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Abstract. The first main result of the paper is a criterion for a partially commutative group G to be a

domain. It allows us to reduce the study of algebraic sets over G to the study of irreducible algebraic

sets, and reduce the elementary theory of G (of a coordinate group over G) to the elementary theories

of the direct factors of G (to the elementary theory of coordinate groups of irreducible algebraic sets).

Then we establish normal forms for quantifier-free formulas over a non-abelian directly indecom-

posable partially commutative group H. Analogously to the case of free groups, we introduce the

notion of a generalised equation and prove that the positive theory of H has quantifier elimination and

that arbitrary first-order formulas lift from H to H ∗ F, where F is a free group of finite rank. As a

consequence, the positive theory of an arbitrary partially commutative group is decidable.

1 Introduction

This paper can be considered as a part of a project the aim of which is to construct

algebraic (diophantine) geometry over partially commutative groups, and, more gen-

erally, to study the elementary theory of partially commutative groups.

Classical algebraic geometry is concerned with the study of the geometry of sets

of solutions of systems of equations, i.e., the geometry of algebraic sets. Taking the

collection of all algebraic sets as a pre-base of closed sets one gets a topology, known

as the Zarsiki topology. In the Zariski topology, every closed set is a union (maybe

infinite) of algebraic sets. In the case that the ring of coefficients or, equivalently,

the Zariski topology, is Noetherian, every closed set Y is a finite union of algebraic

sets Y = Y1 ∪ · · · ∪ Yk. In the case that Yi * Y j , i 6= j, and Yi cannot be non-

trivially presented as a union of algebraic sets, this decomposition is unique and the

sets Y1, . . . ,Yk are referred to as the irreducible components of Y . In general, how-

ever, a finite union of algebraic sets is not necessarily again an algebraic set. In classi-

cal algebraic geometry, it suffices to require that the ring of coefficients be a domain.

Under these assumptions there exists a one-to-one correspondence between algebraic

sets and closed sets. Thus, the study of algebraic sets reduces completely to the study

of irreducible algebraic sets.

G. Baumslag, A. Miasnikov and V. Remeslennikov laid down the foundations of

algebraic geometry over groups and introduced group-theoretic counterparts of basic
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notions from algebraic geometry over fields [1]. The counterpart to the notion of a

Noetherian ring is the notion of an equationally Noetherian group: a group G is

called equationally Noetherian if every system S(X) = 1 with coefficients from G is

equivalent to a finite subsystem S0 = 1, where S0 ⊂ S, i.e., the algebraic set defined

by S coincides with the one defined by S0. The notion of a domain carries over from

rings to groups as follows: a group G is called a domain if for any x, y 6= 1 there exists

g ∈ G such that [x, yg] 6= 1.

The notions of equationally Noetherian group and domain, play an analogous role

(to their ring-theoretic counterparts) in algebraic geometry over groups (see [1]):

• a group G is equationally Noetherian if and only if the Zariski topology is Noethe-

rian, in particular every closed set is a finite union of algebraic sets;
• if a group G is a domain, then the collection of all algebraic sets is a base for the

Zariski topology.

Our main interest in this paper is algebraic geometry over (free) partially commu-

tative groups. Partially commutative groups are widely studied in different branches

of mathematics and computer science, which explains the variety of names they were

given: graph groups, right-angled Artin groups, semifree groups, etc. Without trying to

give an account of the literature and results in the field we refer the reader to a recent

survey [4] and the introduction and references in [14].

Partially commutative groups are linear, see [17], hence, equationally Noetherian,

see [1]. In [1] the authors gave several sufficient conditions for a group to be a do-

main. In particular, any CSA group is a domain and various group-theoretic con-

structions preserve the property of being a domain. However, none of the criteria

obtained in [1] apply to the case of partially commutative groups. The major obsta-

cle here is that a partially commutative group may contain a direct product of two

free groups.

In Section 4.2 we give a criterion for a partially commutative group to be a domain.

Theorem 4.19 Let G be a partially commutative group. Then G is a domain if and

only if G is non-abelian and directly indecomposable.

Note that even if a partially commutative group is directly indecomposable, it still

may contain a direct product of free groups.

The proof of this theorem is given in Section 4. It makes use of the technique

of van Kampen diagrams over partially commutative groups, which we present in

Section 3 and the description of centralisers in partially commutative groups (see

Theorem 2.3).

The remaining part of the paper has a model-theoretic flavor. In Section 5, using

results from [20], we prove that the elementary theory of G (of a coordinate group

over G) reduces to the elementary theories of the direct factors of G (to the elemen-

tary theory of coordinate groups of irreducible algebraic sets):

Corollary 5.2 Let G be a non-abelian directly indecomposable partially commutative

group.

(i) If Y = Y1 ∪ · · · ∪ Yk is an algebraic set over G, where Y1, . . . ,Yk are the irreducible

components of Y , then the elementary theory of the coordinate group Γ(Y ) of Y is

decidable if and only if the elementary theory of Γ(Yi) is decidable for all i = 1, . . . , k.

https://doi.org/10.4153/CJM-2010-035-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2010-035-5


Elements of Algebraic Geometry and the Positive Theory of Partially Commutative Groups 483

(ii) If Y = Y1 ∪ · · · ∪Yk and Z = Z1 ∪ · · · ∪Zl are two irreducible algebraic sets, where

Y1, . . . ,Yk and Z1, . . . , Zl are the irreducible components of Y and Z, respectively,

then Γ(Y ) is elementarily equivalent to Γ(Z) if and only if k = l and, after a certain

re-enumeration, Γ(Yi) is elementarily equivalent to Γ(Zi) for all i = 1, . . . , k.

It is known that coordinate groups of algebraic sets over G are separated by G (are

residually G); see [25]. If a coordinate group Γ is a coordinate group of an irreducible

set, then Γ is discriminated by G (is fully residually G), or equivalently, is universally

equivalent to G. Hence, the class of coordinate groups of irreducible algebraic sets is

much narrower and admits a convenient logical description.

In his seminal work, Makanin introduced the notion of a generalised equation

[21]. He used it in order to show that the existential theory (the compatibility prob-

lem) of free groups and monoids is decidable [22]. Since then this result has been

generalised in various ways. Schulz generalised Makanin’s result to the case of sys-

tems of equations over a free monoid with regular constraints [28], and Diekert,

Gutierrez, and Hagenah showed the decidability of the compatibility problem for

systems of equations over a free group with rational constraints [6]. Using the lat-

ter result, Diekert and Lohrey showed that the existential theory of a certain class of

graph products of groups is decidable [8]. Furthermore in [7], the authors showed

the decidability of the existential theory for an even wider class of groups. A common

feature of the results mentioned above is that that they reduce the problem to the one

for free groups with rational constraints.

One of the main applications of the decidability of the compatibility problem for

free groups is the decidability of the positive theory of the respective group. In the

case of free groups this is a very well-known result. Merzlyakov performed quantifier

elimination for positive formulas over free groups by describing the Skolem functions

[24]. Then, using the result of Makanin [22], one gets the decidability of the positive

theory.

The aim of Sections 6 and 7 is to carry over the approach of Merzlyakov and

Makanin to the case of partially commutative groups. In Section 6, we prove that

any positive quantifier-free formula over a non-abelian directly indecomposable par-

tially commutative groups is equivalent to a single equation. In order to do so we

prove that

• for any finite system of equations S1(X) = 1, . . . , Sk(X) = 1 one can effectively

find a single equation S(X) = 1 such that the algebraic set defined by the equations

S1, . . . , Sk and by S coincide for any non-abelian directly indecomposable partially

commutative group G ;
• for any finite set of equations S1(X) = 1, . . . , Sk(X) = 1 one can effectively find

a single equation S(X) = 1 such that the union of algebraic sets defined by the

equations S1, . . . , Sk coincides with the algebraic set defined by S for any non-

abelian directly indecomposable partially commutative group G.

In the case of free groups, the first result is due to Malcev [23], and Makanin at-

tributes the second result to Gurevich [22]. These results hold in fact in a much more

general setting (for groups that satisfy certain first-order formulas). For example,

in [19] it is proved that this is the case for torsion-free, non-abelian, CSA groups

that satisfy Vaught’s conjecture, in particular, for all non-abelian fully residually free
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groups and torsion-free hyperbolic groups. Note that a non-abelian directly inde-

composable partially commutative group is almost never a CSA group. We generalise

the results of Malcev and Gurevich to the case of partially commutative groups. The

exposition in this section as well as in Section 7 is based on [19]. As an immedi-

ate consequence of these results we get a normal form for first order formulas over

partially commutative groups (in fact, over a much wider class of groups).

In Section 7, we use the normal form for Van Kampen diagrams obtained in

Lemma 3.3 to describe the finite number of all possible cancellation schemes for a

given equation. This allows us to introduce the notion of a generalised equation for

partially commutative groups. Then we introduce an analogue of the so-called Mer-

zlyakov words and perform quantifier elimination for positive formulas over non-

abelian directly indecomposable partially commutative groups.

Theorem 7.8 If G |= ∀x1∃y1 · · · ∀xk∃yk(S(X,Y, A) = 1), then there exist words

(with constants from G) q1(x1), . . . , qk(x1, . . . , xk) ∈ G[X], such that

G[X] |= S(x1, q1(x1), . . . , xk, qk(x1, . . . , xk, A)) = 1,

i.e., the equation S(x1, y1, . . . , xk, yk, A) = 1 (in variables Y ) has a solution in the group

G[X].

Our approach, therefore, is a natural analog of the classical approach of Mer-

zlyakov and Makanin to the positive theory of free groups and avoids the technically

involved language of constraints.

In particular, quantifier elimination gives a reduction of the decidability of

the positive theory of non-abelian directly indecomposable partially commutative

groups to the decidability of the compatibility problem of an equation, which is

known to be decidable; see [9].

Finally, in order to prove that the positive theory of any partially commutative

group is decidable, we need to study the positive theory of the direct product of

groups. In folklore, it is known that if G = H1 × · · · × Hk, then the positive the-

ory of G is decidable if the positive theories of H1, . . . , Hk are decidable. However,

we were unable to find a reference until M. Lohrey pointed out that in [8], the authors

give a proof of this result. We present another proof of this fact in the Appendix. The

proof is purely model-theoretic and makes use of the ideas of the proof of Theorem

A.1, which is due to Feferman and Vaught [16].

2 Preliminaries

2.1 Partially Commutative Groups

We begin with the basic notions of the theory of free partially commutative groups.

Recall that a (free) partially commutative group is defined as follows. Let Γ be a finite,

undirected, simple graph. Let A = V (Γ) = {a1, . . . , an} be the set of vertices of Γ

and let F(A) be the free group on A. Let

R = {[ai , a j] ∈ F(A) | ai , a j ∈ A and there is an edge of Γ joining ai to a j}.
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The partially commutative group corresponding to the (commutation) graph Γ is the

group G(Γ) with presentation 〈A | R〉. This means that the only relations imposed

on the generators are commutations of some of the generators. When the underlying

graph is clear from the context we write simply G.

From now on A = {a1, . . . , ar} always stands for a finite alphabet, its elements

called letters. We reserve the term occurrence to denote an occurrence of a letter or of

the formal inverse of a letter in a word. In a more formal way, an occurrence is a pair

(letter, its placeholder in the word).

For a given word w denote α(w) the set of letters occurring in w. For a word

w ∈ G, we denote by w a geodesic of w. For a word w ∈ G define A(w) to be the

subgroup of G generated by all letters that do not occur in w and commute with w.

The subgroup A(w) is well defined (independent of the choice of a geodesic w) (see

[15]). An element w ∈ G is called cyclically reduced if the length of w2 is twice the

length of w.

For a partially commutative group G consider its non-commutation graph ∆. The

vertex set V of ∆ is a set of generators A of G. There is an edge connecting ai and

a j if and only if [ai , a j] 6= 1. The graph ∆ is a union of its connected components

I1, . . . , Ik. Then

(2.1) G = G(I1) × · · · × G(Ik).

Consider w ∈ G and the set α(w). For this set, just as above, consider the graph

∆(α(w)) (it is a full subgraph of ∆ with vertices α(w)). This graph can be either

connected or not. If it is connected we will call w a block. If ∆(α(w)) is not connected,

then we can split w into the product of commuting words

(2.2) w = w j1
· w j2

· · ·w jt
j1, . . . , jt ∈ J,

where | J| is the number of connected components of ∆(α(w)) and the word w ji
in-

volves letters from the ji-th connected component. Clearly, the words {w j1
, . . . , w jt

}
pairwise commute. Each word w ji

, i ∈ 1, . . . , t is a block and so we refer to presen-

tation (2.2) as the block decomposition of w.

An element w ∈ G is called a least root (or simply, root) of v ∈ G if there exists

an integer 0 6= m ∈ Z such that v = wm and there do not exist w ′ ∈ G and m ′ ∈ Z,

|m ′| > 1, such that w = w ′m
′

. In this case we write w =
√

v. By [11], partially

commutative groups have least roots; that is, the root element of v is defined uniquely.

The following proposition reduces the conjugacy problem for arbitrary elements

of a partially commutative group to the one for block elements.

Proposition 2.1 ([15, Proposition 5.7]) Let w = w1 · w2 · · ·wt and v = v1 · v2 · · · vs

be cyclically reduced elements decomposed into the product of blocks. Then v and w

are conjugate if and only if s = t and, after some certain index re-enumeration, wi is

conjugate to vi , i = 1, . . . , t.

Corollary 2.2 Let w = wr1

1 · wr2

2 · · ·wrt
t and v = vl1

1 · vl2
2 · · · vls

s be cyclically reduced

elements decomposed into the product of blocks, where wi and v j are root elements,

li , r j ∈ Z, i = 1, . . . , t, j = 1, . . . , s. Then w and v are conjugate if and only if
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s = t and, after some certain index re-enumeration, ri = li and wi is conjugate to vi ,

i = 1, . . . , t.

The next result describes centralisers of elements in partially commutative groups.

As the definition of “being a domain” relies on the structure of centralisers, we shall

make substantial use of the following theorem.

