim
m→∞ E

b
x

[ m∑
j=0

D(̃xj , ãj )

]
= E

b
x

[ ∞∑
j=0

D(̃xj , ãj )

]
. (4.14)

Regarding item (a), we have βb({τ < ∞} | x) = 1 since b ∈ �, and so

E
b
x

[ ∞∑
j=0

D(̃xj , ãj )

]
=

∫
Y

[Ci(y)+ V (x(y))]βb(dy | x). (4.15)

Consider the function V� defined on X� by V�(z) = V (z) if z ∈ X and V�(�) = 0. From
(4.1), it is easy to show that V� satisfies the following inequality:

inf
a∈Ai

�(x)

{
D(x, a)+

∫
X

V�(z)Q�(dz | x, a)
}

≥ V�(x), x ∈ X�.

We have

E
b
x[V�(̃xm+1) | σ {(̃xj , ãj ) : j ∈ Nm}] =

∫
X�

V�(z)Q�(dz | x̃m, ãm)
≥ V�(̃xm)−D(̃xm, ãm)

for any m ∈ N. Since V� is bounded, we have

E
b
x

[ m∑
j=0

D(̃xj , ãj )

]
≥ V�(x)− E

b
x[V�(̃xm+1)] = V (x)− E

b
x[V�(̃xm+1)]

for anym ∈ N. Therefore, taking the limit asm tends to ∞ in the previous inequality and using
(4.14)–(4.15), we have

∫
Y [Ci(y)+V (x(y)]βb(dy | x) ≥ V (x)− lim supm→∞ E

b
x[V�(̃xm+1)].

But, |Ebx[V�(̃xm)]|≤ supz∈X |V (z)|βb({m ≤ τ } | x), and so lim supm→∞ E
b
x[V�(̃xm+1)]= 0

since βb({τ = ∞} | x) = 0, yielding the result.
To prove item (b), we now introduce the Markov nonrandomized policy b∗ for the controlled

modelMi defined byb∗ = (ϕi
j )j∈N,where, for j ∈ N,ϕi

j is theAi
�-valued measurable mapping
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defined on X� satisfying the following requirements.

• If x ∈ Xi then

ϕi
j (x) ∈

{
a ∈ Ai(x) :

∫
X

V (z)Q(dz | x, a)+ ci(x, a) ≤ V (x)+ ε

(
1

2

)j+1}
,

which is not empty by the definition of Xi.

• If x ∈ Xg ∪ {�} then ϕi
j (x) = �.

The existence of such a measurable mapping was established in Proposition 4.2 under Assump-
tions A and (C.1) and in Proposition 4.3 under Assumptions A and (C.2). Now, for any j ∈ N

and x ∈ X�, D(x, ϕi
j (x)) + ∫

X�
V�(z)Q�(dz | x, ϕi

j (x)) ≤ V�(x) + ε( 1
2 )
j+1. Indeed, the

previous inequality clearly holds for x ∈ Xg ∪ {�}, and if x ∈ Xi then it follows from the
definition of ϕi

j (x). Consequently,

E
b∗
x [V�(̃xm+1) | σ {(̃xj , ãj ) : j ∈ Nm}] =

∫
X�

V�(z)Q(dz | x̃m, ãm)

≤ V�(̃xm)−D(̃xm, ãm)+ ε
( 1

2

)j+1

for any m ∈ N. Therefore, by using the fact that V� is bounded, we obtain

E
b∗
x

[ m∑
j=0

D(̃xj , ãj )

]
≤ V�(x)− E

b∗
x [V�(̃xm+1)] + ε

1

2

1 − (1/2)m+1

1 − 1/2

and so lim supm→∞ E
b∗
x [∑m

j=0 c
i(̃xj , ãj )] < ∞. Moreover, from Assumption B,

{τ = ∞} ⊂
{

lim sup
m→∞

m∑
j=0

ci(̃xj , ãj ) = ∞
}
.

By the monotone convergence theorem, we have βb
∗
({τ < ∞} | x) = 1, implying b∗ ∈ �.

Now, using similar arguments to those used to prove (a), we obtain∫
Y

[Ci(y)+ V (x(y))]βb∗
(dy | x) = lim

m→∞ E
b∗
x

[ m∑
j=0

D(̃xj , ãj )

]
≤ V�(x)+ ε = V (x)+ ε.