Theorem 2.3 (Centraliser Theorem [11, Theorem 3.10]) Let w ∈ G be a cyclically

reduced word, w = v1 · · · vk its block decomposition. Then the centraliser of w is the

following subgroup of G: C(w) = 〈√v1〉 × · · · × 〈√vk〉 × A(w).

Corollary 2.4 For any w ∈ G the centraliser C(w) of w is an isolated subgroup of G,

i.e., C(w) = C(
√

w).

2.2 Algebraic Geometry over Groups

In this section we recall basic notions of algebraic geometry over groups (see [1] for

details). For the purposes of algebraic geometry over a group G, one has to consider

the category of G-groups, i.e., groups that contain a designated subgroup isomorphic

to the group G. If H and K are G-groups, then a homomorphism ϕ : H → K is a G-

homomorphism if ϕ(g) = g for every g ∈ G. In the category of G-groups morphisms

are G-homomorphisms; subgroups are G-subgroups, etc.

Let G be a group generated by a finite set A, F(X) a free group with basis X =

{x1, x2, . . . , xn}, and G[X] = G ∗ F(X), the free product of G and F(X). A subset

S ⊂ G[X] is called a system of equations over G. As an element of the free product,

the left side of every equation in S = 1 can be written as a product of some elements

from X∪X−1 (which are called variables) and some elements from A ⊂ G (constants).

A solution of the system S(X) = 1 over a G-group H is a tuple of elements

h1, . . . , hn ∈ H such that every equation from S vanishes at (h1, . . . , hn), i.e.,

S(h1, . . . , hn) = 1 in H. Equivalently, a solution of the system S = 1 over H is a

G-homomorphism φ : G[X] → H such that S ⊆ ker(φ). Denote by ncl(S) the nor-

mal closure of S in G[X], and by GS the quotient group G[X]
/

ncl(S). Then every

solution of S(X) = 1 in H gives rise to a G-homomorphism GS → H, and vice versa.

By VH(S) we denote the set of all solutions in H of the system S = 1 and call it the

algebraic set defined by S.

The normal subgroup of G[X] of the form

R(S) = {T(X) ∈ G[X] | ∀A ∈ Hn(S(A) = 1 → T(A) = 1)}

is called the radical of the system S. Note that S ⊆ R(S). There exists a one-to-one

correspondence between algebraic sets VH(S) of systems of equations in G[X] and

radical subgroups.

The quotient group GR(S) = G[X]
/

R(S) is called the coordinate group of the al-

gebraic set VH(S), and every solution of S(X) = 1 in H is a G-homomorphism

GR(S) → H.

A G-group H is called G-equationally Noetherian if every system S(X) = 1 with

coefficients from G is equivalent over G to a finite subsystem S0 = 1, where S0 ⊂ S,
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i.e., the systems S and S0 define the same algebraic set. If G is G-equationally Noethe-

rian, then we say that G is equationally Noetherian. If a G-group H is equationally

Noetherian, every algebraic set V in Gn is a finite union of irreducible components

of V .

Let H and K be G-groups. We say that a family of G-homomorphisms F ⊂
HomG(H, K) G-separates (G-discriminates) H into K if for every non-trivial element

h ∈ H (every finite set of non-trivial elements H0 ⊂ H) there exists φ ∈ F such that

hφ 6= 1 (hφ 6= 1 for every h ∈ H0). In this case we say that H is G-separated (G-dis-

criminated) into K by F. In the case that G = 1, we simply say that H is separated

(discriminated) by K.

A G-group H is called a G-domain if for any x, y 6= 1 there exists g ∈ G such that

[x, yg] 6= 1. In the case that G is G-domain, we say that G is a domain.

3 van Kampen Diagrams

In this section we present some preliminary results on van Kampen diagrams. We

refer the reader to [3, 27] for a more detailed account on van Kampen diagrams.

Our aim here is to review some basic notions and techniques and apply them to the

particular case of partially commutative groups.

3.1 van Kampen Diagrams in Partially Commutative Groups

By van Kampen’s lemma (see [3]) the word w represents the trivial element in a fixed

group G given by the presentation 〈A | R〉 if and only if there exists a finite connected,

oriented, based, labeled, planar graph D where each oriented edge is labeled by a

letter in A±1, each bounded region (cell) of R
2 \ D is labeled by a word in R (up

to shifting cyclically or taking inverses) and w can be read on the boundary of the

unbounded region of R
2\D from the base vertex. Then we say that D is a van Kampen

diagram for the boundary word w over the presentation 〈A | R〉. If w = uv−1
=G 1,

we say that D is a van Kampen diagram realising the equality u = v. In the event that

a van Kampen diagram D realises the equality w = w we say that D is a geodesic van

Kampen diagram for w.

Any van Kampen diagram can also be viewed as a 2-complex, with a 2-cell at-

tached for each bounded region (see Figure 1).

We shall further restrict our considerations to the case when G is a partially com-

mutative group.

Following [27], if we complete the set of defining relations adding the trivial rela-

tions 1 · a = a · 1 for all a ∈ A, then every van Kampen diagram can be transformed

so that its boundary is a simple curve. In other words, as a 2-complex the van Kam-

pen diagram is homeomorphic to a disc tiled by cells that are also homeomorphic to

a disc (see Figure 1). We further assume that all van Kampen diagrams are of this

form.

Let D be a van Kampen diagram for the boundary word w. Given an occurrence

a in w, there is a cell C in the 2-complex D attached to a. Since every cell in a van

Kampen diagram is either labelled by a relation of the form a−1b−1ab or is a so-called

0-cell, i.e., a cell labelled by 1 · a = a · 1, there is just one occurrence of a and one
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base point

c

a

ab

b

c

a

ab

b

c c

a

ab

b

1

1

1

1

1

1

base point

Figure 1: van Kampen diagram and non-singular van Kampen diagram for w = caba−1b−1c−1

over 〈a, b, c | [a, b] = 1〉.

occurrence of a−1 on the boundary of C .

Since D is homeomorphic to a disc, if the occurrence of a−1 on the boundary of

C is not on the boundary of D, there exists a unique cell C ′ 6= C attached to this

occurrence of a−1 in D. Repeating this process, we obtain a unique band in D.

Because of the structure of the cells and the fact that D is homeomorphic to a disc,

a band never self-intersects; indeed, since D is homeomorphic to a disc, the only way

a band can self-intersect is shown in Figure 2. But then the cell corresponding to the

self-intersection of the band is labelled by the word aaa−1a−1.

a

a

a

a

a
a a a

aa a a

base point

w

a

Figure 2: Bands do not self-intersect

Then since the number of cells in D is finite, in a finite number of steps the band

will again meet the boundary in an occurrence of a−1 in w (see Figure 3).

We will use the notation La to indicate that a band begins (and thus ends) in an

occurrence of a letter a ∈ A±1.
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c

a

c c

a

ab

b

1

1

1

1

1

1

base point

a

b

b

band La

a

band Lb

Figure 3: Bands in a van Kampen diagram

Remark 3.1 • If two bands La and Lb cross then the intersection cell realises the

equality a−1b−1ab = 1 and so a 6= b and [a, b] = 1 (see Figure 3).
• Every band La gives a decomposition of w in the following form w = w1aw2a−1w3,

where [a, α(w2)] = 1 and a /∈ α(w2).

Lemma 3.2 Let G be a partially commutative group. A word w in G is not geodesic if

and only if w contains a subword aBa−1 such that [a, α(B)] = 1, a ∈ A±1 if and only

if there exists a geodesic van Kampen diagram for w that contains a band La with both

ends in w.

A proof of this lemma can be found in [29].

It is known (see [15]) that if a word w represents the trivial element in G, it can be

reduced to the empty word using commutation relations of letters and free cancella-

tion. This reduction process of w to the empty word induces a pairing of occurrences

in the word w that cancel. This pairing is independent of the order in which the

letters are freely cancelled.

Lemma 3.2 reflects a consequence of a deeper fact: there exists a one-to-one cor-

respondence between van Kampen diagrams for w and pairings induced by proce-

dures of reductions of w to the empty word. Indeed, let D be a van Kampen dia-

gram for the boundary word w. Every band La gives a decomposition of the form

w = w1,aaw2,aa−1w3,a. Let La be a band such that the length of w2,a is minimal.

Hence, every band Lb with an end in an occurrence b in w2,a cannot have the other

end in an occurrence b−1 in w2,a. Thus for every occurrence b in w2,a the band Lb

crosses the band La and hence [a, α(w2,a)] = 1, a /∈ α(w2,a). This implies that

w = w1,aaw2,aa−1w3,a = w1,aw2,aaa−1w3,a and thus there exists a process of reduc-

tion of w to the empty word in which the occurrence a is cancelled with the occur-

rence a−1. Collapsing the band La in D, we get a van Kampen diagram D′ for the

boundary word w ′
= w1,aw2,aw3,a; note that the number of cells in D′ is lower than

the number of cells in D. The statement follows by induction.

Conversely, if w represents the trivial element in G, w can be written in the form
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w = w1aw2a−1w3, where a ∈ A±1 and [a, α(w2)] = 1 and a /∈ α(w2). Construct a

|w|-polygon, designate a point, and orient and label its edges so that starting from the

designated point and reading clockwise (or, counterclockwise) one reads w. To every

edge labelled by an occurrence w2i from w2 we attach a cell labeled by aw2ia
−1w−1

2i .

Identifying, as appropriate, the edges labeled by a±1 we get a band La with ends in a

and a−1 (see Figure 4). We thereby get a (|w| − 2)-polygon with the boundary word

w ′
= w1w2w3 and thus, by induction, the van Kampen diagram is constructed.

designated point

a

w
1 w

3

a
-1

w
2

w
22

w
22

w
21

w
21

w
2,k

w
2,k-1

w
2,k-1

w
2,k

Figure 4: Constructing a van Kampen diagram by a process of reduction

If either in a geodesic van Kampen diagram for w both ends of a band La lie in w

or equivalently, if the occurrences a and a−1 freely cancel each other in a reduction

process of the word w to the empty word, we say that the occurrence a cancels with

a−1. Otherwise, if one of the ends of the band La is in an occurrence of a in w and

the other is in an occurrence of a−1 in w, we say that a does not cancel.

3.2 Cancellation in a Product of Elements

We now consider in detail van Kampen diagrams corresponding to a product of k

geodesic words w1 · · ·wk = 1.

By Lemma 3.2 for any van Kampen diagram D of w1 · · ·wk = 1 every band with

an end in wi has its other end in w j , j 6= i, i, j = 1, . . . , k. Since every occurrence in

w1 cancels, there is a band with an end in a given occurrence a of w1 and another end

in wi , 1 < i ≤ k. Then for any occurrence b in w1 such that

• b is to the right of a, i.e., w1 = w ′
1aw ′ ′

1 bw ′ ′ ′
1 and

• the band Lb with an end in the occurrence b has its other end in w j , j > i,

the bands La and Lb cross and thus [a, b] = 1 in G (see Figure 5). Therefore the word

w1 equals the following geodesic word w1 = wk
1 · · ·w2

1, where the band with an end

in any occurrence of wi
1 has its other end in wi .
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A similar argument for wl shows that wl admits the following decomposition into

a product of geodesic words (perhaps trivial) (see Figure 5):

wl = wl−1
l · · ·w1

l wk
l · · ·wl+1

l ,

where the band with an end in any occurrence of wi
l has its other end in wi .

w
1

w2 w
3

w
4

w
5

w
1

w
1

w
2

w
4

w
1

w4

w3w2

w5

w
5

w
5

w
5

w
5

w
1

w
1

1

5

4

2

3

5

2

34

w
2

w
2
w
2
w
3 w

3

w
3

2 1

5

4

w
4

w
4

w
4

3

2

1

5

4

3

1

w
3

Figure 5: Normal form of a van Kampen diagram, see Lemma 3.3

We summarise the above discussion in the following lemma.

Lemma 3.3 Let G be a partially commutative group, let w1, . . . wk be geodesic words

in G such that w1 · · ·wk = 1. Then there exist geodesic words w
j
i , 1 ≤ i, j ≤ k such

that for any 1 ≤ l ≤ k there exists the following decomposition of wl into a product of

geodesic words: wl = wl−1
l · · ·w1

l wk
l · · ·wl+1

l , where wi
l = wl

i

−1
.

Corollary 3.4 Let G be a partially commutative group, let w1, . . . wk, v be geodesic

words in G such that w1 · · ·wk = v. Then there exists geodesic words vm, w
j
i , 1 ≤

i, j, m ≤ k such that for any 1 ≤ l ≤ k there exists the following decomposition of wl

into a product of geodesic words: wl = wl−1
l · · ·w1

l vlw
k
l · · ·wl+1

l , where wi
l = wl

i

−1
and

v1 · · · vk = v.

4 Partially Commutative Groups and Domains

It is well known that free groups are domains. The key point of the proof (which

relies on the fact that free groups are CSA) is that for a, x, y ∈ F, x 6= 1 if [x, y] = 1,

[x, ya] = 1, then y ∈ C(a). Therefore, to see that free groups are domains it suffices

to apply the above argument for two elements a and b such that C(a) ∩C(b) = 1.

Although, directly indecomposable partially commutative groups are not CSA,

using the description of centralisers, in Section 4.2 we prove that for a, x, y ∈ G, such

that x 6= 1 and C(a) is cyclic if [x, y] = 1, [x, ya] = 1, then either y ∈ C(a) or

x ∈ A(ya).

The aim of Section 4.1 below is to find an element A ∈ G with cyclic centraliser

for which A(yA) = 1. More precisely, we prove that for any a ∈ G, such that C(a)

is cyclic, the element A = a3 cdim(G)+4 possesses this property. Hence, for a, x, y ∈ G,

such that x 6= 1 and C(a) is cyclic if [x, y] = 1, [x, yA] = 1, then y ∈ C(A).
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4.1 Cancellation and Conjugation

Definition 4.1 We treat the graph ∆ as a metric space with the metric d being the

path metric. Let y be a vertex of ∆, define adj(y) to be {v ∈ ∆ | d(v, y) ≤ 1}, i.e.,

the closed ball of radius 1 centered at y. For a subset Y ⊆ A, set

adj(Y ) = {v ∈ ∆ | d(v, y) ≤ 1 for some y ∈ Y}.

We set

adjn(y) = adj(adj(. . . adj(y) . . . ))
︸ ︷︷ ︸

n times

,

thus adjn(y) = {v ∈ ∆ | d(v, y) ≤ n} is the closed ball of radius n centered at y.

Similarly adjn(Y ), Y ⊆ A is just an n-neighbourhood of Y in ∆,

adjn(Y ) = {v ∈ ∆ | d(v, y) ≤ n for some y ∈ Y}.

Let ∆1 be a subgraph of ∆. Then by adj(Y )∆1
we denote the following set

adj(Y )∆1
= adj(Y ) ∩ ∆1.

We shall further use the notion of centraliser dimension cdim(G) of a group G

(see Definition 4.2). An interested reader may consult [12, 13, 26] and the references

therein for a detailed discussion of this notion.

Definition 4.2 If there exists an integer d such that the group G has a strictly

descending chain of centralisers C0 > C1 > · · · > Cd of length d and no cen-

traliser chain of length greater than d, then G is said to have centraliser dimension

cdim(G) = d. If no such integer d exists, we say that the centraliser dimension of G

is infinite, cdim(G) = ∞.

All partially commutative groups have finite centraliser dimension [13].

Lemma 4.3 Let G be a directly indecomposable partially commutative group and

y ∈ A. Then adjcdim(G)(y) = A, i.e., the diameter diam(∆(G)) of ∆(G) is less than

or equal to cdim(G).

Proof The group G is directly indecomposable, hence the non-commutation graph

∆(G) is connected. Therefore for any pair of vertices g, h ∈ V (∆) there exists a path

p of minimal length connecting them. We claim that the length of p is less than or

equal to cdim(G).

Let p = (g0 = g, g1, . . . , gr = h). The path p gives rise to a strictly descending

chain of centralisers of length r:

G > C(g0) > C(g0, g1) > · · · > C(g0, . . . , gr−2) > C(g0, . . . , gr−1).

Indeed, to see that each of the inclusions above is strict we use the minimality of

the path p. Suppose C(g0, . . . , gi−1) = C(g0, . . . , gi) for some 1 ≤ i ≤ r − 1.
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Then since gi+1 /∈ C(g0, . . . , gi), we also have gi+1 /∈ C(g0, . . . , gi−1). So there exists

0 ≤ j ≤ i − 1, such that g j does not commute with gi+1, thus the distance between

them is 1. Then (g0, g1, . . . , g j , gi+1, . . . , gr) is a shorter path from g to h, contradict-

ing the minimality of the path p.

As the length r of any strictly descending chain of centralisers is bounded by

cdim(G), so is the distance between any two points in ∆, so adjcdim(G)(g) = A.

Remark 4.4 Note that the equality diam(∆(G)) = cdim(G) can be attained. Set G

to be, for example, the partially commutative group whose non-commutation graph

is a path with an odd number of vertices.

Given two geodesic words w, v ∈ G, if the product wv is again geodesic, we write

w ◦ v. Let g ∈ G be a geodesic word. We refer to the decomposition g = g1 ◦ g2 ◦ g−1
1 ,

where g2 is cyclically reduced as a cyclic decomposition of g.

Given a word gn, we write g(i) when we refer to the i-th factor g in the product

gn
= g · · · g. Similarly, given an occurrence a in g, we write a(i), 1 ≤ i ≤ n to indicate

that the occurrence a is in g(i).

Lemma 4.5 Let g, z ∈ G be geodesic and g = g1ag2, a ∈ A±1. Let D be a geodesic van

Kampen diagram for gz. If the occurrence a does not cancel, neither does any occurrence

b in g1 that belongs to adj(a).

Proof If a does not cancel, the band La with an end in a has the other end in gz.

Then, for any b ∈ g1 that cancels, corresponding band Lb has one end in this occur-

rence of b in g(1) and the other in an occurrence b−1 in z. Hence the band Lb crosses

the band La. By Remark 3.1, b 6= a and [b, a] = 1, so b /∈ adj(a).

Lemma 4.6 Let g, z ∈ G be geodesic and let g = g1ag2, a ∈ A±1. Let D be a geodesic

van Kampen diagram for zg
= gzg−1. If the occurrence of a in g and the corresponding

occurrence a−1 in g−1 do not cancel, then for b ∈ adj(a), no occurrence of b in g1 cancels

with b−1 in g−1
1 .

Proof The proof is analogous to the one of Lemma 4.5.

Corollary 4.7 Let g, z ∈ G be geodesic and let g be a cyclically reduced block. Let D

be a geodesic van Kampen diagram for gz. If there exists an occurrence a in g that does

not cancel, then gcdim(G)+1z = g ◦ z ′, i.e., no occurrence in g(1) cancels.

Proof Let a be an occurrence of g that does not cancel in gz. Since gcdim(G)+1 is

geodesic, the occurrence a(cdim(G)+1) in g(cdim(G)+1) does not cancel.

Since g is a block, by definition, the graph ∆(α(g)) is connected, i.e., the subgroup

generated by α(g) is a directly indecomposable partially commutative group. Thus,

applying Lemma 4.3 to this subgroup and using the fact that the centraliser dimen-

sion of 〈α(g)〉 is less than or equal to the centraliser dimension of G (see [12]) we get

that adj(a)cdim(G)
∆(α(g)) = α(g).

Recursively applying Lemma 4.5, we get that no occurrence in g(i) that belongs to

adj((cdim(G)+1)−i)
∆(α(g)) (a) cancels. Therefore, no occurrence from g(1) cancels in gcdim(G)+1z.
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Corollary 4.8 Let g, z ∈ G be geodesic and let g be a cyclically reduced block. Let

D be a geodesic van Kampen diagram for zg
= gzg−1. If there exists an occurrence

a in g, such that a and the corresponding occurrence a−1 in g−1 do not cancel, then

z(gcdim(G)+1)
= g ◦ z ′ ◦ g−1, where z ′ = zcdim(G).

Proof The proof is analogous to the one of Corollary 4.7

Definition 4.9 Let z ∈ G be a cyclically reduced word and g, z1 ∈ G be so that

z = g−1 ◦ z1 (in the terminology of [15], g−1 is called a left-divisor of z). We say that

the word gzg−1
= z1g−1 is a cyclic permutation of z.

Conjugating a cyclically reduced word z one gets a conjugation of a cyclic permu-

tation of z. In particular, all letters of z appear in a geodesic zg for any g ∈ G. A more

precise description is given in the following lemma.

2
d

2
d

22
z

1
d

1

1
z−

1

11
z−

21
z

21
z

22
z

22
z

1
z 3

z

3
z

2
z
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2
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11
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z
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1

22
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1

1
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11
z

11
z

1

2
d −

1

2
d −

g′

2
z

1

1
z−

z

1

2
z−

1
z

1

g
−

′

Figure 6: Lemma 4.10: cancellation in zg .

Lemma 4.10 Let z, g ∈ G, let z be cyclically reduced and g be a block. Then there

exist decompositions z = z1z3z2, z1 = z11z12, z2 = z21z22, g = d2d1z22z−1
11 z2z−1

1 , where

z1 ∈ A(z2), z11 ∈ A(z3), z22 ∈ A(z3), such that zg = d2 ◦ z22 ◦ z21 ◦ z3 ◦ z12 ◦ z11 ◦ d−1
2 .

Furthermore, if d2 = 1, then d1 = 1. If d2 = 1, then either z1 = 1 or z2 = 1, see

Figure 6.

Proof Let z1 be the maximal (where the maximum is taken over all geodesic words

representing g and z) common initial subword of z and g−1, i.e., z = z1z ′1, g = g1z−1
1 .

Note that such z1 exists and is well defined; in [15] the authors call it the left greatest

common divisor of z and g−1. Similarly, let z2 be the right greatest common divisor

of z and g, i.e., z = z ′2z2, g = g2z2. Then z−1
1 and z2 are both right divisors of g.
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Let e be the right greatest common divisor of z−1
1 and z2. By [15, Proposition 3.18],

z−1
1 = e1e, z2 = e2e, and g = g ′e2e1e, where e1 ∈ A(e2). Since z is cyclically reduced,

it follows that e = 1. Hence, z−1
1 = e1, z2 = e2, g = g ′z2z1

−1, z1 ∈ A(z2).

Apply Corollary 3.4 (the notation of which we use below) to the product of

g ′z2z−1
1 zz−1

2 z1g ′−1
= w1w2w3w4w5w6w7 = v = g ′z2z−1

1 zz−1
2 z1g ′−1.

Since g ′z2z−1
1 = g is geodesic, w3

1 = w1
2 = w3

2 = w7
5 = w5

6 = w7
6 = 1. By definition

of z1 and z2, we get that w4
1 = w4

2 = w4
6 = w4

7 = 1 and w3 = w4
3, w5 = w4

5, so

wi
3 = wi

5 = 1, i 6= 4. As α(z1) ∩ α(z2) = 1, so w6
2 = 1.

It follows that z2 = w2 = v2w7
2 = z21z22 and, analogously, z1 = w6 = w1

6v6 =

z11z12. Moreover, g ′
= w1 = v1w7

1w6
1 = v1w7

1z−1
11 , and g ′−1

= w7 = w2
7w1

7v7 =

z−1
22 w1

7v7.

We obtain that g ′
= v1w7

1z−1
11 = v−1

7 w7
1z22, thus, since α(z11) ∩ α(z22) = 1, we

have v1 = d2z22, v−1
7 = d2z−1

11 and so g ′
= d2z22d1z−1

11 = d2z−1
11 d1z22. This implies

that [d1, z11z22] = 1, and, since z11 ∈ A(z22), we have [d1, z11] = [d1, z22] = 1.

By Corollary 3.4, zg = v1 · · · v7 = d2 ◦ z22 ◦ z21 ◦ z3 ◦ z12 ◦ z11 ◦ d−1
2 .

Finally, since g = d2d1z22z−1
11 z2z−1

1 , if d2 = 1 and d1 6= 1, then as shown above

[α(d1), α(z11)] = [α(d1), α(z22)] = 1, and [α(d1), α(z12)] = [α(d1), α(z21)] = 1,

see Figure 6. Hence g is not a block. If d2 = 1, and so d1 = 1, then since g is a block

and [α(z1), α(z2)] = 1, either z1 = 1 or z2 = 1.

Lemma 4.11 Let z, g ∈ G, let z be cyclically reduced, g be a block and let [z, g] 6= 1.

Furthermore, suppose that g−1 does not left-divide z and z−1. Then zg2

= g2zg−2
=

g1 ◦ z ′ ◦ g−1
1 , where g1 6= 1 is a left-divisor of g, i.e., there exist occurrences l in g2 and,

correspondingly, l−1 in g−2 that do not cancel.

Proof By Lemma 4.10, the notation of which we now use, zg = d2 ◦ z22 ◦ z21 ◦ z3 ◦
z12 ◦ z11 ◦ d−1

2 . If d2 6= 1, the result follows by Lemma 4.6.

Suppose that d2 = 1. Then by Lemma 4.10 d1 = 1 and either z1 or z2 is trivial.

Without loss of generality, we may assume that z1 = 1. Then z2 6= 1 is a block and

zg2

= g(z22z21z3)g−1
= (z22z21z22)(z22z21z3)(z22z21z22)−1.

To prove the lemma it suffices to show that the word (z22z21z22)−1 does not cancel

completely in the product of geodesic words (z22z21z22z22z21z3)(z22z21z22)−1.

If α(z21) is a subset of α(z3), then since z22 ∈ A(z3), we get that z22 ∈ A(z21), and

z2 is not a block: a contradiction. Therefore, we may write the word z−1
21 as A−1B−1,

where A−1 is the left greatest divisor of z−1
21 such that α(A) ⊆ α(z3) and B is non-

trivial. Note that A ∈ A(z22) and since [z21, z22] 6= 1, one has that [B, z22] 6= 1.

The word zg2

can be rewritten as follows:

zg2

= (z22z21z22)z22B(Az3A−1)z−1
22 B−1z−1

22 = (z22z21z22)z22Bz ′3z−1
22 B−1z−1

22 .

By construction, z22 ∈ A(z ′3) and no occurrence in B−1 cancels with an occurrence

in z ′3.
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If [B, z ′3] 6= 1, then there exists an occurrence in B−1 that does not cancel and the

result follows. If [B, z ′3] = 1, then we have

zg2

= (z22z21z ′3z22z22B)(z−1
22 B−1z−1

22 ).

If z−1
22 cancels completely, then we get that both B and z22 are right divisors of the

word z22z21z ′3z22z22B. Then by [15, Proposition 3.18], B = B ′d and z22 = z ′22d, where

z ′22 ∈ A(B ′). Furthermore, since [z22, B] 6= 1, then either [d, z ′22] 6= 1 or [d, B ′] 6= 1.

Analogously, if z−1
22 B−1 cancels completely, then we have that both z22B and Bz22

are right divisors of the word z22z21z ′3z22z22B. Applying again [15, Proposition 3.18],

we get that z22B = U1D and Bz22 = U2D, where U1 ∈ A(U2).

Combining the above equalities, one has z22B = z ′22dB ′d = U1D and Bz22 =

B ′dz ′22d = U2D. Since α(U1)∩α(U2) = ∅, α(B ′)∩α(z ′22) = ∅ and either [d, z ′22] 6=
1 or [d, B ′] 6= 1; the above equalities yield a contradiction. Thus z−1

22 B−1 does not

cancel completely in zg2

= (z22z21z ′3z22z22B)(z−1
22 B−1z−1

22 ) and the result follows.

We now record some basic properties of A(w) which we shall use later. Given

x, y ∈ G the following hold:

(A) x ∈ A(y) if and only if y ∈ A(x);

(B) if α(x) ⊂ α(y) then A(y) < A(x);

(C) if the centraliser of x is cyclic then A(x) = 1.