Finally, observe that {τ < ∞} ⊂ {y ∈ Y : x(y) ∈ Xg}, giving the last assertion.
The proof of the last statement is similar to part (b), with a reference to Proposition 4.3.

Lemma 4.2. Suppose that Assumption A and either (C.1) or (C.2) hold. Let β ∈ P Y , and let
V be a bounded solution of the Bellman equation (4.1). Then, for any (x, a) ∈ K

g, let

− ηV (x)+
∫

X

∫
Y

[V (x(y))+ Ci(y)]β(dy | z)q(dz | x, a)− V (x)q(X | x, a)+ Cg(x, a)

≥ 0.
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Proof. From Lemma 4.1, it follows that, for any z ∈ X,
∫
Y [V (x(y))+ Ci(y)]β(dy | z) ≥

V (z), and so recalling that q is a positive kernel,

− ηV (x)+
∫

X

∫
Y

[V (x(y))+ Ci(y)]β(dy | z)q(dz | x, a)− V (x)q(X | x, a)+ Cg(x, a)

≥ −ηV (x)+
∫

X

V (z)q(dz | x, a)− V (x)q(X | x, a)+ Cg(x, a)

for any (x, a) ∈ K
g. Now the result follows from (4.1).

The next result shows the existence of optimal and ε-optimal control strategies.

Theorem 4.1. Suppose that Assumptions A and B hold. Let V be a bounded measurable
solution of the Bellman equation (4.1).

(a) If (C.1) or (C.2) hold then V(u, x0) ≥ V (x0) for any control strategy u = (un)n∈N ∈ U
with un = (ψn, πn, γ

0
n , γ

1
n ) for n ∈ N

∗, and, for any ε > 0, there is a nonrandom-
ized almost stationary strategy u∗ such that V(u∗, x0) ≤ V (x0) + ε, which satisfies
ψn(· | hn) = δ∞(·), that is, the interventions occur only after the natural jumps (and
maybe at the initial time moment t = 0).

(b) If (C.2) holds then there exists a nonrandomized stationary strategy u∗ such that V(u∗,
x0) = V (x0), which satisfies ψn(· | hn) = δ∞(·), that is, the interventions occur only
after the natural jumps (and maybe at the initial time moment t = 0).

Proof. (a) If V(u, x0) = +∞ then the inequality is clearly satisfied. If V(u, x0) < +∞
then we have P

u
x0
(T∞ < ∞) = 0 from Proposition 4.1. Since V is bounded, Lemma 3.2 yields

V(u, x0) =
∫

Y

V (x(y))u0(dy | x0)+
∫

Y

Ci(y)u0(dy | x0)

+ E
u
x0

[∫ +∞

0

∫
Ag

e−ηs
[
−ηV (x(ξs))+ Cg(x(ξs−), a)

+
∫

X

∫
Y

{V (x(y))+ Ci(y)}γ 0(dy | v, s)q(dv | x(ξs), a)

− V (x(ξs))q(X | x(ξs), a)
]
π(da | s) ds

]
+ E

u
x0

[ ∑
n∈N∗

∫
(Tn,Tn+1]

∫
Y

e−ηs[V (x(y))+ Ci(y)− V (x(ξs−))]

× γ 1
n (dy | Hn) ψn(ds − Tn | Hn)

ψn([s − Tn,+∞] | Hn)
]
. (4.16)

Observe that γ 1
n (dy | hn) ∈ P Y (x(yn)) and γ 0

n (· | hn, s, ·) ∈ P Y for any n ∈ N
∗, s ∈ R

∗+,
and hn = (y0, θ1, y1, . . . , θn, yn) ∈ Hn. Consequently, it follows from Lemma 4.1 that∫
Y [V (x(y))+Ci(y)−V (x(yn))]γ 1

n (dy | hn) ≥ 0 for any n ∈ N
∗ andhn = (y0, θ1, y1, . . . , θn,

yn) ∈ Hn. Now, by recalling Lemma 4.2, we have

− ηV (x(yn))+
∫

X

∫
Y

[V (x(y))+ Ci(y)]γ 0
n (dy | hn, s, x)q(dx | x(yn), a)

− V (x(yn))q(X | x(yn), a)+ Cg(x(yn), a)