Lemma 4.12 (i) Let g ∈ G be a cyclically reduced block and let z ∈ G be so that

g−1 does not left-divide and right-divide z. Then one has gcdim(G)+1zgcdim(G)+1
=

g ◦ gcdim(G)zgcdim(G) ◦ g.

(ii) Let g ∈ G be a cyclically reduced block and let z = z1z2z−1
1 be the cyclic decompo-

sition of an element z ∈ G. Suppose that g−1 does not left-divide z, z−1, z2, and

z−1
2 , and [g, z] 6= 1. Then one has zg3 cdim(G)+4

= g ◦ zg3 cdim(G)+3 ◦ g−1.

Proof We first prove (i). We claim that in the product gzg there exist occurrences l1
and l2 in both subwords g of gzg that do not cancel in gzg. Assume the contrary. Then

one of the subwords g cancels completely. Without loss of generality we may assume

that the second subword g of gzg cancels completely. By Lemma 3.3, we get that

g = g1g2, where g1 cancels with z and g2 cancels with g. In other words, z = z ′g−1
1

and g = g ′g−1
2 . Since g−1 does not right-divide z, we have that g2 6= 1. This yields a

contradiction, as g is right-divisible by both g2 and g−1
2 . The statement now follows

from Corollary 4.7.

We now prove (i). Consider the product g(cdim(G)+1)z1, then no occurrence in g(1)

cancels. Indeed, since g does not left-divide z, there is an occurrence in g that does

not cancel in gz1. Applying Corollary 4.7, we get that no occurrence in g(1) cancels in

g(cdim(G)+1)z1. We thereby get g(cdim(G)+1)z1 = g ◦ g ′ ◦ z ′1, where z ′1 is a right-divisor

(may be trivial) of z1 and g ′ is a left-divisor of gcdim(G).

Notice that since α(g ′) ⊂ α(g) and g is a block, on one hand we get that gg ′ is a

block and on the other that for any occurrence a in g ′ there exists an occurrence b in

g such that b ∈ adj(a).

If [z ′1, g] 6= 1 (or [z ′1, g ′] 6= 1), then there exists an occurrence a in g (or in g ′)

that belongs to adj(α(z ′1)). Since no occurrence in z ′1 and in z ′1
−1

cancels in zgg ′z ′

1
2 , by
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Lemma 4.6 neither does the occurrence a in g (or in g ′), and, correspondingly a−1 in

g−1 (or in g ′−1
). If a is an occurrence in g ′, then there exists an occurrence b in g that

belongs to adj(a), and so by Lemma 4.6 this occurrence b in g and the corresponding

occurrence b−1 in g−1 do not cancel. Hence, in any case, there exists an occurrence

in g that does not cancel in ((z2)g ′z ′

1 )
g
. Therefore, by Corollary 4.8 we get that

((z2)g ′z ′

1 )
(gcdim(G)+1)

= g ◦ z ′2 ◦ g−1

and thus

zg(2 cdim(G)+1)

=
(

(z2)g(cdim(G)+1)z1
) (gcdim(G))

= g ◦ zg2 cdim(G) ◦ g−1.

Assume now that [z ′1, g] = 1 and [z ′1, g ′] = 1. If [gg ′, z2] 6= 1 or [g2g ′, z2] 6= 1,

since gg ′ (and g2g ′) is a block, by Lemma 4.11, there exists an occurrence a in (gg ′)2

(or in (g2g ′)2), and so an occurrence a in gcdim(G)+2g ′ (or in gcdim(G)+4g ′), such that

a and the occurrence a−1 in (gcdim(G)+2g ′)−1 (in (gcdim(G)+4g ′)
−1

) do not cancel in

z
gcdim(G)+2g ′

2 (in z
(gcdim(G)+4g ′)
2 ). If a is an occurrence in g ′, then there exists an occur-

rence b in gcdim(G)+2 (in gcdim(G)+4) that belongs to adj(a), and thus by Lemma 4.6

this occurrence b in gcdim(G)+2 (in gcdim(G)+4) and the corresponding occurrence b−1

in g− cdim(G)−2 (in g− cdim(G)−4) do not cancel.

Now by Corollary 4.8 we get

(z
g ′

2 )g(2 cdim(G)+4)

= g ◦ z ′2 ◦ g−1

and thus

zg(3 cdim(G)+4)

=
(

(z2)g(2 cdim(G)+4)z1
) (gcdim(G))

=
(

(z2)gcdim(G)+4g ′z ′

1
) (gcdim(G))

=
((

(z2)g ′) (g2 cdim(G)+4))
z ′

1

= g ◦ zg3 cdim(G)+3 ◦ g−1.

Finally, suppose that [z ′1, g] = 1, [z ′1, g ′] = 1, [gg ′, z2] = 1, and [g2g ′, z2] = 1.

We have gcdim(G)+2
= g2 ◦ g ′ ◦ d, z1 = d−1 ◦ z ′1. If g ′ ∈ 〈√g〉, then d ∈ 〈√g〉 and

so [d, z ′1] = [d, z2] = 1. This contradicts the assumption that z = z
d−1z ′

1

2 is geodesic.

Thus, we may assume that g ′ /∈ 〈√g〉. In this case, we have that α(g ′) ⊆ α(g),

[g, g ′] 6= 1 and g is a block. Therefore, by Theorem 2.3, from [g, z ′1] = [g ′, z ′1] = 1

we get that α(g) ⊂ A(z ′1), and from [gg ′, z2] = [g2g ′, z2] = 1 we get that α(g) ⊂
A(z2). Since α(d) ⊆ α(g), we have [d, z ′1] = [d, z2] = 1: a contradiction with the

assumption that z = z
d−1z ′

1

2 is geodesic.

Remark 4.13 A more subtle argument shows that the exponent 3 cdim(G) + 4 in

Lemma 4.12 can be replaced by cdim(G).

Corollary 4.14 Let g ∈ G have cyclic centraliser. Then for any element z ∈ G such

that g−1 does not left-divide z, z−1, z2, and z−1
2 , one has A(z(g3 cdim(G)+4)) = 1.
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Proof Let g = g1g2g−1
1 be the cyclic decomposition of g. We prove that no occur-

rence of g(1)
2 cancels in z(g3 cdim(G)+4), therefore, by properties (B) and (C) of A, we get

A(z(g3 cdim(G)+4)) ⊆ A(g2) = 1.

By Lemma 4.12, no occurrence in g(1)
2 cancels in (zg1

−1

)
(g3 cdim(G)+4

2 )
. Then, since

z(g3 cdim(G)+4)
=

(
(zg1

−1

)
g3 cdim(G)+4

2 )
g1

,

no occurrence in g(1)
2 cancels.

Corollary 4.15 Let g ∈ G have cyclic centraliser. Then for any element z ∈ G such

that A(z) 6= 1 one has A(z(g3 cdim(G)+4)) = 1.

Proof If g−1 left-divides z±1 or z±1
2 , then by property (B) of A we get that A(z) ⊂

A(g) = 1.

Remark 4.16 In Lemma 4.12, Corollary 4.14, and Corollary 4.15 we impose the

condition that g−1 does not left-divide z, z−1, z2, and z−1
2 , because we seek the bound

3 cdim(G) + 4 on the number of times one has to conjugate z by g. The reason for

this is that the notion of centraliser dimension is axiomatisable using (existential)

first-order formulas, [12] (we refer the reader to Section 6 for consequences of this

result). If one does not impose this condition, Lemma 4.12 could be rephrased as

follows.

Lemma Let g ∈ G be a cyclically reduced block, then for any element z ∈ G there

exists N ∈ N such that z(gN )
= g ◦ z(gN−1) ◦ g−1.

4.2 Criterion To Be a Domain

Proposition 4.17 Let G be a non-abelian directly indecomposable partially commuta-

tive group. Let g ∈ G have cyclic centraliser, x, y ∈ G, x, y 6= 1 be such that [x, y] = 1

and [x, y(g3 cdim(G)+4)] = 1. Then C(x) = C(y) = C(g).

Proof Let x = wxr1

1 · · · xrk

k w−1, where x1, . . . , xk are cyclically reduced root elements

such that xr1

1 , . . . , xrk

k are the blocks of xw−1

and r1, . . . , rk ∈ Z. Since [x, y] = 1, by

Theorem 2.3, after a certain re-enumeration of indices, we may assume

(4.1) y = wxs1

1 · · · xsl

l zw−1,

where z ∈ A(x1 · · · xk), 0 ≤ l ≤ k and s1, . . . , sl ∈ Z. Thus,

(4.2) y(g3 cdim(G)+4)
= g3 cdim(G)+4wxs1

1 · · · xsl

l zw−1g−(3 cdim(G)+4).

Since [x, y(g3 cdim(G)+4)] = 1, applying Theorem 2.3 once again, we get

(4.3) y(g3 cdim(G)+4)
= wxt1

i1
· · · xtm

im
z ′w−1,
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where z ′ ∈ A(x1 · · · xk), 0 ≤ m ≤ k and t1, . . . , tm ∈ Z. Equating (4.2) and (4.3), we

get

(4.4) (xs1

1 · · · xsl

l z)
w−1g3 cdim(G)+4w

= xt1

i1
· · · xtm

im
z ′.

Suppose that l ≥ 1. Then by Corollary 2.2, l = m and for any q ∈ {1, . . . , l} there

exists j ∈ {1, . . . , m} such that α(xq) = α(xi j
), sq = t j , and xq is conjugated to xi j

by

w−1g3 cdim(G)+4w.

Since α(xq) = α(xi j
), and since xq and xi j

are cyclically reduced root elements

whose powers x
sq
q and x

t j

i j
are blocks of the same word x(w−1), we get that xq = xi j

for

all 1 ≤ q ≤ l, i.e., yw−1

and (y(g3 cdim(G)+4))
w−1

have the same blocks.

From the above it follows that

xw−1g3 cdim(G)+4w
q = xi j

= xq,

i.e., xq commutes with w−1g3 cdim(G)+4w. Since the centraliser of g is cyclic, so is the

centraliser of w−1g3 cdim(G)+4w and thus, so is the centraliser of xq. More precisely,

C(xq) = C(g3 cdim(G)+4)
w−1

= C(g)w−1

.

Since xq has cyclic centraliser, xw−1

and yw−1

both have a unique block; further-

more, since z ∈ A(xq) by property (A) of A, z is trivial. Therefore, x = y = (x
rq
q )w

and so C(x) = C(y) = C(xq)w
= C(g).

Next suppose that l = 0. We prove then that x is trivial, contradicting the assump-

tion. We rewrite equations (4.1) and (4.4) as follows

y = wzw−1 and z ′ = zw−1g3 cdim(G)+4w.

Notice that since z, z ′ ∈ A(x1 · · · xk) by property (C) of A, we get that x1, . . . , xk ∈
A(z) ∩ A(z ′). Therefore, if either A(z) or A(z ′) is trivial, so is x. Assume A(z) is

non-trivial. Since the centraliser of w−1gw is cyclic, Corollary 4.15 applies to z ′ =

z((w−1gw)3 cdim(G)+4), thus A(z ′) = 1 and so x = 1.

Corollary 4.18 Let G be a non-abelian directly indecomposable partially commutative

group. Let a, b ∈ G be elements with cyclic centralisers and such that C(a) ∩C(b) = 1.

Then for any solution x, y ∈ G of the system

[x, y] = 1, [x, y(a3 cdim(G)+4)] = 1, [x, y(b3 cdim(G)+4)] = 1,

either x = 1 or y = 1.

Proof Applying Proposition 4.17 for the triples x, y, a and x, y, b we get that if x 6= 1

and y 6= 1, then C(x) = C(y) = C(a) and C(x) = C(y) = C(b), a contradiction

with C(a) ∩ C(b) = 1. Note that the elements a and b satisfying the assumption of

the corollary exist (it suffices to take two distinct block elements such that [a, b] 6= 1

and α(a), α(b) = A).
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Theorem 4.19 (Criterion for a partially commutative group to be a domain) A

partially commutative group G is a domain if and if G is non-abelian and directly inde-

composable.

Proof Since the direct product of two non-abelian groups is never a domain (see

[1, 20]), the result follows immediately from Corollary 4.18.

Note that Corollary 4.18 shows in fact that any non-abelian directly indecom-

posable partially commutative group is a domain with respect to only two elements

a3 cdim(G)+4 and b3 cdim(G)+4 which are independent of the choice of x and y (in the

notation of the definition of domain).

Lemma 4.20 Let a ∈ G be a cyclically reduced block element and let w1, w2 ∈ G be

geodesic words of the form w1 = aδ1 ◦ g1 ◦ aǫ, w2 = aǫ ◦ g2 ◦ aδ2 , where ǫ, δ1, δ2 = ±1.

Then the geodesic word w1w2 has the form w1w2 = aδ1 ◦ w3 ◦ aδ2 .

Proof We claim that no occurrence from the subword aǫ of w1 cancels in the product

w1w2. Indeed, assume the contrary. Let l be the right divisor of aǫ of length one that

cancels in the product w1w2, i.e., aǫ
= a ′l. It follows that w2 = l−1w ′

2 (see [15]).

Since aǫ and l−1 are both left divisors of w2, by [15, Proposition 3.18] one has that

either l−1 is a left divisor of aǫ or l−1 ∈ A(a). As aǫ is cyclically reduced and l is a

right divisor of aǫ, so l−1 is not a left divisor of a. On the other hand, since l is an

occurrence of aǫ, we have that l−1 /∈ A(a). Therefore, no occurrence in the subword

aǫ of w1 cancels in the product w1w2.

Since no occurrence in aǫ of w1 cancels and a is a block, by Lemma 4.5, no occur-

rence in aδ1 cancels in the product w1w2.

An analogous argument shows that no occurrence in the subword aǫ of w2 and in

aδ2 cancels and the statement follows.

Theorem 4.21 Let G be a non-abelian directly indecomposable partially commutative

group. Then G[X] is G-discriminated by G.

Proof The group G[X] is a non-abelian directly indecomposable partially commu-

tative G-group, thus by Theorem 4.19, G[X] is a domain. By [2, Theorem C1], it

suffices to prove that G[X] is G-separated by G.

Without loss of generality, we may assume that X = {x}. Take an element w ∈
G[X]. Without loss of generality, we may assume that w is cyclically reduced, w =

xk1 g1 · · · gl−1xkl gl, where gi ∈ G, g1, . . . , gl 6= 1. Take a ∈ G such that the centraliser

of a is cyclic (such a exists since G is directly indecomposable) and satisfies the as-

sumptions of Lemma 4.12 for every gi , i = 1, . . . , l, where here, in the notation of

Lemma 4.12, a plays the role of g and gi play the role of z.

Consider the homomorphism ϕa : G[X] → G, defined by x 7→ a6 cdim(G)+8. Then

ϕa(w) = ak1(3 cdim(G)+4)
(
ak1(3 cdim(G)+4)g1ak2(3 cdim(G)+4)

)

×
(
ak2(3 cdim(G)+4)g2ak2(3 cdim(G)+4)

)
· · ·

(
akl−1(3 cdim(G)+4)gl−1akl(3 cdim(G)+4)

)

× akl(3 cdim(G)+4)gl.

By Lemma 4.12, every factor of ϕa(w) of the form (aki (3 cdim(G)+4)gia
ki+1(3 cdim(G)+4))

has the form asign(ki ) ◦ g̃i ◦asign(ki+1). The statement now follows from Lemma 4.20.
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Corollary 4.22 Let G be a non-abelian directly indecomposable partially commutative

group. Then the group G[X] is universally equivalent to G (both in the language of

groups and in the language LG enriched by constants from G).

Proof The proof follows from [1, Theorem C2].

Corollary 4.23 Let G be a non-abelian directly indecomposable partially commutative

group. Then G |= ∀X(U (X) = 1) ⇔ G[X] |= U (X) = 1, i.e., only the trivial equation

has the whole set G
n as its solution.

Proof Since G[X] is G-discriminated by G, if the word U (X) is a non-trivial element

of G[X], then there exists a G-homomorphism φ : G[X] → G such that U φ 6= 1.

Then U (Xφ) 6= 1 in G, a contradiction.

5 Applications to Algebraic Geometry

The results and exposition of this section rely on [20]. We recall here some necessary

definitions and restate some results in the case of partially commutative groups. We

refer the reader to [20] for details and omitted proofs.

A group code C is a set of formulas

(5.1) C = {U (X, P), E(X,Y, P), Mult(X,Y, Z, P), Inv(X,Y, P)}

where X,Y, Z, P are tuples of variables with |X| = |Y | = |Z|. If P = ∅, then C is

called an absolute code or 0-code.

Let C be a group code, H be a group, and B be a |P|-tuple of elements in H. We say

that C (with parameters B) interprets a group C(H, B) in H if the following conditions

hold:

(i) the truth set U (H, B) in H of the formula U (X, B) (with parameters B) is non-

empty;

(ii) the truth set of the formula E(X,Y, B) (with parameters B) defines an equiva-

lence relation ∼B on U (H, B);

(iii) the formulas Mult(X,Y, Z, B) and Inv(X,Y, B) define, correspondingly, a binary

operation (Z = Z(X,Y )) and a unary operation (Y = Y (X)) on the set U (H, B)

compatible with the equivalence relation ∼B;

(iv) the group C(H, B) consists of the set of equivalence classes U (H, B)
/

∼B
, which

form a group with respect to the operations defined by Mult(X,Y, Z, B) and

Inv(X,Y, B).

We say that a group G is interpretable (or definable) in a group H if there exists a

group code C and a set of parameters B ⊂ H such that G ≃ C(H, B). If C is 0-code,

then G is absolutely or 0-interpretable in H. The following two types of interpretations

are crucial. Let G be a definable subgroup of a group H, i.e.,, there exists a formula

U (x, P) and a set of parameters B ⊂ H such that G = {g ∈ H | H |= U (g, B)}. Then

G is interpretable in H by the code CG = {U (x, P), x = y, xy = z, y = x−1} with

parameters B. If in addition G is a normal subgroup of H, then the code

CH/G = {x = x,∃v(x = yv ∧U (v, P)), z = xy, y = x−1}
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interprets the factor-group H
/

G in H with parameters B. Every group code (5.1)

determines a translation TC which is a map from the set of all formulas FL in the

language L into itself. We define TC by induction as follows:

(i) TC (x = y) = E(X,Y, P);

(ii) TC (xy = z) = Mult(X,Y, Z, P) and TC (x−1
= y) = Inv(X,Y, P);

(iii) if φ, ψ ∈ FL and ◦ ∈ {∧,∨,→}, then

TC (φ ◦ ψ) = TC (φ) ◦ Tc(ψ) and TC (¬φ) = ¬TC (φ);

(iv) if φ ∈ FL, then

TC (∃xφ(x)) = ∃X(U (X, P) ∧ TC (φ)), TC (∀xφ(x)) = ∀X(U (X, P) → TC (φ)).

Observe that the formula TC (φ) can be constructed effectively from φ.

We say that the elementary theory Th(G) of a group G is interpretable in the group

H if there exists a group code C(H, B) of the type (5.1) and a formula Ψ(P) such that

Th(G) = Th(C(H, B)) for any set of parameters B ⊂ H that satisfies the formula

Ψ(P) in H.

Any partially commutative group is a direct product of finitely many non-abelian

directly indecomposable partially commutative groups and its centre Z(G), Z(G) ≃
Z

k, k ∈ N. This decomposition is unique up to a permutation of factors. We refer to

them as (direct) components of G.

The centre Z(G) is a normal subgroup and a definable subset of G. It is the truth

set of the formula ΦZ(x) : ∀y[x, y] = 1. Thus Z(G) is 0-interpretable in G. Conse-

quently, as shown above, the quotient G
/

Z(G) is interpretable in G.

Therefore, to study partially commutative groups from a model-theoretic view-

point, it suffices to consider free partially commutative groups with trivial centre.

Let G be a partially commutative group without centre. As mentioned above, in

this event G is a direct product of directly indecomposable partially-commutative

groups, which in turn are domains by Theorem 4.19. Thus Theorem A and Corol-

lary A of [20] apply and can be restated as follows.

Theorem A (cf. [20]) Let G be a partially commutative group with trivial centre.

Then for each component Gi of G its elementary theory Th(Gi) is interpretable in the

group G.

Corollary A (cf. [20]) Let G be a partially commutative group and let G = G1 ×
· · ·×Gn ×Z

r, where Gi is a non-abelian directly indecomposable partially commutative

group, i = 1, . . . , n. Then the following hold:

(i) If G ≡ H, then

(a) H = H1×· · ·×Hn×Z(H) is a finite direct product of domains and the centre

Z(H), with Hi ≡ Gi and Z(H) ≡ Z(G).

(b) any other decomposition of H as a direct product of domains and its centre has

this form (after a suitable re-ordering of the factors);

(ii) Th(G) is decidable if and only if Th(Gi) is decidable for every i = 1, . . . , n.
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Let G = G1 × · · · × Gk be a direct product of groups Gi . A subgroup H of G is

called a subdirect product of groups Gi if πi(H) = Gi for every i = 1, . . . , k, where

πi : G → Gi is the canonical projection. An embedding

(5.2) λ : H →֒ G1 × · · · × Gk

is called a subdirect decomposition of H if λ(H) is a subdirect product of the groups

Gi . The subdirect decomposition (5.2) is termed minimal if H ∩ Gi 6= {1} for every

i = 1, . . . , k (here Gi is viewed as a subgroup of G under the canonical embedding).

Theorem B ([20]) Let H be a minimal subdirect product of domains. Then the ele-

mentary theory of each component of H is interpretable in the group H.

Corollary B ([20]) Let H be a minimal subdirect product of k domains and

H →֒ G1 × · · · × Gk

be its minimal component decomposition. Then the following hold:

(i) if Th(H) is decidable, then Th(Gi) is decidable for every i = 1, . . . , k;

(ii) if Th(H) is λ-stable, then Th(Gi) is λ-stable for every i = 1, . . . , k.

Theorem 5.1 Let G be a directly indecomposable partially commutative group and Y

an algebraic set over G. Then the following conditions hold:

(i) the coordinate group Γ(Yi) of each irreducible component Yi of Y is interpretable

in the group Γ(Y );

(ii) the elementary theory Th(Γ(Yi)) of each irreducible component Yi of Y is inter-

pretable in the group Γ(Y ).

Proof Partially commutative groups are linear (see [17,18]), thus equationally Noe-

therian (see [1]). We can therefore decompose Y as a finite union of irreducible

algebraic sets, Y = Y1 ∪ · · · ∪ Yk (see [1, Corollary 12]). By [1, Proposition 12]

the coordinate group Γ(Y ) is a minimal subdirect product of the coordinate groups

Γ(Y1), . . . ,Γ(Yk). Every group Γ(Yi), being a coordinate group of an irreducible

algebraic set over a domain, is again a domain by [1, Theorem D2]. Now (i), (ii)

follow from Theorem B.

Corollary 5.2 Let G be a directly indecomposable partially commutative group.

(i) If Y = Y1 ∪· · ·∪Yk is an algebraic set over G, where Y1, . . . ,Yk are the irreducible

components of Y , then the elementary theory of Γ(Y ) is decidable if and only if the

elementary theory of Γ(Yi) is decidable for all i = 1, . . . , k.

(ii) If Y = Y1∪· · ·∪Yk and Z = Z1∪· · ·∪Zl are two irreducible algebraic sets, where

Y1, . . . ,Yk and Z1, . . . , Zl are the irreducible components of Y and Z, respectively,

then Γ(Y ) is elementary equivalent to Γ(Z) if and only if k = l and, after a certain

re-enumeration, Γ(Yi) is elementary equivalent to Γ(Zi) for all i = 1, . . . , k.
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6 Normal Forms of First-Order Formulas

6.1 Conjunctions of Positive Formulas

Let La,b be the language of groups enriched by two constants a and b, and let S be the

class of all groups G satisfying the following universal sentences.

(I) ∀x (([x, a] = 1 ∧ [x, b] = 1) → x = 1);

(II) ∀x∀y∀z(x2 y2z2
= 1 → [x, y] = 1 ∧ [x, z] = 1 ∧ [y, z] = 1);

(III) ∀x∀y
(
x2

= y2 → x = y
)
;

(IV) ∀x
(
[x2, a] = 1 → [x, a] = 1

)
.

Let GROUPS be a set of axioms for group theory. Denote by AS the union of

axioms (I),(II),(III), (IV), and GROUPS. Notice that axiom (II) is equivalent modulo

GROUPS to the following quasi-identity:

∀x∀y∀z(x2 y2z2
= 1 → [x, y] = 1).

It follows that all axioms in AS are quasi-identities.

Lemma 6.1 The class S contains all partially commutative groups with trivial centres.

Proof We first prove that in any partially commutative group G with trivial centre

there exist two elements a and b such that C(a) ∩ C(b) = 1. Indeed, let G = G1 ×
· · · × Gk be the decomposition of G in the form (2.1). Since Z(G) = 1, each Gi ,

i = 1, . . . , k is a non-abelian directly indecomposable partially commutative group.

For each i choose a pair of block elements ai , bi ∈ Gi such that CGi
(ai)∩CGi

(bi) = 1.

By Theorem 2.3, it follows that

CG(a1 . . . ak) = 〈√a1〉 × · · · × 〈√ak〉 and CG(b1 . . . bk) = 〈
√

b1〉 × · · · × 〈
√

bk〉

and so CG(a1 · · · ak) ∩CG(b1 · · · bk) = 1. This proves that G satisfies Axiom (I).

In [5] Crisp and Wiest proved the following theorem.

Let G be a partially commutative group. Then the equation x2 y2z2
= 1 has only

commutative solutions.

So G satisfies Axiom (II).

By [11], partially commutative groups have least roots, and thus G satisfies Axiom

(III).

By Corollary 2.4, G satisfies Axiom (IV).

Lemma 6.2 Let G ∈ S. Then the equation

(6.1) x2ax2a−1(ybyb−1)−2
= 1

has only the trivial solution x = 1 and y = 1 in G.

Proof Let x, y be a solution of equation (6.1) in G. Then we can rewrite (6.1) as

follows:

(6.2) (x2a)2a−2
= ((yb)2b−2)2.
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Since G satisfies (II), from (6.2) we deduce that [x2a, a−1] = 1, hence [x2, a−1] = 1.

Since G satisfies (IV), it follows that [x, a] = 1. Now, we can rewrite 6.2 in the form

(x2)
2
= ((yb)2b−2)2, and then, since G satisfies (III) we get

(6.3) x2
= (yb)2b−2.

Again, since G satisfies (II) it follows that [x, b] = 1 and [y, b] = 1. This implies that

[x, a] = 1 and [x, b] = 1. Therefore, applying (I), we get x = 1. In this event, (6.3)

reduces to y2
= 1, so y = 1, as desired.

Corollary 6.3 For any finite system of equations S1(X) = 1, . . . , Sk(X) = 1 one can

effectively find a single equation S(X) = 1 such that given a group G ∈ S, the following

holds:

VG(S1, . . . , Sn) = VG(S).

Proof By induction it suffices to prove the result for k = 2. In this case, by the

lemma above,S1(X)2aS1(X)2a−1(S2(X)bS2(X)b−1)−2
= 1 can be chosen as the equa-

tion S(X) = 1.

Corollary 6.4 For any finite system of atomic formulas S1(X) = 1, . . . , Sk(X) = 1 in

La,b, one can effectively find an atomic formula S(X) = 1 in La,b such that

(
k∧

i=1

Si(X) = 1) is AS-equivalent to S(X) = 1,

written
( k∧

i=1

Si(X) = 1
)
∼AS

S(X) = 1.

6.2 Disjunctions of Positive Formulas

Our next aim is to be able to rewrite finite disjunctions of equations into conjunctions

of equations.

Let TD be the elementary theory (in the language La,b of groups enriched by

two constants) of non-abelian directly indecomposable partially commutative groups

whose centraliser dimension is lower than a fixed number D, i.e., the set of all first

order sentences in the language of groups enriched by two constants a and b which

are true in all non-abelian directly indecomposable partially commutative groups of

centraliser dimension lower than D, together with the following two formulas.