≥ 0
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for any n ∈ N
∗, s ∈ R

∗+, hn = (y0, θ1, y1, . . . , θn, yn) ∈ Hn, and a ∈ Ag(x(yn)). Observe
that ξs− = Yn on the stochastic interval ]]Tn, Tn+1]] and that ξs− = ξs on stochastic interval
]]Tn, Tn+1[[. Therefore, the two previous equations yield

∫ +∞

0

∫
Ag

e−ηs
[
−ηV (x(ξs))+ Cg(x(ξs−), a)

+
∫

X

∫
Y

{V (x(y))+ Ci(y)}γ 0(dy | x, s)q(dx | x(ξs), a)

− V (x(ξs))q(X | x(ξs), a)
]
π(da | s) ds

+
∑
n∈N∗

∫
(Tn,Tn+1]

∫
Y

e−ηs[V (x(y))+ Ci(y)− V (x(ξs−))]

× γ 1
n (dy | Hn) ψn(ds − Tn | Hn)

ψn([s − Tn,+∞] | Hn)
≥ 0 P

u
x0

-almost surely,

implying that V(u, x0) ≥ ∫
YV (x(y))u0(dy | x0) + ∫

YC
i(y)u0(dy | x0). Finally, we obtain

the first assertion, that is, V(u, x0) ≥ V (x0), by using Lemma 4.1(a) and recalling that u0 ∈
P Y (x0).

Fix an arbitrary ε > 0, and consider the following nonrandomized almost stationary control
strategyu∗ = (u∗

n)n∈N withu∗
n = (ψn, πn, γ

0
n , γ

1
n ) forn ∈ N

∗, given by the following elements.
Let ψn(· | hn) = δ∞(·) (i.e. the interventions occur only after the natural jumps and maybe at
the initial time moment t = 0). Set πn(· | hn, t) = δϕg(x(yn))(·), where, for x̃ ∈ Xg,

ϕg(̃x) ∈
{
a ∈ Ag(̃x) :

∫
X

V (v)q(dv | x̃, a)− V (̃x)q(X | x̃, a)+ Cg(̃x, a) ≤ ηV (̃x)+ ηε

3

}

and, for x̃ ∈ Xi, ϕg(·) is an arbitrary measurable mapping from Xi to Ag with ϕg(x) ∈ Ag(x).
The existence of such a mapping follows from Proposition 4.2 under Assumptions A and (C.1)
and from Proposition 4.3 under Assumptions A and (C.2). Let γ 0

n (· | hn, x̃) = βb
∗
(· | x̃),with

the policy b∗ ∈ � introduced in Lemma 4.1(b) and satisfying the inequality

∫
Y
[Ci(y)+ V (x(y))]βb∗

(dy | x) ≤ V (x)+ min

{
1,
η

K

}
ε

3
(4.17)

and (4.11) for any x ∈ X. Consider γ 1
n as an arbitrary stochastic kernel on Y given Hn satisfying

γ 1
n (· | hn) ∈ P Y ∗

(x(yn)) for any hn = (y0, θ1, . . . , θn, yn) ∈ Hn with x(yn) ∈ X
i. Finally,

set u0 = βb
∗
(· | x0).

Firstly, it follows that P
u∗
x0
(�n+1 ∈ �θ | FTn) = ∫

�θ
λn(X, Hn, t)e−�n(X,Hn,t) dt , from

Remark 2.1 and the definition of Gn (see (2.1)). However, (A.1) ensures that λn(X, Hn, t) is
uniformly bounded by the constant K and so P

u∗
x0
(T∞ < ∞) = 0. Consequently, according to
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(4.16) and the definition of the strategy u∗, we have

V(u∗, x0)

=
∫

Y

V (x(y))βb
∗
(dy | x0)+

∫
Y

Ci(y)βb
∗
(dy | x0)

+ E
u∗
x0

[∫ +∞

0
e−ηs[−ηV (x(ξs))+ Cg(x(ξs−), ϕg(x(ξs−)))]ds

]
+ E

u∗
x0

[∫ +∞

0
e−ηs

[∫
X

∫
Y

{V (x(y))+ Ci(y)}βb∗
(dy | x)q(dx | x(ξs), ϕg(x(ξs−)))

− V (x(ξs))q(X | x(ξs), ϕg(x(ξs−)))
]

ds

]
.