• The intersection of centralisers of a and b is trivial:

∀x([x, a] = 1 ∧ [x, b] = 1) → x = 1

• The centralisers of a and b are cyclic. An interested reader may verify that this

condition can indeed be written using the first order language.

Remark 6.5 Note that any model of TD lies in S.
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In Section 7, we consider models in the language LG, that is, the language of

G-groups enriched by all constants from G (where G is a directly indecomposable,

non-abelian partially commutative group). We denote the elementary theory in the

language LG of directly indecomposable partially commutative G-groups whose cen-

traliser dimension is lower than a fixed number D by the same symbol TD. The results

of this and the next sections hold for both definitions of TD.

Proposition 6.6 Let G be a model of TD. Let a, b ∈ G be elements with cyclic cen-

tralisers and such that C(a) ∩C(b) = 1. Then for any solution x, y ∈ G of the system

[x, y] = 1, [x, y(a3 cdim(G)+4)] = 1, [x, y(b3 cdim(G)+4)] = 1,

either x = 1 or y = 1.

Proof By Corollary 4.18, any directly indecomposable partially commutative group

satisfies the following sentence in La,b:

∀x∀y
(

[x, y] = 1 ∧ [x, y(a3 cdim(G)+4)] = 1 ∧ [x, y(b3 cdim(G)+4)] = 1
)
→ (x = 1 ∨ y = 1).

Since the class of all groups that have centraliser dimension D is universally axioma-

tisable (see [12]), any model G of the theory TD satisfies the above sentence and the

statement follows.

Combining Proposition 6.6 and Lemmas 6.1 and 6.2 yields an algorithm to encode

an arbitrary finite disjunction of equations into a single equation.

Corollary 6.7 For any finite set of equations S1(X) = 1, . . . , Sk(X) = 1 one can

effectively find a single equation S(X) = 1 such that given any model G of TD, the

following holds: VG(S1) ∪ · · · ∪VG(Sk) = VG(S).

Corollary 6.8 For any finite set of atomic formulas S1(X) = 1, . . . , Sk(X) = 1 one

can effectively find a single atomic formula S(X) = 1 such that

( k∨

i=1

Si(X) = 1
)
∼TD

S(X) = 1.

Corollary 6.9 Every positive quantifier-free formula Φ(X) is equivalent modulo TD

to a single equation S(X) = 1.

6.3 Conjunctions and Disjunctions of Inequations

The next result shows that one can effectively encode finite conjunctions and finite

disjunctions of inequations (negations of atomic formulas) into a single inequation

modulo TD.

Lemma 6.10 For any finite set of inequations S1(X) 6= 1, . . . , Sk(X) 6= 1, one can

effectively find an inequation R(X) 6= 1 and an inequation T(X) 6= 1 such that

( k∧

i=1

Si(X) 6= 1
)
∼TD

R(X) 6= 1 and
( k∨

i=1

Si(X) 6= 1
)
∼TD

T(X) 6= 1.
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Proof By Corollary 6.8 there exists an equation R(X) = 1 such that

k∨

i=1

(Si(X) = 1) ∼TD
R(X) = 1.

Hence

( k∧

i=1

Si(X) 6= 1
)
∼TD

¬
( k∨

i=1

Si(X) = 1
)
∼TD

¬(R(X) = 1) ∼TD
R(X) 6= 1.

This proves the first part of the result. Similarly, by Corollary 6.4 there exists an

equation T(X) = 1 such that (
∧k

i=1 Si(X) = 1) ∼TD
T(X) = 1. Hence

( k∨

i=1

Si(X) 6= 1
)
∼TD

¬
( k∧

i=1

Si(X) = 1
)
∼TD

¬(T(X) = 1) ∼TD
T(X) 6= 1.

Corollary 6.11 For every quantifier-free formula Φ(X), one can effectively find a for-

mula Ψ(X) =
∨n

i=1(Si(X) = 1 ∧ Ti(X) 6= 1) which is equivalent to Φ(X) modulo TD.

In particular, if G is a model of TD, then every quantifier-free formula Φ(X) is equivalent

over G to a formula Ψ(X) as above.

7 Positive Theory of Partially Commutative Groups

In this section we present a procedure of quantifier elimination for positive formu-

las over partially commutative groups (an analog of Merzlyakov’s theorem for free

groups). Our approach to the positive theory of partially commutative groups is

based on the proof of Merzlyakov’s theorem given in [19].

7.1 Generalised Equations

Let A = {a1, . . . , am} be a set of constants and X = {x1, . . . , xn} be a set of variables.

Set G = G(A) to be a partially commutative group generated by A and G[X] =

G ∗ F(X).

Definition 7.1 A combinatorial generalised equation Ω (with constants from A±1)

consists of the following objects:

(i) A finite set of bases BS = BS(Ω). Every base is either a constant base or a

variable base. Each constant base is associated with exactly one letter from A±1.

The set of variable bases M consists of 2n elements M = {µ1, . . . , µ2n}. The

set M comes equipped with two functions: a function ε : M → {1,−1} and

an involution ∆ : M → M (i.e., ∆ is a bijection such that ∆
2 is an identity on

M). Bases µ and ∆(µ) (or µ̄) are called dual bases. We denote variable bases by

µ, λ, . . . .

(ii) A set of boundaries BD = BD(Ω), where BD is a finite initial segment of the set

of positive integers BD = {1, 2, . . . , ρ + 1}. We use letters i, j, . . . for bound-

aries.
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(iii) Two functions α : BS → BD and β : BS → BD. We call α(µ) and β(µ) the initial

and terminal boundaries of the base µ (or endpoints of µ). These functions

satisfy the following conditions: α(b) < β(b) for every base b ∈ BS; if b is a

constant base, then β(b) = α(b) + 1.

(iv) A subset C of BD(Ω) × BD(Ω).

To a combinatorial generalised equation Ω one can associate a system of equations

in variables h1, . . . , hρ over G(A) (variables hi are sometimes called items). This sys-

tem is called a generalised equation, and, abusing the notation, we denote it by the

same symbol Ω. The generalised equation Ω consists of the following three types of

equations.

(i) Each pair of dual variable bases (λ,∆(λ)) provides an equation over a partially

commutative group G

[hα(λ)hα(λ)+1 · · · hβ(λ)−1]ε(λ)
= [hα(∆(λ))hα(∆(λ))+1 · · · hβ(∆(λ))−1]ε(∆(λ)).

These equations are called basic equations. In the case when β(λ) = α(λ) + 1

and β(∆(λ)) = α(∆(λ)) + 1, i.e., the corresponding basic equation takes the

form [hα(λ)]
ε(λ)

= [hα(∆(λ))]
ε(∆(λ)), without loss of generality, we shall assume

that the equality above is graphical.

(ii) For each constant base b we write down a coefficient equation hα(b) = a, where

a ∈ A±1 is the constant associated with b.

(iii) For every element c = (i, j) ∈ C we write the following equation: [hi , h j] = 1.

Remark 7.2 We assume that every generalised equation comes associated with a

combinatorial one.

Let G = G(A). Then the monoid given by the presentation

T = T(A±1) = 〈A ∪ A−1 | [a±1
i , a±1

j ] = 1〉, where
{[

a±1
i , a±1

j

]
= 1 in G

}

is called partially commutative monoid associated with G. Partially commutative mon-

oids are also known as trace monoids and are extensively studied; see [10] and the

references therein.

Definition 7.3 Let Ω(h) = {L1(h) = R1(h), . . . , Ls(h) = Rs(h)} be a generalised

equation in variables h = (h1, . . . , hρ) with constants from A±1. A sequence of re-

duced nonempty words U = (U1(A), . . . ,Uρ(A)) in the alphabet A±1 is a solution of

Ω if:

• all words Li(U ), Ri(U ) are geodesic (treated as elements of G);
• Li(U ) = Ri(U ), i = 1, . . . s in the partially commutative monoid T(A±1).

The notation (Ω,U ) means that U is a solution of the generalised equation Ω.

Remark 7.4 Notice that a solution U of a generalised equation Ω can be viewed as

a solution of Ω in the partially commutative monoid T(A±1) (i.e., Li(U ) = Ri(U )

modulo commutation) which satisfies an additional condition: U ∈ T(A±1)
ρ

and U

is a tuple of geodesic words in G.
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Obviously, each solution U of Ω gives rise to a solution of Ω in the partially

commutative group G(A). The converse does not hold in general, i.e., it might

happen that U is a solution of Ω in G(A) but not in T(A±1), i.e., some equalities

Li(U ) = Ri(U ) hold only after a reduction in G. We introduce the following nota-

tion which will allow us to distinguish in which structure (T(A±1) or G(A)) we are

resolving Ω.

If S = {L1(h) = R1(h), . . . , Ls(h) = Rs(h)} is an arbitrary system of equations

with constants from A±1, then by S∗ we denote the system of equations

S∗ = {L1(h)R1(h)−1
= 1, . . . , Ls(h)Rs(h)−1

= 1}

over the group G(A).

7.2 Reduction to Generalised Equations

Similarly to the case of free groups, we now show how for a given finite system of

equations S(X, A) = 1 over a partially commutative group G one can associate a finite

collection of generalised equations GE(S) with constants from A±1. The collection

GE(S) to some extent describes all solutions of the system S(X, A) = 1.

Informally, Lemma 3.3 describes all possible cancellation schemes for the set of

all solutions of the system S(X, A) in the following way: the cancellation scheme

corresponding to a particular solution can be obtained from the one described in

Lemma 3.3 by setting some of the words w
j
i ’s (and the corresponding bands) to be

trivial. Therefore, every partition table (to be defined below) corresponds to one of

the cancellation schemes obtained from the general one by setting some of the words

w
j
i ’s to be trivial. Every non-trivial word w

j
i corresponds to a variable zk and the

word wi
j to the variable z−1

k . If a variable x that occurs in the system S(X, A) = 1 is

subdivided as a product of some words w
j
i ’s, i.e., is a word in the w

j
i ’s, then the word

Vi j from the definition of a partition table is this word in the corresponding zk’s.

If the bands corresponding to the words w
j
i and wl

k cross, then the corresponding

variables zr and zs commute in the group Γ. We refer the reader to the construction

of a partition table by a solution of the system S(X, A) given in the end of this section

to gain an intuition of the definition of a partition table.

Write {S(X, A) = 1} = {S1 = 1, . . . , Sm = 1} in the form

(7.1)

r11r12 . . . r1l1 = 1,

r21r22 . . . r2l2 = 1,

...

rm1rm2 . . . rmlm = 1,

where ri j are letters of the alphabet X±1 ∪ A±1.

A pair (a set of geodesic words, a G-partially commutative group), T = (V,Γ) of

the form:

V = {Vi j(z1, . . . , zp)} ⊂ G∗F(Z) = G[Z] (1 ≤ i ≤ m, 1 ≤ j ≤ li), Γ = G(A∪Z),
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is called a partition table of the system S(X, A) if the following conditions are satisfied:

(i) Every letter from Z∪Z−1 occurs in the words Vi j , moreover it occurs only once;

(ii) The equality Vi1Vi2 · · ·Vili = 1, 1 ≤ i ≤ m, holds in Γ;

(iii) |Vi j | ≤ li − 1;

(iv) if ri j = a ∈ A±1, then |Vi j | = 1.

Since |Vi j | ≤ li − 1, then at most |S(X, A)| =
∑m

i=1(li − 1)li different letters zi

can occur in a partition table of S(X, A) = 1. Therefore we will always assume that

p ≤ |S|. We call the number |S(X, A)| the size of the system S.

Each partition table encodes a particular type of cancellation that happens when

one substitutes a particular solution W (A) ∈ G(A) into S(X, A) = 1 and then reduces

(in a certain way) the words in S(W (A), A) into the empty word.

Lemma 7.5 Let S(X, A) = 1 be a finite system of equations over G(A). Then

(i) the set PT(S) of all partition tables of S(X, A) = 1 is finite, and its cardinality is

bounded by a number which depends only on |S(X, A)|;
(ii) one can effectively enumerate the set PT(S).

Proof Since the words Vi j have bounded length, one can effectively enumerate the

finite set of all collections of words {Vi j} in G[Z] which satisfy the conditions (i),

(iii), (iv) above. Now for each such collection {Vi j} one can effectively check whether

or not the equalities Vi1Vi2 · · ·Vili = 1, 1 ≤ i ≤ m hold in one of the finitely many

(since |Z| < ∞) partially commutative groups Γ. This allows one to list effectively

all partition tables for S(X, A) = 1.

To each partition table T = ({Vi j},Γ) one can assign a generalised equation ΩT

in the following way (below we use
.
= for graphical equality, i.e., equality in the free

monoid). Consider the following word V in M(A±1 ∪ Z±1):

V
.
= V11V12 · · ·V1l1 · · ·Vm1Vm2 · · ·Vmlm = y1 · · · yρ,

where yi ∈ A±1∪Z±1 and ρ = l(V ) is the length of V . Then the generalised equation

ΩT = ΩT(h) has ρ + 1 boundaries and ρ variables h1, . . . , hρ which are denoted by

h = (h1, . . . , hρ).

Now we define bases of ΩT and the functions α, β, ε.

Let z ∈ Z. For the (only) pair of occurrences of z in V

yi = zǫi , y j = zǫ j (ǫi , ǫ j ∈ {1,−1})

we introduce a pair of dual variable bases µz,i , µz, j such that ∆(µz,i) = µz, j . Put

α(µz,i) = i, β(µz,i) = i + 1, ε(µz,i) = ǫi ,

α(µz, j) = j, β(µz, j) = j + 1, ε(µz, j) = ǫ j .

The basic equation that corresponds to this pair of dual bases is hǫi

i

.
= h

ǫ j

j .

Let x ∈ X. For any two distinct occurrences of x in S(X, A) = 1

ri, j = xǫi j , rs,t = xǫst (ǫi j , ǫst ∈ {1,−1}),
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so that (i, j) precedes (s, t) in left-lexicographical order, we introduce a pair of dual

bases µx,i, j,s,t and µx,s,t,i, j such that ∆(µx,i, j,s,t ) = µx,s,t,i, j . Let Vi j occur in the word

V as a subword Vi j = yc1
· · · yd1

, and Vst = yc2
· · · yd2

. Then we put

α(µx,i, j,s,t ) = c1, β(µx,i, j,s,t ) = d1 + 1, ε(µx,i, j,s,t ) = ǫi j ,

α(µx,s,t,i, j) = c2, β(µx,s,t,i, j) = d2 + 1, ε(µx,s,t,i, j) = ǫst .

The basic equation which corresponds to these dual bases can be written in the form

[hα(µx,i, j,s,t ) · · · hβ(µx,i, j,s,t )−1]ǫi j =T [hα(µx,s,t,i, j ) · · · hβ(µx,s,t,i, j )−1]ǫst .

Let ri j = a ∈ A±1. In this case we introduce a constant base µi j with the label a.

If Vi j occurs in V as Vi j = yc, then we put α(µi j) = c, β(µi j) = c + 1. The

corresponding coefficient equation is written as hc = a.

For any two distinct occurrences z1, z2 ∈ V such that [z1, z2] = 1 in Γ:

yi = z1
ǫ, y j = z2

ǫ j , (ǫi , ǫ j ∈ {1,−1})

we set (i, j) ∈ C . The corresponding equation is [hi , h j] = 1. This defines the

generalised equation ΩT . Put GE(S) = {ΩT | T is a partition table for S(X, A) = 1}.

Then GE(S) is a finite collection of generalised equations which can be effectively

constructed for a given S(X, A) = 1.

By GR(Ω) we denote the coordinate group of Ω
∗, GR(Ω) = G[h]

/

R(Ω∗) (recall that

by Ω
∗ we denote the system of equation over the group G(A)). Now we explain

relations between the coordinate groups of S(X, A) = 1 and Ω
∗
T .

For a letter x in X we choose an arbitrary occurrence of x in S(X, A) = 1 as ri j =

xǫi j . Let µ = µx,i, j,s,t be a base that corresponds to this occurrence of x. Then Vi j

occurs in V as the subword Vi j = yα(µ) · · · yβ(µ)−1. Notice that the word Vi j does not

depend on the choice of the base µx,i, j,s,t corresponding to the occurrence ri j .

Define a word Px(h) ∈ G[h] (where h = {h1, . . . , hρ}) as follows Px(h, A) =

(hα(µ) · · · hβ(µ)−1)ǫi j , and put P(h) = (Px1
, . . . , Pxn

).

The tuple of words P(h) depends only on the choice of occurrences of letters from

X in V . It follows from the construction above that the map X → G[h] defined

by x → Px(h, A) gives rise to a G-homomorphism π : GR(S) → GR(ΩT ). Indeed, if

f (X) ∈ R(S), then π( f (X)) = f (P(h)). Then given a solution of ΩT , it follows from

condition (ii) of the definition of partition table that f (P(h)) = 1, thus R( f (S)) ⊆
R(Ω∗

T) and π is a homomorphism.

Observe that the image π(x) in GR(ΩT ) does not depend on a particular choice of

the occurrence of x in S(X, A) (the basic equations of ΩT make these images equal).

Hence π depends only on ΩT .

To relate solutions of S(X, A) = 1 to solutions of generalised equations from

GE(S) we need the technique developed in Section 3.2.

Let W (A) be a solution of S(X, A) = 1 in G(A). If in the system (7.1) we make the

substitution σ : X → W (A), then (ri1ri2 · · · rili )
σ

= rσ
i1rσ

i2 · · · rσ
ili

= 1 in G(A) for every

i = 1, . . . , m.

https://doi.org/10.4153/CJM-2010-035-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2010-035-5


512 M. Casals-Ruiz and I. V. Kazachkov

Since every product Ri = rσ
i1rσ

i2 . . . rσ
ili

is trivial, we can choose a van Kampen

diagram DRi
for Ri . Denote by z̃i,1, . . . , z̃i,pi

the subwords wk
j , 1 ≤ j < k ≤ li of

rσ
i j , where here wk

j are defined as in Lemma 3.3. Since, by Lemma 3.3 wk
j = w

j
k

−1
,

the word ri j can be written as a word in z̃i,1, . . . , z̃i,pi
, rσ

i j = Vi j(z̃i,1, . . . , z̃i,pi
) for

some freely reduced words Vi j(Zi) in variables Zi = {zi,1, . . . , zi,pi
}. Observe that if

ri j = a ∈ A±1, then rσ
i j = a and we have |Vi j | = 1. By Lemma 3.3, rσ

i j is a product of

at most li−1 words wk
j , we have |Vi j | ≤ li−1. Denote by Z =

⋃m
i=1 Zi = {z1, . . . , zp}.

Take a partially commutative group Γ = G(A ∪ Z) whose underlying commutation

graph is defined as follows:

• two elements ai , a j in A±1 commute whenever they commute in G;
• an element a ∈ A±1 commutes with zi if and only if a commutes with the word

wk
j corresponding to zi ;

• two elements zi , z j ∈ Z commute whenever the corresponding words wk
j do.

In the above notation, the set T = ({Vi j},Γ) is a partition table for S(X, A) = 1.

We define U (A) = (z̃1, . . . , z̃p) to be the solution of the generalised equation ΩT

induced by W (A). From the construction of the map P(h) we deduce that W (A) =

P(U (A)).

The converse is also true: if U (A) is an arbitrary solution of the generalised equa-

tion ΩT , then P(U (A)) is a solution of S(X, A) = 1.

We summarize the discussion above in the following lemma.

Lemma 7.6 For a given system of equations S(X, A) = 1 over G, one can effectively

construct a finite set GE(S) = {ΩT | T is a partition table for S(X, A) = 1} of gener-

alised equations such that

(i) if the set GE(S) is empty, then S(X, A) = 1 has no solutions in G;

(ii) for each Ω(h) ∈ GE(S) and for each x ∈ X one can effectively find a word

Px(h, A) ∈ G[h] of length at most |h| such that the map x 7→ Px(h, A) (x ∈ X)

gives rise to a G-homomorphism πΩ : GR(S) → GR(Ω);

(iii) for any solution W (A) ∈ G
n of the system S(X, A) = 1 there exists Ω(h) ∈ GE(S)

and a solution U (A) of Ω(h) such that W (A) = P(U (A)), where P(h) =

(Px1
, . . . , Pxn

), and this equality holds in the partially commutative monoid

T(A±1);

Corollary 7.7 In the notation of Lemma 7.6 for any solution W (A) ∈ G
n

= G(A)n

of the system S(X, A) = 1 there exists Ω(h) ∈ GE(S) and a solution U (A) of Ω(h) such

that the following diagram commutes

GR(S)

πW

""
FF

FF
FF

FF
F

π
// GR(Ω)

πU

{{xx
xx

xx
xx

x

G
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7.3 Positive Theory of Partially Commutative Groups and Direct Products of
Groups

In this section we first prove a result on elimination of quantifiers for positive sen-

tences over a non-abelian directly indecomposable partially commutative group G =

G(A). This proof is based on the notion of a generalised equation. Combining this

result with a theorem of V. Diekert and A. Muscholl on decidability of equations over

partially commutative groups (see [9]) we get that the positive theory of free par-

tially commutative groups in the language of group theory L and the language LG

enriched by constants is decidable. Note that V. Diekert and M. Lohrey, using a dif-

ferent method, prove a similar result in [8]. Furthermore, we apply the techniques

developed for the proof of quantifier elimination to obtain a result on lifting arbitrary

formulas from G to G ∗ F, where F is a free group of finite rank (see Theorem 7.12).

In order to prove that the positive theory of any partially commutative group is de-

cidable, we need to study the positive theory of the direct product of groups. In the

appendix of the paper we prove that if G = H1 × · · · × Hk, then the positive theory

of G in both languages L and LG is decidable if the positive theories of H1, . . . , Hk are

decidable in L and LHi
, correspondingly.

Recall that every positive formula Ψ(Z) in the language LG is equivalent modulo

TD to a formula of the type

∀x1∃y1 · · · ∀xk∃yk(S(X,Y, Z, A) = 1),

where S(X,Y, Z, A) = 1 is an equation with constants from A±1, X = (x1, . . . , xk),

Y = (y1, . . . , yk), Z = (z1, . . . , zm). Indeed, one can insert auxiliary quantifiers to

ensure the direct alternation of quantifiers in the prefix. In particular, every positive

sentence in LG is equivalent modulo TD to a formula of the type

∀x1∃y1 · · · ∀xk∃yk(S(X,Y, A) = 1).

Theorem 7.8 (Elimination of Quantifiers) If

G |= ∀x1∃y1 · · · ∀xk∃yk(S(X,Y, A) = 1),

then there exist words (with constants from G) q1(x1), . . . , qk(x1, . . . , xk) ∈ G[X], such

that G[X] |= S(x1, q1(x1), . . . , xk, qk(x1, . . . , xk), A) = 1, i.e., the equation

S(x1, y1, . . . , xk, yk, A) = 1

(in variables Y ) has a solution in the group G[X].

Proof Let GE(S) = {Ω1(Z1), . . . ,Ωr(Zr)} be generalised equations associated with

the equation S(X,Y, A) = 1 in Lemma 7.6. Denote by ρi = |Zi | the number of

variables in Ωi .

Since the group G is directly indecomposable, there exists a path p in the non-

commutation graph ∆ of G beginning in a vertex b1 which goes through every vertex

of ∆ at least once. Denote by b1 · · · bn the label of the path p. Set

b = b1b2 · · · bn−1bnbn−1 · · · b1, a = b2bb2 = b2b1b2 · · · bn−1bnbn−1 · · · b2b1b2,

g1 = bmam1,1 bmam1,2 b · · · am1,n1 bm,
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where 0 < m1,1 < m1,2 < · · · < m1,n1
, max{ρ1, . . . , ρr}|S(X, A)| < n1 (recall that by

|S(X, A)| we denote the size of the system S; see Section 7.2) and m ∈ N is a constant

which depends only on the generalised equation.

For the word g1 there exists h1 such that

G |= ∀x2∃y2 · · · ∀xk∃yk(S(g1, h1, x2, y2, . . . , xk, yk) = 1).

Suppose now that elements g1, h1, . . . , gi−1, hi−1 ∈ G are such that

G |= ∀xi∃yi · · · ∀xk∃yk(S(g1, h1, . . . , gi−1, hi−1, xi , yi , . . . , xk, yk) = 1).

We define

(7.2) gi = bmami1 bmami2 bm · · · amini bm

such that

(i) 0 < mi1 < mi2 < · · · < mini
;

(ii) max{ρ1, . . . , ρr}|S(X, A)| < ni ;

(iii) no subword of the type bmami j bm occurs in any of the words gl, l < i and in any

of the (finitely many) words h ′
l such that h ′

l = hl in T(A±1), l < i.

Then there exists an element hi ∈ G such that

G |= ∀xi+1∃yi+1 · · · ∀xk∃yk(S(g1, h1, . . . , gi , hi , xi+1, yi+1, . . . , xk, yk) = 1).

By induction we have constructed elements g1, h1, . . . , gk, hk ∈ G such that

S(g1, h1, . . . , gk, hk) = 1

and each gi has the form (7.2) and satisfies conditions (i)–(iii)

By Lemma 7.6, there exists a generalised equation Ω(Z) ∈ GE(S), words Pi(Z, A),

Qi(Z, A) ∈ G[Z] (i = 1, . . . , k) of length lower than ρ = |Z|, and a solution U =

(u1, . . . , uρ) of Ω(Z) in G such that the following words are equal in T(A±1):

gi = Pi(U ), hi = Qi(U ) (i = 1, . . . , k).

Notice that from the definition of a and b it follows that no two consecutive letters in

a and b, and thus in gi commute. Therefore, the equality gi = Pi(U ) is graphical, i.e.,

gi = Pi(U ) in the free monoid.

Since ni > ρ|S(X, A)| (by condition (ii)) and Pi(U ) = y1 · · · yq, where yi ∈ U±1,

q ≤ ρ, the graphical equalities

(7.3) gi = bmami1 bmami2 bm · · · amini bm
= Pi(U ) (i = 1, . . . , k)

show that there exists a subword vi = bmamil bm of gi such that every occurrence of

this subword in (7.3) is an occurrence inside some u±1
j . For each i fix such a subword

vi = bmamil bm in gi . In view of condition (iii), the word vi does not occur in any of
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the words g j ( j 6= i), hs (s < i), moreover, in gi it occurs precisely once. Denote

by j(i) the unique index such that vi occurs inside u±1
j(i) in Pi(U ) from (7.3) (and vi

occurs in it precisely once).

The argument above shows that the variable z j(i) does not occur in words Pt (Z, A)

(t 6= i), Qs(Z, A) (s < i). Moreover, in Pi(Z) it occurs precisely once. It follows

that the variable z j(i) in the generalised equation Ω(Z) does not occur in either the

coefficient equations or in the basic equations corresponding to the dual bases related

to xt (t 6= i), ys (s < i).

We “mark” (or select) the unique occurrence of vi (as v±1
i ) in u j(i) i = 1, . . . , k.

Now we are going to mark some other occurrences of vi in the words u1, . . . , uρ as

follows. Suppose that some ud has a marked occurrence of some vi . If Ω contains an

equation of the type zǫ
d = zδ

r , then uǫ
d = uδ

r graphically. Hence ur has an occurrence

of the subword v±1
i which corresponds to the marked occurrence of v±1

i in ud. We

mark this occurrence of v±1
i in ur.

Suppose Ω contains an equation of the type [zα1
· · · zβ1−1]ǫ1 = [zα2

· · · zβ2−1]ǫ2

such that zd occurs in it, say in the left-hand side of the equality. Then

[uα1
· · · uβ1−1]ǫ1 = [uα2

· · · uβ2−1]ǫ2

in the partially commutative monoid T(A±1). Since v±1
i is a subword of ud, a sub-

word vi,1 = bm−1amil bm−1 occurs also in the right-hand side of the above equality,

say in ur. Indeed, let w1bmamil bmw2 = w in the monoid T(A±1). Since for any letter

ℓ in wk, k = 1, 2 there exists a letter ℓ′ in b such that [ℓ, ℓ′] 6= 1 and since, by the

definition of a and b, no two consecutive occurrences in bm−1amil bm−1 commute, the

statement follows. We mark this occurrence of v±1
i,1 in ur and in all the previously

marked occurrences of v±1
i = bvi,1b. We continue the marking process, but now,

instead of vi we mark the occurrences of vi,1. The marking process stops in finitely

many steps and all the occurrences of the subword vi,k = bm−kamil bm−k are marked.