Now, from inequality (4.17) we have

V(u∗, x0) ≤ V (x0)+ ε

3
+ ηε

3K
E
u
x0

[ ∫ +∞

0
e−ηsq(X | x(ξs), ϕg(x(ξs−))) ds

]
+ E

u
x0

[∫ +∞

0
e−ηsW(s) ds

]
, (4.18)

where

W(s) = −ηV (x(ξs))+ Cg(x(ξs−), ϕg(x(ξs)))

+
∫

X

V (x)q( dx | x(ξs), ϕg(x(ξs)))− V (x(ξs))q(X | x(ξs), ϕg(x(ξs))). (4.19)

Observe that, sinceV is bounded and byAssumptionA, it follows that |W | is uniformly bounded
by a constant KW . By Fubini’s theorem,

E
u
x0

[∫ +∞

0
e−ηsW(s) ds

]
≤

∑
n∈N∗

E
u
x0

[
1Xg(x(Yn))

∫
[Tn,Tn+1)

e−ηsW(s) ds

]
+KW

∑
n∈N∗

P
u
x0
(x(Yn) ∈ Xi). (4.20)

Now, observe that P
u
x0
(x(Yn+1) ∈ Xi | FTn) = Gn(�

i
y × R

∗+ | Hn), where �i
y = {y ∈

Y : x(y) ∈ Xi}. However, γ 0
n (�

i
y | Hn, t, x) = βb

∗
(�i
y | x) = 0 for any x ∈ X according

to (4.11), and so from the definition of Gn we have P
u
x0
(x(Yn+1) ∈ Xi | FTn) = 0, implying

that P
u
x0
(x(Yn+1) ∈ Xi) = 0 for any n ∈ N

∗. Moreover, P
u
x0
(x(Y1) ∈ Xi) = βb

∗
(�i
y | x0)

according to (4.11). Consequently, from (4.20), it follows that

E
u
x0

[∫ +∞

0
e−ηsW(s) ds

]
≤

∑
n∈N∗

E
u
x0

[
1Xg(x(Yn))

∫
[Tn,Tn+1)

e−ηsW(s) ds

]
,

and so, from (4.19) and the definition of ϕg on Xg, it follows that

E
u
x0

[∫ +∞

0
e−ηsW(s) ds

]
≤ ε

3
. (4.21)

Combining (4.18), (4.21), and (A.1), we obtain V(u∗, x0) ≤ V (x0)+ ε.
(b) The proof is similar to that of (a), now using Proposition 4.3 and the last statement of

Lemma 4.1.
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In the next result we will show the existence of uniformly optimal and ε-optimal control
strategies.

Corollary 4.1. The following assertions hold.

(a) If Assumptions A, B, and (C.1) hold then, for any ε > 0, there exists a nonrandomized,
almost stationary, uniformly ε-optimal strategy u∗ with ψn(· | hn) = δ∞(·), that is, the
interventions occur only after the natural jumps (and maybe at the initial time moment
t = 0).

(b) If Assumptions A, B, and (C.2) hold then there is a nonrandomized stationary uniformly
optimal strategy u∗ satisfying ψn(· | hn) = δ∞(·), that is, the interventions occur only
after the natural jumps (and maybe at the initial time moment t = 0).

(c) In either case, infu∈U V(u, x0) = V (x0), and the Bellman equation (4.1) has a unique
bounded measurable solution.

Proof. From the proof of Theorem 4.1, the control strategies u∗ do not depend on the initial
condition x0.

Roughly speaking, one should apply the gradual action ϕg(x) if the current state is x ∈ Xg,
and one should apply the impulsive action ϕi(x) if x ∈ Xi (see Proposition 4.2).

The impulsive actions serve to push the original process away from the set Xi which, e.g.
contains the states with very large cost ratesCg(x, a). It is intuitively obvious that these actions
must be applied as quickly as possible, namely, immediately after any natural jump leading to
a new state x ∈ Xi. If x /∈ Xi then there is no need to intervene, which explains the choice of
ψn(· | hn) = δ∞(·). The initial state x0 of the original process can also be in Xi. In this case,
the controller needs to apply an initial sequence of impulses corresponding to the component u0
of a strategy. Therefore, it is inevitable to have θ1 = 0: ξ0−(ω) = y0 corresponds to the given
initial state x0 before any action is applied, and ξ0(ω) = y1 results in an initial intervention to
push the original process away from the set Xi
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