For the above argument, it suffices to choose m > k, which depends on the gener-

alised equation only.

Now in all words u1, . . . , uρ we replace every marked occurrence of vi,k =

bm−kamil bm−k with a new word bm−kamil xib
m−k from the group G[X]. Denote the

resulting words from G[X] by ũ1, . . . , ũρ. It follows from the description of the mark-

ing process that the tuple Ũ = (ũ1, . . . , ũρ) is a solution of the generalised equation

Ω in G[X]. Indeed, by construction, all basic and coefficient equations in Ω hold

in the partially commutative monoid if we substitute zi by ũi . Furthermore, since

any word that contains the word of the form bm−kamil xib
m−k has cyclic centraliser, it

follows that Ũ satisfies the same commutation equations as U and thus the commu-

tation equations of Ω. Now, by Lemma 7.6, X = P(Ũ ),Y = Q(Ũ ) is a solution of the

equation S(X, A) = 1 over G[X] as desired.

Corollary 7.9 There is an algorithm which for a given positive sentence

∀x1∃y1 · · · ∀xk∃yk(S(X,Y, A) = 1)

in LG determines whether or not this formula holds in G, and if it does, the algorithm

finds words q1(x1), . . . , qk(x1, . . . , xk) ∈ G[X] such that

G[X] |= S(x1, q1(x1), . . . , xk, qk(x1, . . . , xk), A) = 1,
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i.e., the positive theory of any directly-indecomposable partially commutative group is

decidable.

Proof The proof follows from Theorem 7.8 and decidability of equations over free

partially commutative groups. Indeed, the compatibility problem for a system of

equations over a partially commutative group G reduces to the compatibility of a

system of equations S ′ over a free group with rational constraints C , see [9]. In order

to prove the corollary it suffices to check the compatibility of S ′ over a free group

with constraints C ∪ {yi ∈ F[Xi]}, where Xi = {x1, . . . , xi}.

The next result follows directly from Corollary A.2.

Corollary 7.10 Let G be an arbitrary partially commutative group. Then the positive

theory of G is decidable.

Definition 7.11 Let φ be a sentence in the language LG written in the standard form

φ = ∀x1∃y1 · · · ∀xk∃yk φ0(x1, y1, . . . , xk, yk),

where φ0 is a quantifier-free formula in LG. We say that G freely lifts φ if there exist

words (with constants from G) q1(x1), . . . , qk(x1, . . . , xk) ∈ G[X], such that

G[X] |= φ0(x1, q1(x1), . . . , xk, qk(x1, . . . , xk), A) = 1.

Theorem 7.12 Let G be a non-abelian directly indecomposable partially commutative

group. Then G freely lifts every sentence in LG that is true in G.

Proof Suppose a sentence

(7.4) φ = ∀x1∃y1 · · · ∀xk∃yk(U (x1, y1, . . . , xk, yk) = 1∧V (x1, y1, . . . , xk, yk) 6= 1),

is true in G. We choose x1 = g1, y1 = h1, . . . , xk = gk, yk = hk precisely as in

Theorem 7.8. Then the formula

U (g1, h1, . . . , gk, hk) = 1 ∧V (g1, h1, . . . , gk, hk) 6= 1

holds in G. In particular, U (g1, h1, . . . , gk, hk) = 1 in G. It follows from Corollary 7.9

that there are words q1(x1) ∈ G[x1], . . . , qk(x1, . . . , xk) ∈ G[x1, . . . , xk] such that

G[X] |= U (x1, q1(x1, . . . , xk), . . . , xk, qk(x1, . . . , xk)) = 1.

Moreover, it follows from the construction that h1 = q1(g1), . . . , hk = qk(g1, . . . , gk).

We claim that

G[X] |= V (x1, q1(x1, . . . , xk), . . . , xk, qk(x1, . . . , xk)) 6= 1.

Indeed, if V (x1, q1(x1, . . . , xk), . . . , xk, qk(x1, . . . , xk)) = 1 in G[X], then its image in

G under any specialization X → G is also trivial, but this is not the case for the spe-

cialization x1 → g1, . . . , xk → gk, which is a contradiction. This proves the theorem

for sentences φ of the form (7.4). A similar argument works for formulas of the type

φ = ∀x1∃y1 · · · ∀xk∃yk

n∨

i=1

(Ui(x1, y1, . . . , xk, yk) = 1 ∧Vi(x1, y1, . . . , xk, yk) 6= 1),

which is actually the general case, by Corollary 6.11.

https://doi.org/10.4153/CJM-2010-035-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2010-035-5


Elements of Algebraic Geometry and the Positive Theory of Partially Commutative Groups 517

A Appendix: Positive Theory of the Direct Product of Groups

In this section we prove that if G = H1 × · · · × Hk, then the positive theory of

G in the language LG (and in L) is decidable if the positive theories of H1, . . . , Hk

are decidable. Perhaps this result is known; nevertheless, we were not able to find a

reference.

The following theorem is due to Feferman and Vaught [16].

Theorem A.1 Let G = H1 × · · · × Hk. Then the elementary theory of G in the

language LG is decidable, provided that the elementary theory of Hi is decidable in the

language LHi
, i = 1, . . . , k.

Proof Without loss of generality we may assume that G = A × B.

We use induction on the complexity of the formula to prove the following state-

ment. Given a formula ϕ(x1, . . . , xn) in the language LG, one can effectively construct

a finite family of formulas 〈φ〉 = {(ψi(y1, . . . , yn), ψ ′
i (z1, . . . , zn)) | i ∈ I} such that

for all a1, . . . , an, b1, . . . , bn we have A × B |= ϕ((a1, b1), . . . , (an, bn)) if and only if

there exists i ∈ I such that A |= ψi(a1, . . . , an) and B |= ψ ′
i (b1, . . . , bn).

• Let ϕ = (xi = x j), set 〈ϕ〉 = {(yi = y j , zi = z j)}.
• Let ϕ = (xi = c), where c ∈ G, c = (c1, c2), set 〈ϕ〉 = {(yi = c1, zi = c2)}.
• Let ϕ = ϕ1 ∨ ϕ2 and set 〈ϕ〉 = 〈ϕ1〉 ∪ 〈ϕ2〉.
• Let ϕ = ¬ϕ0 and set

〈ϕ〉 =
{( ∧

j∈ J

¬ψ j ,
∧

i∈I\ J

¬ψ ′
i

) ∣
∣ J ∈ P(I)

}
,

where P(I) is the power set of I and 〈φ0〉 = {(ψi , ψ
′
i ) | i ∈ I}.

• Let ϕ = ∃x0ϕ0(x0, x1, . . . , xn) and set

〈ϕ〉 = {(∃y0ψi(y0, y1, . . . , yn),∃z0ψ
′
i (z0, z1, . . . , zn)) | i ∈ I},

where 〈φ0〉 = {(ψi , ψ
′
i ) | i ∈ I}.

Corollary A.2 Let G = H1 × · · · × Hk. Then the positive theory of G in the language

LG (in the language L) is decidable, provided that the positive theories of H1, . . . , Hk are

decidable.

Proof In the notation of Theorem A.1, we are left to show that if ϕ is a positive

formula in LG, then for all i ∈ I the formulas ψi and ψ ′
i are also positive.

By construction of 〈ϕ〉 it follows that ψi and ψ ′
i are positive when ϕ = (xi = x j),

ϕ = (xi = c), ϕ = P(x1, . . . , xn), ϕ = ϕ1 ∨ ϕ2, and ϕ = ∃x0ϕ0(x0, x1, . . . , xn).

We are left to consider the two following cases: ϕ = ϕ1 ∧ ϕ2 and ϕ =

∀x0ϕ0(x0, x1, . . . , xn).
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Let ϕ = ∀x0ϕ0. Then ϕ is equivalent to ¬(∃x0¬ϕ0(x0, x1, . . . , xn)). Thus,

〈ϕ〉 = ¬
{(

∃x0

∧

j∈ J

¬ψ j ,∃x0

∧

i∈I\ J

¬ψ ′
i

) ∣
∣ J ∈ P(I)

}

=
{( ∧

J∈ J ′
¬

(
∃x0

∧

j∈ J

¬ψ j

)
,

∧

I∈P\ J ′
¬

(
∃x0

∧

i∈I

¬ψ ′
i

)) ∣
∣ J ′ ∈ P(P(I))

}

=
{( ∧

J∈ J ′
∀x0

∨

j∈ J

ψ j ,
∧

I∈P\ J ′
∀x0

∨

i∈I

ψ ′
i

) ∣
∣ J ′ ∈ P(P(I))

}
.

Now let ϕ = ϕ1 ∧ ϕ2 and 〈ϕl〉 = {(ψl,i , ψ
′
l,i) | i ∈ Il}, l = 1, 2. Then ϕ is

equivalent to ¬(¬ϕ1 ∨ ¬ϕ2). Thus,

〈ϕ〉 = ¬
{{( ∧

j∈ J

¬ψ1, j ,
∧

i∈I1\ J

¬ψ ′
1,i

) ∣
∣ J ∈ P(I1)

}

∪
{( ∧

j∈ J

¬ψ2, j ,
∧

i∈I2\ J

¬ψ ′
2,i

) ∣
∣ J ∈ P(I2)

}}

= ¬
{( ∧

j∈ J

¬ψ1, j ,
∧

i∈I1\ J

¬ψ ′
1,i

) ∣
∣ J ∈ P(I1)

}

∩ ¬
{( ∧

j∈ J

¬ψ2, j ,
∧

i∈I2\ J

¬ψ ′
2,i

) ∣
∣ J ∈ P(I2)

}

=
{( ∧

J∈ J ′
¬

( ∧

j∈ J

¬ψ1, j

)
,

∧

I∈P(I1)\ J

¬
( ∧

i∈I1\ J

¬ψ ′
1,i

)) ∣
∣ J ′ ∈ P(P(I1))

}

∩
{( ∧

J∈ J ′
¬

( ∧

j∈ J

¬ψ2, j

)
,

∧

I∈P(I2)\ J

¬
( ∧

i∈I2\ J

¬ψ ′
2,i

)) ∣
∣ J ′ ∈ P(P(I2))

}

=
{( ∧

J∈ J ′

∨

j∈ J

ψ1, j ,
∧

I∈P(I1)\ J

∨

i∈I1\ J

ψ ′
1,i

) ∣
∣ J ′ ∈ P(P(I1))

}

∪
{( ∧

J∈ J ′

∨

j∈ J

ψ2, j ,
∧

I∈P(I2)\ J

∨

i∈I2\ J

ψ ′
2,i

) ∣
∣ J ′ ∈ P(P(I2))

}

Acknowledgements The authors are extremely grateful to Andrew Duncan whose

numerous remarks and suggestions helped to significantly improve the exposition.

We would like to thank Alexei Miasnikov for useful discussions and remarks, and

Vladimir Remeslennikov for his comments on an earlier version of this paper.

References

[1] G. Baumslag, A. G. Myasnikov, and V. N. Remeslennikov, Algebraic geometry over groups I.
Algebraic sets and Ideal Theory. J. Algebra 219(1999), no. 1, 16–79. doi:10.1006/jabr.1999.7881

[2] , Discriminating completions of hyperbolic groups. Geom. Dedicata 92(2002), 115–143.
doi:10.1023/A:1019687202544

[3] N. Brady, H. Short, and T. Riley, The Geometry of the Word Problem for Finitely Generated Groups.
Advanced Courses in Mathematics. CRM Barcelona. Birkhauser Verlag, Basel, 2007.

[4] R. Charney, An introduction to right-angled Artin groups. Geom. Dedicata 125(2007), 141–158.
doi:10.1007/s10711-007-9148-6

https://doi.org/10.4153/CJM-2010-035-5 Published online by Cambridge University Press

http://dx.doi.org/10.1006/jabr.1999.7881
http://dx.doi.org/10.1023/A:1019687202544
http://dx.doi.org/10.1007/s10711-007-9148-6
https://doi.org/10.4153/CJM-2010-035-5


Elements of Algebraic Geometry and the Positive Theory of Partially Commutative Groups 519

[5] J. Crisp and B. Wiest, Embeddings of graph braid groups and surface groups in right-angled Artin
groups and braid groups. Algebr. Geom. Topol. 4(2004), 439–472. doi:10.2140/agt.2004.4.439

[6] V. Diekert, C. Gutierrez, and C. Hagenah, The existential theory of equations with rational
constraints in free groups is PSPACE-complete. Inform. and Comput. 202(2005), no. 2, 105–140.
doi:10.1016/j.ic.2005.04.002

[7] V. Diekert,and M. Lohrey, Word equations over graph products. In: FST TCS 2003. Lecture Notes in
Comput. Sci. 2450, Springer, Berlin, 2003, pp. 156–167.

[8] , Existential and positive theories of equations in graph products. Theory Comput. Syst.
37(2004), no. 1, 133–156. doi:10.1007/s00224-003-1110-x

[9] V. Diekert and A. Muscholl, Solvability of equations in free partially commutative groups is decidable.
Internat. J. Algebra Comput. 16(2006), no. 6, 1047–1070. doi:10.1142/S0218196706003372

[10] V. Diekert and G. Rozenberg, eds. The Book of Traces. World Scientific Publishing, River Edge, NJ,
1995.

[11] G. Duchamp and D. Krob, Partially commutative Magnus transformations. Internat. J. Algebra
Comput. 3(1993), no. 1, 15–41. doi:10.1142/S0218196793000032

[12] A. J. Duncan, I. V. Kazachkov, and V. N. Remeslennikov, Centraliser dimension and universal classes
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